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Amonitoring systemoperates over a network of first-come, first-served queues

in tandem, in which a source is transmitting its status to a monitor at the end of

the tandem. To characterize the freshness performance of this monitoring

system, we analyze the average Age of Information for this system, in which the

status update arrivals are Poisson distributed and each queue is served by a non-

preemptive, memoryless server. We first study the case of single-capacity

queues that are modeled as a stochastic hybrid system, and we derive the

average age for two queues with different service rates and three queues with

equal service rate. We then study the infinite capacity queue case and use the

graphical approach to derive the average age for two queues in tandem with

equal service rates. Finally, we simulate the average age for intermediate cases

of k capacity queues, which fall in between the two extreme cases of k = 1 and

k = ∞.

KEYWORDS

communications and networking, real-time systems, semantic data and service, sensor
and actuator networks, age of information

1 Introduction

In applications for the Internet of Things (IoT) or military applications, it is often

important for a device or entity at one point in the network to have information (e.g.,

sensor data) from another point in the network that is as fresh as possible. The concept of

Age of Information (AoI) applies to communication systems where the receiver has an

interest in fresh (i.e., most recently generated) information. However, traditional metrics

such as packet delay are insufficient for characterizing the performance of systems that

rely on real-time monitoring applications. AoI is a widely-explored metric to measure the

performance of real-time status updating applications, such as position tracking,

environmental/health monitoring, or networked control systems (Kaul et al., 2011;

2012a). In most works studying AoI, the goal is to derive the age averaged over time

for various single queue models (Kaul et al., 2012b; Yates and Kaul, 2012; Kam et al.,

2013). However, in IoT systems or ad hoc military networks, real-time information is

often needed over multiple hops, which can include wireless and wired links. In this work,

we focus on analyzing the average AoI for queues in tandem to obtain insight into the

performance of real-time status updating systems that operate over a multi-hop network.
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Research on AoI has focused on understanding the

performance of systems that are modeled by different types of

queues, with various arrival/departure processes, number of

servers, and queue capacities (Kam et al., 2016a; Bedewy

et al., 2016; Costa et al., 2016; Kosta et al., 2017; Sun et al.,

2017). While most studies have focused on analyzing single

queues, tandem queues have recently been recognized as an

important area of study for understanding the AoI for

networks beyond a single hop. Chiariotti et al. (2020) studied

a system of two connected satellite links for another age-related

metric, called the Peak AoI (PAoI), by modeling the system as a

series of M/M/1 queues. In contrast to the average AoI studied in

this work, PAoI tracks the maximum instantaneous value of AoI

for each update. Similarly, tandem satellite links were also studied

by Soret et al. (2020), who derived a bound on the average AoI for

satellites modeled as queues that received updates directly from

ground stations and relayed updates from previous satellites in

the tandem. Vikhrova et al. (2020) studied tandem queues with

updates that are randomly sent to one of two queues and priority

is given to the second queue. In Xu et al. (2020), the average PAoI

was analyzed for an IoT network (multiple sources) feeding into

tandem queues. In Kuang et al. (2019), a mobile edge computing

system was modeled as a tandem queue and the average AoI was

analyzed for a zero-wait message generation policy.

There has also been some earlier work on AoI in more

general multi-hop networks. For example, wireless scheduling

for AoI was studied in Talak et al. (2017), who derived the

average and peak average AoI-optimal stationary scheduling

policies for line networks, where links are activated according

to a stationary probability distribution. However, the authors did

not derive the average and peak average AoI in closed form.

Bedewy et al. (2017) studied the preemptive Last Generated First

Served (LGFS) policy, and show that this policy results in a

smaller age at all nodes in the network than any other causal

policy. The caveats are that the packets are generated at an

external source and are dispersed throughout the network via a

gateway node, packet transmission times over a network are

exponentially distributed, and the age optimization is done in a

stochastic ordering sense.

The work that most closely relates to this article is that of

Yates (2018); Yates (2020), which studies a line network of

preemptive servers. These works analyzed the AoI for this

system using a stochastic hybrid system (SHS) modeling

approach, as in Yates and Kaul (2019). It was shown in Yates

(2020) that for this line network, the age at the destination (or

any node in between) is identical in distribution to the sum of

independent exponential service times up to the node. Although

preemption has been shown to be optimal for exponential servers

(Bedewy et al., 2017), the same is not true for general service time

distributions. In addition, many practical communication

systems do not allow for this type of control for packets in

transmission. Furthermore, in most works on queues in tandem,

closed form expressions are often given as bounds or for the more

tractable PAoI metric. Therefore, it is still important to

characterize the average AoI of non-preemptive servers in

closed form, which is the focus of this article. The analysis

here is more challenging than that in the preemption case

because it does not allow for the reduction of states in the

SHS model, which greatly simplifies the analysis.

More recently, the SHS approach has been extended to not

only derive the average AoI but to actually derive the complete

distribution of the AoI. The SHS approach for deriving the

moment generating function (MGF) for the AoI was first

presented in Yates (2020), where it was also applied to a line

network of preemptive queues. However, few works have since

applied that approach to different systems, such as an energy-

harvesting node with varying types of preemptive and non-

preemptive policies by Abd-Elmagid and Dhillon (2022a);

Abd-Elmagid and Dhillon (2022b), and a two-source single-

server system with packet management by Moltafet et al. (2021).

In this work, we have derived the first moment (average) of the

AoI for non-preemptive queues in tandem. However, deriving

the MGF is a more complex derivation that is being considered

for a follow-up work.

Koukoutsidis (2020) developed an approach to calculate the

average AoI for an overtake-free network of quasi-reversible

queues, including M/M/1/∞ queues in tandem (which we

also consider), as well as networks with different classes of

update packets. In contrast to the SHS approach, they used

the queueing theoretical result that the end-to-end sojourn

time for an overtake-free path is distributed as a sum of

independent exponential sojourns at each node. However, in

their AoI calculation, they make the assumption that, because the

interarrival and interdeparture times are identically distributed,

their correlation with the sojourn time is equal1. This is not true

in general and thus they derive a different result for the M/M/1/

∞ queues in tandem2.

In this work, we start by deriving the average age for two non-

preemptive queues in tandem, in which each of the queues have a

capacity equal to 1. This is done using the SHS approach.

Limiting the queue capacity is based on the intuition that

allowing updates to age in a queue may not be efficient when

the objective is to maximize information freshness at the

destination because the queues will not store obsolete packets

unnecessarily. This has the additional advantage of making the

analysis of the average age more tractable. Furthermore, this

should approximate the performance of a non-preemptive LGFS

1 In Koukoutsidis (2020), they incorrectly assume
E[Sc,1→n

i Dc
i ] � E[Sc,1→n

i Ac
i ], where for a packet class c, Sc,1→n

i is the
sojourn time for the ith packet, Dc

i is the interdeparture time
between packet i and i + 1, and Ac

i is the interarrival time between
packet i − 1 and i.

2 We have verified that simulation results do not match the numerical
results from the expression in Koukoutsidis (2020) but the simulations
validate our expression.
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and is likely to outperform it. To verify our theoretical result, we

simulate the single-capacity non-preemptive queues in tandem.

We extend the analysis by considering three non-preemptive

queues in tandem. We then compare our result with an

approximation for arbitrary number of non-preemptive single-

capacity queues in tandem.

Next, we consider the case of infinite capacity queues in

tandem, with a Poisson arrival process and exponential servers.

Unfortunately, applying the SHS approach in this case makes the

problem intractable because this results in an explosion of states

in the SHS model. Therefore, we resort to the traditional method

of deriving the average age using a graphical argument, whereby

we evaluate the correlations between system times and

interarrival or interdeparture times. Again, to verify the

theoretical result, we simulate the infinite capacity non-

preemptive queues in tandem. Finally, to develop a holistic

understanding of this problem space, we study the case of

capacity-k non-preemptive queues in tandem. We generate

simulation results for capacity-k queues in tandem because we

lack theoretical expressions of average age for arbitrary

values of k.

The remainder of this article is organized as follows. The

system model is described in Section 2. The average age for

capacity-1 queues in tandem is derived in Section 3 using the SHS

approach. The average age for infinite capacity queues in tandem

is derived in Section 4 using the traditional graphical approach.

Various simulation results, including those for capacity-k queues,

are provided in Section 5. Finally, we summarize our results in

Section 6.

2 System model

We study the AoI over a network of queues in tandem, as

shown in Figure 1. A source generates arrivals as a rate λ Poisson

process and then sends them to the first queue. The packets flow

through a series of queues serving packets at rate μi until they

reach the monitor (as depicted in the figure). There is no

preemption in this system, such that a packet in service

completes service before the server becomes available for

another packet and a packet that arrives to a full queue is

dropped. Aside from this queue overflow, there are no other

packet losses under this model.

The AoI at the monitor at time t is defined as Δ(t) = t − u(t),

where u(t) is the time at which the freshest packet at the monitor

was generated at the source. A sample path of the age for a single-

capacity queue is given in Figure 2, where ti and τi are the time of

generation and time of arrival at the monitor of the ith update,

respectively. In this figure, packet 2 is dropped due to the

server being occupied. We are interested in deriving the

average AoI,

Δ � limT →∞
1
T ∫T

0
Δ t( )dt. (1)

3 Average age of single-capacity
queues in tandem

3.1 Two ·/M/1/1 queues in tandem

For our theoretical analysis, we start by looking at two queues

with a capacity of one, such that any packet that arrives to a queue

with a packet already in service is dropped. We focus on a

FIGURE 1
Queues in tandem.

FIGURE 2
Age of information vs. time, single-capacity queue: ti and τi
are the time of generation and time of arrival at the monitor of the
ith update, respectively.
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Poisson arrival process from the source into the first queue and

the packets are served at each queue with an exponential service

time. The traditional method of deriving the average AoI involves

a graphical argument and the need to evaluate correlations

between system times and interarrival or interdeparture times

(Kaul et al. 2012a). With queues in tandem, this approach is non-

trivial—not only in calculating the correlations between the

waiting times and the interarrival times but it also requires

the correlation between waiting times at the different queues

to be calculated, among other correlations. In a capacity-limited

system, we would also need to account for packet losses at both

queues. In this section, we use the notation ·/M/1/1, where the

initial “·” indicates that there are no exogenous arrivals to the

queues further down the tandem.

An alternative method of calculating the average age was

recently proposed that models the system as a SHS (Yates and

Kaul, 2019), which avoids the complexity of computing the

correlation quantities in the graphical approach. The SHS is

modeled with a hybrid state (q(t), x(t)), where q(t) ∈ Q is the

discrete Markov state of the queueing system and x(t) ∈ Rn is the

continuous state that captures the evolution of the ages at

different points in the system. Following the approach in

Yates (2018), we model the two ·/M/1/1 queues in tandem (as

described in Section 2), with the discrete state set

Q � {00, 10, 01, 11}, where q1q2 ∈ Q, qi = 1 indicates that

queue i has a packet in service, and qi = 0 when the queue is

empty3. The continuous state for this system is x(t) = [x1(t), x2(t),

x3(t)], where x3(t) is the age at the monitor and xi(t) is the age of

the packet being served at queue i when there is a packet in

service, and otherwise xi(t) is irrelevant and set to 0.

For the Markov chain q(t), the transitions between states

l ∈ L are directed edges (ql, ql′) with transition rate λlδql,q(t)′,
where the Kronecker delta ensures that the transition l only

occurs in state ql. In SHS, these transitions correspond to changes

in the discrete state q(t), as well as jumps in the continuous state

x(t), according to x′ = xAl, where Al is a binary matrix that

defines the jumps in x(t) for the discrete state transition l. These

transitions may be self-transitions, in which the discrete state

stays the same but the continuous state jumps. In addition, there

may be multiple transitions between the same pair of states

depending on the different impact on the continuous state, which

is unlike typical continuous-time Markov chains. In this work,

there are no self-transitions or multiple transitions that need to

be modeled.

For all q̂ ∈ Q, we define πq̂(t) to be the discrete Markov state

probabilities. We define vq̂j(t) as the correlation between the

continuous age state x(t) and the occupancy of the discrete state

at time t; that is, q(t). These definitions are given as follows:

πq̂ t( ) � E δq̂,q t( )[ ] (2)
vq̂j t( ) � E xj t( )δq̂,q t( )[ ], j ∈ 1, . . . , n{ }. (3)

From this, we also have the vector functions

vq̂ t( ) � vq̂1 t( ), . . . , vq̂n t( )[ ] � E x t( )δq̂,q t( )[ ], (4)

where n is the number of dimensions in the continuous state x(t).

For an ergodic queueing system, the average age is given by

Δ � E[xn] � ∑�q∈Q�v�qn, where �v�qj � limt→∞�v�qj(t) is the steady-

state correlation between the discrete and age states. To derive

the steady state v�q(t), we need the following first order

differential equation for all �q ∈ Q as derived in Yates and

Kaul (2019):

_v�q t( ) � 1�π�q + ∑
l∈L�q′

λ l( )vql t( )Al − v�q t( ) ∑
l∈L�q

λ l( ) (5)

where L�q′ is the set of transitions entering �q and L�q is the set of

transitions leaving �q. The rate at which the continuous state

changes is the 1 vector because the age increases linearly with a

slope of 1. To solve for the steady state v�q(t), we let _v�q(t) � 0,

yielding

�v�q ∑
l∈L�q

λ l( ) � 1�π�q + ∑
l∈L�q′

λ l( )�vqlAl, �q ∈ Q. (6)

According to Yates and Kaul (2019, Theorem 4), if we can find a

non-negative solution �v � [�v00/�v11] to (6), then the then

differential Eq. 5 is stable and the average age is given by Δ �∑�q∈Q�v�q3.

For the two single-capacity queue system in this section, the

discrete Markov chain is given in Figure 3, where the states are

q ∈ Q and the transition labels are l ∈ L, which correspond to

ql → ql′. Following Yates and Kaul (2019), we list the transitions,

FIGURE 3
SHS Markov chain for two ·/M/1/1 queues in tandem.

3 In Yates (2018), the authors were able to simplify the derivation for any
number of preemptive queues in tandem by using a “fake updates” trick
to reduce the number of states to a single state. However, this trick
does not work in the system here with non-preemptive queues.
Consequently, we have the number of states being 2m, where m is
the number of queues.
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the transition rates, and the quantities in (6) associated with the

mapping of jumps in the continuous state at transitions Al in

Table 1.

Two examples of how we determined the table entries follow.

Transition l = 1 corresponds to a packet arrival to a completely

empty system, which occurs at rate λ, and the jump in the

continuous state (xAl) is such that the age at the monitor remains

the same (x3), the packet in service at queue 1 starts at 0, and the

age at the empty server does not matter, so it is set to 0. A

transition that is specific to non-preemptive queues in tandem is

l = 6, which corresponds to the packet in the first server

completing service (at a rate of μ1) in a full system, such that

it gets dropped at the second queue. For xAl, the age at the

monitor remains the same (x3), the age at the second queue

remains the same because there is no preemption (x2), and the

age at the first monitor goes to zero because it was served and

dropped at the second queue.

We use the balance equations to derive the discrete Markov

state stationary probabilities �π�q:

�π�q ∑
l∈L�q

λ l( ) � ∑
l∈L�q′

λ l( )�πql, �q ∈ Q

∑
�q∈Q

�π�q � 1.

Filling these equations with the quantities from Table 1 and

by solving for the stationary probabilities, we obtain.

�π00 � μ1μ2
λ + μ1( ) λ + μ2( ) (7a)

�π01 � λμ1
λ + μ1( ) λ + μ2( ) (7b)

�π10 � λμ2 λ + μ1 + μ2( )
λ + μ1( ) λ + μ2( ) μ1 + μ2( ) (7c)

�π11 � λ2μ1
λ + μ1( ) λ + μ2( ) μ1 + μ2( ). (7d)

We can substitute these stationary probabilities and the

quantities in Table 1 into (6) to obtain the following system

of equations:

λ�v003 � π00 + μ2�v012 (8a)
λ + μ2( )�v013 � π01 + μ1 �v103 + �v113( ) (8b)
μ1�v103 � π10 + λ�v003 + μ2�v112 (8c)
μ1 + μ2( )�v113 � π11 + λ�v013 (8d)

λ + μ2( )�v012 � π01 + μ1 �v101 + �v112( ) (8e)
μ1 + μ2( )�v112 � π11 + λ�v012 (8f )
μ1�v101 � π10 + μ2�v111 (8g)
μ1 + μ2( )�v111 � π01 (8h)

To derive the average age, it is not necessary to solve for all of

the �v�qj but only ∑�q∈Q�v�q3. We start by finding the linear

combination of Eqs 8a–8d using coefficients a, b, c, and d,

respectively, which yields

aλ�v003 + b λ + μ2( )�v013 + cμ1�v103 + d μ1 + μ2( )�v113
� a π00 + μ2�v012( ) + b π01 + μ1 �v103 + �v113( )( )
+ c π10 + λ�v003 + μ2�v112( ) + d π11 + λ�v013( )

We want to set the coefficients such that moving all �v�q3 terms to

the left-hand side yields ∑�q∈Q�v�q3; that is, find a, b, c, and d that

satisfies

λa − λc � 1
λ + μ2( )b − λd � 1
μ1c − μ1b � 1
μ1 + μ2( )d − μ1b � 1

which has solution

a � 1
λ
+ 1
μ1

+ 1
μ2
, b � 1

μ2
, c � 1

μ1
+ 1
μ2
, d � 1

μ2
.

Combining Eqs 8a–8d with respective coefficients a, b, c, and d

yields

∑
�q∈Q

�v�q3 � aπ00 + bπ01 + cπ10 + dπ11 + aμ2�v012 + cμ2�v112.

To find aμ2�v012 + cμ2�v112, we again take linear combinations of

Eqs 8e,8f, and we need to find the coefficients a′ and b′ that
satisfy

λ + μ2( )a′ − λb′ � aμ2 μ1 + μ2( )b′ − μ1a′ � cμ2

which has solution

a′ � μ1 + μ2
λ λ + μ1 + μ2( ) + 1

μ1
+ 1
μ2
, b′ � 1

μ1
+ μ1
μ1 + μ2

a′.

TABLE 1 Table of transitions for the Markov chain in Figure 3.

l ql→ql9 λ(l) xAl Al vqlAl

1 00 → 10 λ [ 0 0 x3 ] 0 0 0
0 0 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ [ 0 0 �v003 ]

2 10 → 01 μ1 [ 0 x1 x3 ] 0 1 0
0 0 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ [ 0 �v101 �v103 ]

3 01 → 00 μ2 [ 0 0 x2 ] 0 0 0
0 0 1
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ [ 0 0 �v012 ]

4 01 → 11 λ [ 0 x2 x3 ] 0 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ [ 0 �v012 �v013 ]

5 11 → 10 μ2 [ x1 x2 x2 ] 1 0 0
0 1 1
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ [ �v111 �v112 �v112 ]

6 11 → 01 μ1 [ 0 x2 x3 ] 0 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ [ 0 �v112 �v113 ]
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The last linear combination of equations is for (Eq. 8g) and (Eq.

8h) to find μ1a′�v101, and the coefficients satisfy

μ1a″ � μ1a′ μ1 + μ2( )b″ − μ2a″ � 0

with solution

a″ � a′, b″ � μ2
μ1 + μ2

a′.

Finally, we have

Δ � aπ00 + b + a′( )π01 + c + a″( )π10 + d + b′ + b″( )π11

After much simplification, we have our first result:

Theorem 1. The average age after two single-capacity queues in

tandem (M/M/1/1 → ·/M/1/1) is given by

Δ � 1
λ
+ 1
μ1

+ 1
μ2

+ λ

μ1 λ + μ1( ) + λ

μ2 λ + μ2( ).
We can see from the result that the average age is insensitive

to the ordering of the servers. Next, we consider the case where

the service rates at both queues are the same (μ1 = μ2 = μ). The

average age in this case is given by

ΔM/M/1/1,2 �
1
λ
+ 2
μ

1 + λ

λ + μ
( ). (9)

Noting the similarity to the average age for a single M/M/1/

1 Costa et al. (2016), we have for m queues in tandem,

ΔM/M/1/1,m � 1
λ
+ m

μ
1 + λ

λ + μ
( ), (10)

form = 1, 2. We will consider this as an approximation form > 2.

We will show that this expression does not hold form = 3. As λ→
∞, the average age approaches 2m/μ for m = 1, 2.

If we take the derivative of (Eq. 9) with respect to λ, then we

have

zΔ
zλ

� λ2 − 2λμ − μ2

λ2 λ + μ( )2 .

The minimum occurs at

λmin � μ 1 + �
2

√( ) ≈ 2.414μ (11)

It was shown in Kam et al. (2016b) that the average age for a

single M/M/1/1 queue was decreasing for all λ, whereas the

average age for a singleM/M/1/2 reached aminimum at λ ≈ 1.427

(for μ = 1). In this case, adding another queue in tandem of

capacity 1 after the M/M/1/1 queue also has the behavior of

meeting a minimum but at a higher λ. The value of the minimum

age after two queues is

ΔM/M/1/1,2,min � 4
μ
−

�
2

√ − 1( )2
μ

. (12)

If we compare the minimum age to the age as λ → ∞, then the

penalty for using an infinite λ is ( �
2

√ − 1)2/μ, which is about

0.17/μ.

Using the expression for the average age for the M/M/1/2 in

Costa et al. (2016), we can show that the average age for the

queues in tandem in (11) is greater than that of the M/M/1/2.

This is intuitive due to having to go through two servers instead

of just one.

3.2 Three (equal rate) ·/M/1/1 queues in
tandem

In this section, we build on the previous case and now

consider three queues in tandem, for the case where the

servers have equal service rate. Again we use the stochastic

hybrid systems approach and the discrete state set is

Q � {000, 001, 010, 011, 100, 101, 110, 111}, where q1q2q3 ∈ Q,

qi = 1 indicates that queue i has a packet in service, and qi =

0 indicates when the queue is empty. Using the same approach

for the two-queue case, we derive the following expression for the

average age:

Theorem 2. The average age after three single-capacity queues

in tandem (M/M/1/1 → ·/M/1/1 → ·/M/1/1) is given by

ΔM/M/1/1,3 �
1
λ
+ 3
μ
+ 8λ3 + 18λ2μ + 24λμ2

9μ λ + μ( )3
� 1
λ
+ 3
μ
+ 3λ
μ λ + μ( ) − λ3

3μ λ + μ( )3
Proof. The proof is given in the Appendix.

FIGURE 4
Average age vs. λ, μ = 1, queue capacity of one, without
preemption. Simulation results are indicated by the points,
theoretical results are indicated by the solid line, and simulation
minima are indicated by △.
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If we apply the expression in (Eq. 10) to m = 3, then we see

that this can serve as an approximation for the average age that is

greater by λ3

3μ(λ+μ)3.

3.3 Numerical/simulation results

To verify our theoretical results, we look at the ·/M/1/1 queues

with Poisson arrivals for up to four queues in tandem. The results for

the average age as a function of λ are given in Figure 4. For

comparison, we plot the numerically evaluated theoretical

expressions for the average age up to three queues in tandem,

and we observe that the plot lines for the theoretical and simulated

results lie on top of one another. We also plot the minima from

simulation and compare with (Eq. 11), which evaluates to 2.414 for

m = 2. This matches with the simulation. We observe that the

minimum λ is decreasing as the number of queues increases. For

comparison, the case with preemption in Yates (2022) is shown

alongside the non-preemptive case in Figure 5. The age for the

preemptive case is lower than that of the non-preemptive case by

about 40% at each point in the tandem network. We also consider

the expression in (Eq. 10), which is exact for m = 1, 2 but is an

approximation for m = 3, 4. Figure 6 shows the simulated,

theoretical, and approximate results for m = 3, 4. The

approximation overestimates the average age with a gap that

increases with λ. For large λ, the approximation is only off by

about 5% in the three-queue case. However, it is closer to 7% in the

four-queue case, which suggests that the approximation may not

scale well.

We also numerically evaluate (13) for a two-queue system with

different service rates, 0.5 and 1, and the average age is plotted in

Figure 7. It can be seen that the plot lines for the average age after two

queues are right on top of each other, which demonstrates that the

average age after the second queue is indeed insensitive to the

FIGURE 5
Average age vs. λ, μ = 1, queue capacity of one, preemption
vs. non-preemption.

FIGURE 6
Average age vs. λ, μ= 1, queue capacity of one after three and
four queues (vs. approximation).

FIGURE 7
Average age vs. λ, different μ1, μ2 queue capacity of one, non-
preemption.

FIGURE 8
Average age vs. λ, different μ1, μ2, μ3, queue capacity of one,
non-preemption.
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ordering of the servers (as previously stated). To further validate this

claim, we simulate a three-queue system with different service rates;

that is, 0.33, 0.67, and 1. We plot the average age for different

permutations of service rates in Figure 8. The average age after three

queues is the same for all three permutations, which is further proof

that the order of servers in the tandem does not impact the average

age after the last queue.

4 Average age of two ·/M/1/∞ queues
in tandem

We next consider the case of infinite capacity first-come, first-

served queues in tandem with Poisson arrival process and exponential

servers. To derive the age after two queues, we use a graphical approach

as in Kaul et al. (2012a) to derive the average age going after the second

queue based on the average age after the first queue.We will show that

for each packet i, the additional area under the age function beyond the

age after the first queue is XT ′, where X is the interarrival time at the

first queue and T′ is the system time in the second queue.

Theorem 3. The average age after two infinity capacity queues

in tandem (M/M/1/∞ → ·/M/1/∞) is given by

ΔM/M/1,2 � ΔM/M/1,1 + λ E XT′[ ]( ) � 1
λ
+ 1
μ1

+ λ2

μ21 μ1 − λ( )
+ 1
μ2

+ λ2

2μ2 − λ
+ λ2

μ1μ2 μ1 + μ2 − λ( ). (13)

Proof. An example of the evolution of the age function after

queue 2 is shown in Figure 9. To derive the average age (1) using

the graphical method, we calculate the total area under the age

function by breaking it up into geometric shapes and then

calculate their areas separately. The age function after queue

1, ΔM/M/1,1(t), is shown in the figure by a dotted line, which is

bounded above by the age after queue 2, ΔM/M/1,2(t). We seek to

calculate the remaining area under the age function after

accounting for the average age ΔM/M/1,1.

At time t0′, the packet is served at queue 1 and arrives at queue
2. At the origin of the plot (t0″), the packet is served at queue

2 and the age after queue 2 (ΔM/M/1,2) is defined. From t0″ until

another packet arrives and is served at queue 1 (t1′), the ages after
both queues are the same. At the service time t1′ at queue 1, the
age ΔM/M/1,1(t) resets to the lower age but the age ΔM/M/1,2(t) does

not yet reset to the age of the packet until it is served at t1″. The
amount that the age is reduced by is equal to the difference

between the ages of consecutive packets, which is equal to the

interarrival time X1 into queue 1. The area of the parallelogram is

given by the X1 times the system time in queue 2, T1′ � t1″ − t1′.
The average age at queue 2 is given by

ΔM/M/1,2 � lim
T →∞

1
T ∫T

0
ΔM/M/1,2 t( )dt

� lim
T →∞

1
T ∫T

0
ΔM/M/1,1 t( )dt + R T( )

T + N T( )
T ∑N T( )

i�1

Ti′Xi

N T( )⎡⎣ ⎤⎦
� ΔM/M/1,1 + λE T′X[ ]

(14)

whereN(T ) is the number of update packets served before time

T and R(T ) is the residual area under the curve less the area

under ΔM/M/1,1(t). The arrival rate into queue 2 is λ and R(T )/T
disappears in the limit, provided λ < μ2. The age after the first

queue ΔM/M/1,1 can be found in Kaul et al. (2012a).

To derive E[T′X], we have

E[Ti′Xi] � E[Xi(Wi′ + Si′)] � E[Wi′Xi] + E[X]E[S]. The

waiting time can be written as Wi′ � (Ti−1′ − Yi)+, where

(x)+ = max(0, x) and Yi is the interdeparture time of the first

queue. We consider two cases for the interdeparture time. If the

interarrival time for packet i is less than the system time for

packet i − 1 (Xi ≤ Ti−1), then packet i immediately begins service

and the interdeparture time is Yi = Si. Otherwise, Yi = Xi − Ti−1 +

Si. By combining these two cases, we can write

Yi � (Xi − Ti−1)+ + Si. The conditional expected waiting time

at the second queue Wi′ given the interarrival time at the first

queue Xi = x is given by

E Wi′|Xi � x[ ] � E Ti−1′ − Yi( )+|Xi � x[ ]
� E Ti−1′ − x − Ti−1( )+ − Si( )+[ ].

Note that Ti−1′ and Ti−1 are independent of the service time and

interarrival time of future packets, including Si and Xi. In

addition, for the pair of M/M/1/∞ → ·/M/1/∞ queues in

tandem, the system times Ti and Ti′ are independent of one

another (Karpelevitch and Kreinin (1992)). By Burke’s Theorem

(Burke (1956)), the departure process from the first queue is

Poisson with rate λ, so the second queue can also be viewed as an

FIGURE 9
Age computation at (M/M/1) queue n based on age at queue
n − 1.
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independent M/M/1 queue and the service time distribution for

each queue is given by fT(t) � (μ2 − λ)e−(μ2−λ)t. Therefore, we
have

E Wi′|Xi � x[ ] � ∫∞

0
∫x

0
∫∞

x+s−t
t′ − x + t − s( )fT t′( )fT t( )

fS s( )dt′dtds
+ ∫∞

0
∫∞

x
∫∞

s
t′ − s( )fT t′( )fT t( )fS s( )dt′dtds

� μ1
μ2 − λ( ) μ1 − μ2( ) μ1 + μ2 − λ( )

μ1 − λ( )e− μ2−λ( )x − μ2 − λ( )e− μ1−λ( )x( ). (15)

Using (Eq. 15), we can solve for E[W′X]:

E W′X[ ] � ∫∞

0
xE Wi′|Xi � x[ ]fX x( )dx

� ∫∞

0

μ1
μ2 − λ( ) μ1 − μ2( ) μ1 + μ2 − λ( ) μ1 − λ( )xe−μ2x([

− μ2 − λ( )xe−μ1x)]dx
� λ

μ22 μ2 − λ( ) + λ

μ1μ2 μ1 + μ2 − λ( ).
Finally, we can substitute this into λE[T′X] = λ(E[W′X] +

EXES) = λE[W′X] + 1/μ2, which can be substituted into (Eq.

14) to complete the proof.

From Eq. 14, we can see that even when the service rates are

different, the average age does not depend on the order of the

servers. Also recall that the order of servers did not affect the

average age for single-capacity queues.

This proof for two infinite capacity queues can be extended

beyond two queues. However, this would be cumbersome

because of the calculation of the conditional waiting time at

the last queue given the interarrival time at the first queue and

would require the cases where the interarrival/interdeparture

times are longer or shorter than the system times to be tracked.

We evaluated the theoretical result for 1 M/M/1/∞ and

the M/M/1/∞→ ·/M/1/∞ (Eq. 13), and then simulated for up

to four queues in tandem; the results are shown in Figure 10.

The plot lines for the simulations and numerically evaluated

expressions after 1 and 2 queues lie on top of one another. We

also include the minimum for each curve on the plot

(indicated by △) and we see that the λ that minimizes the

average age again decreases as the number of queues

increases. Under these settings with Poisson arrival and

exponential service times, the performance can be

improved by backing off from the previously optimal

packet generation rate λ as the number of queues

increases. In Figure 11, we plot the age for two cases of

heterogeneous queues in tandem: a) where μ1 = 0.5 and μ2 = 1

(solid line), and b) where μ1 = 1 and μ2 = 0.5 (dotted line). As

we noted from the expression in Eq. 14, the order of the

servers does not affect the average age after the second queue.

We simulated this for three cases of three queues in Figure 12

and we observe that the average age after the third queue is

the same in all three cases (and for all other permutations of

queue orders not shown here).

FIGURE 10
Average age vs. λ, μ = 1, infinite queue capacity. FIGURE 11

Average age vs. λ, different μ1, μ2, infinite queue capacity.

FIGURE 12
Average age vs. λ, different μ1, μ2, μ3, infinite queue capacity.
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5 Simulation results for k capacity
queues

To study the regime between single-capacity and infinite

capacity queues in tandem, we simulate the average AoI for k

capacity queues in tandem (k ∈ Z+) with equal service rate μ.

The results are shown in Figures 13A–D after 1–4 queues, with

k = 1, 5, 10, ∞ in each plot. We observe that for finite capacity

queues, the average age approaches some finite value as the

arrival rate increases, and that the difference between this value

and the minimum is increasingly greater for larger capacity

queues. Thus, optimizing the arrival rate becomes critical very

quickly, even for relatively small capacity queues.

The optimal arrival rate vs. queue capacity is shown in

Figure 14 for queue capacity up to six. We observe that the

optimal λ very quickly approaches the optimal for infinite

capacity queues (dashed line). We have also plotted the

optimal age in Figure 15 and again the optimal age for

infinite capacity queues is quickly approached. These

results suggest that the optimal age is very sensitive to

FIGURE 13
Average age vs. \λ, \μ = 1, k queue capacity. (A) 1 queue, (B) 2 queues in tandem, (C) 3 queues in tandem, (D) 4 queues in tandem.

FIGURE 14
Optimal λ vs. queue capacity, μ = 1. The dotted line is the
optimal λ for infinite capacity queues.

FIGURE 15
Optimal average age vs. queue capacity, μ= 1. The dotted line
is the optimal age for infinite capacity queues.
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queue capacity between the values of one and six.

Meanwhile, for larger queue capacities, it suffices to

optimize for infinite capacity queues. This can be easier to

analyze theoretically, such as in the case for two queues in

tandem. We have simulated this for different service rates μ =

0.1 and μ = 10, and have observed very similar behavior.

Consequently, this result is insensitive to service rate.

6 Summary

In this work, we have analyzed the average AoI for non-

preemptive queues in tandem, which is important for

understanding how to control and optimize multi-hop

networks for information freshness. For systems with Poisson

arrivals and exponential service times, we applied the stochastic

hybrid systems modeling approach to derive closed form

expressions for the average age after two queues in tandem

with capacity 1 and different service rates, as well as for the

average age after three queues in tandem with equal service rates.

Based on the average age expressions for one and two queues in

tandem with equal service rates, we consider an approximation

for m queues in tandem, which is shown to overestimate the age

for the m = 3 andm = 4 cases with a gap that increases with λ. We

have also derived the closed form expression for the average age

after two infinite capacity queues with equal service rates. Finally,

we studied other queue capacities k besides one and infinity. We

observed that even for very small values of k, the optimal λ and

age are close to that of the infinite capacity queue case.
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Appendix: Proof of Theorem 2

Similar to the two-queue case, the states 0q2q3 all have

outgoing transitions through arrivals into queue 1 of rate λ,
and there is an outgoing transition of rate μ for each occupied

queue. For incoming transitions, the states 1q2q3 have a

transition of rate λ from 0q2q3 and there is a transition of

rate μ from a state where qi = 1 to a state where qi = 0 and

qi+1 = 1 or if i = 3, so that the queue is followed by the monitor.

The resulting global balance equations are given as follows:

λ�π000 � μ�π001

λ + μ( )�π001 � μ �π010 + �π011( )
λ + μ( )�π010 � μ �π011 + �π100 + �π110( )
λ + 2μ( )�π011 � μ �π101 + �π111( )

μ�π100 � λ�π000 + μ�π101

2μ�π101 � λ�π001 + μ �π110 + �π111( )
2μ�π110 � λ�π010 + μ�π111

3μ�π111 � λ�π011

with the solution

�π000 � μ3

λ + μ( )3, �π001 � λμ2

λ + μ( )3,
�π010 � λμ 5λ + 8μ( )

8 λ + μ( )3 , �π011 � 3λ2μ

8 λ + μ( )3,
�π100 � λ λ2 + 3λμ + 4μ2( )

4 λ + μ( )3 , �π101 � λ2 λ + 3μ( )
4 λ + μ( )3 ,

�π110 � λ2 3λ + 4μ( )
8 λ + μ( )3 , �π111 � λ3

8 λ + μ( )3.
Similar to the global balance equations, the steady-state

correlation between discrete and age states satisfy (6), which

for the age at the monitor �vq4 gives us the following equations:

λ�v0004 � π000 + μ�v0013
λ + μ( )�v0014 � π001 + μ �v0104 + �v0114( )
λ + μ( )�v0104 � π010 + μ �v1004 + �v1104 + �v0113( )
λ + 2μ( )�v0114 � π011 + μ �v1014 + �v1114( )

μ�v1004 � π100 + λ�v0004 + μ�v1013
2μ�v1014 � π101 + λ�v0014 + μ �v1104 + �v1114( )
2μ�v1104 � π110 + λ�v0104 + μ�v1113
3μ�v1114 � π111 + λ�v0114.

Using a similar approach as in the two-queue case, we take linear

combinations of these equations to yield ∑�q∈Q�v�q4 when we move all
�v�q4 terms to the left-hand side, such that the coefficients must satisfy

aλ − eλ � 1
b λ + μ( ) − fλ � 1

c λ + μ( ) − bμ − gλ � 1
d λ + 2μ( ) − bμ − hλ � 1

eμ − cμ � 1
2fμ − dμ � 1

2gμ − cμ − fμ � 1
3hμ − dμ − fμ � 1,

which is achieved with solution

a � 1
λ
+ 3
μ
, b � 1

μ
, c � 2

μ
, d � 1

μ

e � 3
μ
, f � 1

μ
, g � 2

μ
, h � 1

μ
.

The linear combination of equations yields the

following:

∑
�q∈Q

�v�q4 � 1
λ
+ 3
μ

( )π000 + 1
μ
π001 + 2

μ
π010 + 1

μ
π011 + 2

μ
π100 + 1

μ
π101

+2
μ
π110 + 1

μ
π111+ μ

λ
+ 3( )�v0013 + 2�v0113 + 3�v1013

+ 2�v1113

Next we need to find (μλ + 3)�v0013 + 2�v0113 + 3�v1013 + 2�v1113,

which is a function of the correlation functions for the age at

the third queue �vq3. To find this expression, we take linear

combinations of the corresponding equations shown here:

λ + μ( )v0013 � π001 + μ v0102 + v0113( )
λ + 2μ( )v0113 � π011 + μ v1013 + v1113( )

2μv1013 � π101 + λv0013 + μ v1102 + v1113( )
3μv1113 � π111 + λv0113

such that their coefficients satisfy

a′ λ + μ( ) − c′λ � μ

λ
+ 3( )

b′ λ + 2μ( ) − a′μ − d′λ � 2
c′2μ − b′μ � 3

d′3μ − b′μ − c′μ � 2.

The solution for the coefficients is given by

a′ � 8λ3 + 33λ2μ + 39λμ2 + 12μ3

3λμ λ + 2μ( )2
b′ � 7λ + 12μ

3μ λ + 4μ( ) + 2μ
λ + 4μ

a′

c′ � 8λ + 24μ
3μ λ + 4μ( ) + μ

λ + 4μ
a′

d′ � 7λ + 20μ
3μ λ + 4μ( ) + μ

λ + 4μ
a′.

Next we find a′μ�v0102 + c′μ�v1102 via linear combinations of

λ + μ( )v0102 � π010 + μ v1001 + v1102 + v0112( )
λ + 2μ( )v0112 � π011 + μ v1011 + v1112( )

2μv1102 � π110 + λv0102 + μv1112
3μv1112 � π111 + λv0112.

This is achieved with coefficients that satisfy

a″ λ + μ( ) − c″λ � a′μ
b″ λ + 2μ( ) − a″μ − d″λ � 0

c″2μ − a″μ � c′μ
d″3μ − b″μ − c″μ � 0,

which has solution
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a″ � 8λ2 + 24λμ
3μ λ + 2μ( ) λ + 4μ( ) + 3λμ + 8μ2

λ + 2μ( ) λ + 4μ( )a′
b″ � 4λ

3μ λ + 2μ( ) + μ

λ + 2μ
a′

c″ � 8λ2 + 32λμ + 24μ2

3μ λ + 2μ( ) λ + 4μ( ) + 2λμ + 5μ2

λ + 2μ( ) λ + 4μ( )a′
d″ � 4λ2 + 16λμ + 8μ2

3μ λ + 2μ( ) λ + 4μ( ) + λμ + 3μ2

λ + 2μ( ) λ + 4μ( )a′.
The last set of equations used to find a″μ�v1001 + b″μ�v1011 is

given by

μv1001 � π100 + μv1011
2μv1011 � π101 + μ v1101 + v1111( )
2μv1101 � π110 + μv1111
3μv1111 � π111,

and the coefficients must satisfy

a‴μ � a″μ
b‴2μ − a‴μ � b″μ
c‴2μ − b‴μ � 0

d‴3μ − b‴μ − c‴μ � 0,

which has solution

a‴ � a″
� 8λ2 + 24λμ
3μ λ + 2μ( ) λ + 4μ( ) + 3λμ + 8μ2

λ + 2μ( ) λ + 4μ( )a′
b‴ � a″ + b″

2

� 6λ2 + 20λμ
3μ λ + 2μ( ) λ + 4μ( ) + 2λμ + 6μ2

λ + 2μ( ) λ + 4μ( )a′
c‴ � a″ + b″

4

� 3λ2 + 10λμ
3μ λ + 2μ( ) λ + 4μ( ) + λμ + 3μ2

λ + 2μ( ) λ + 4μ( )a′
d‴ � a″ + b″

4

� 3λ2 + 10λμ
3μ λ + 2μ( ) λ + 4μ( ) + λμ + 3μ2

λ + 2μ( ) λ + 4μ( )a′.
We substitute the values into

∑
�q∈Q

�v�q4 � 1
λ
+ 3
μ

( )π000 + 1
μ
+ a′( )π001 + 2

μ
+ a″( )π010

+ 1
μ
+ b′ + b″( )π011 + 3

μ
+ a‴( )π100 + 1

μ
+ c′ + b‴( )π101

+ 2
μ
+ c″ + c‴( )π110 + 1

μ
+ d′ + d″ + d‴( )π111

which, after much simplification, yields the final result.
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