AUTHOR=Kim Jeeson TITLE=Nano-intrinsic security primitives with redox-based resistive memory JOURNAL=Frontiers in Communications and Networks VOLUME=3 YEAR=2022 URL=https://www.frontiersin.org/journals/communications-and-networks/articles/10.3389/frcmn.2022.884874 DOI=10.3389/frcmn.2022.884874 ISSN=2673-530X ABSTRACT=
Physical unclonable function (PUF) exploits advantages of otherwise undesirable non-idealities to create physical systems that are difficult to copy even with the same manufacturing process. Nano-intrinsic PUFs use the variability of nanotechnology per hardware instance as a source of cryptographic randomness. Among various emerging memories, redox-based resistive memory (ReRAM) is a promising candidate for providing next-generation low-cost, low-power, ultra-small PUF-based security solutions. This review shows various ReRAM-based PUF implementations and their key features. We compare their performance and discuss which properties of ReRAM to focus on for effective PUF implementation.