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As 6G research progresses, both visible light communication (VLC) and artificial
intelligence (AI) become important components, which makes them appear to
converge. Neural networks (NN) as equalizers are gradually occupying an increasingly
important position in the research of the physical layer of VLC, especially in nonlinear
compensation. In this paper, wewill propose three categories of neural network equalizers,
including input data reconfiguration NN, network reconfiguration NN and loss function
reconfiguration NN. We give the definitions of these three neural networks and their
applications in VLC systems. This work allows the reader to have a clearer understanding
and future trends of neural networks in visible light communication, especially in terms of
equalizers.
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INTRODUCTION

As 6G research progresses, new spectrum resources will need to be continually expanded. Visible
light communication (VLC) is receiving increasing attention as one of the potential spectrum
resources for 6G (You et al., 2021). VLC utilizes the 400–800 THz spectrum, which has theoretical
advantages, such as high capacity, high anti-electromagnetic interference, high confidentiality, and
human safety (Chi et al., 2015). Furthermore, VLC enables simultaneous lighting and
communication by multiplexing LEDs, which can greatly accelerate communication coverage
and reduce construction costs. Based on these, it is foreseen that VLC is expected to become a
powerful air interface technology in 6G.

However, one issue that needs to be addressed before it can be commercialized is the nonlinearity
of VLC (Neokosmidis et al., 2009). Compared to conventional air interface technology, visible light
communication has an additional electro-optical conversion, which can induce special
nonlinearities. Due to the direct modulation of VLC, the voltage amplitude change of the signal
will directly affect the recombination of carriers and holes (Windisch et al., 2000), which is the main
nonlinear factor in VLC. Traditional nonlinear elimination algorithms are fitted using mathematical
expansions, such as Volterra series (Wang et al., 2015). But, as nonlinearity increases, the
computational complexity of such a compensation approach increases dramatically, making it
difficult to apply in VLC systems. Fortunately, AI has become an integral part of 6G (Letaief et al.,
2019), and, at the same time, a powerful tool for nonlinearity elimination, especially neural networks.

Machine learning (ML) has been used successfully for over a decade in prediction, classification,
pattern recognition, data mining, feature extraction, and behavior recognition, among many other
areas. In optical communication systems, many algorithms in the field of machine learning can be
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used to solve nonlinear problems (Khan et al., 2017). Among
these methods, using neural networks as equalizers to
compensate for signal impairment is one of the most
important aspects of physical layer communication, especially
for VLC (Haigh et al., 2014; Lin et al., 2021; Peng et al., 2022). In
5G, channel equalization is achieved through zero-forcing
equalization based on pilot sequences. In 6G, considering VLC
and other high-frequency communication, zero-forcing
equalization will be difficult to perform superior performance,
as it is only a linear equalizer. The neural network is a great choice
for equalization, but it is a too powerful and heavy tool, which
may bring large computation complexity, long computation time,
and poor generalization. Therefore, it requires some modification
to suit the actual communication system.

In this paper, we will introduce some structures of NN that
have been utilized as an equalizer in a VLC system. Each neural
network has a small change to better improve communication
performance. Based on the three-layer architecture of neural
networks, these NN efforts are all reconfigured at different
layers to be more in line with the communication system.
Here, we first propose three major categories of NN
equalizers, including input data reconfiguration NN, network
reconfiguration NN and loss function reconfiguration NN, as
shown in Figure 1. GK-DNN (Chi et al., 2018), MPANN (Hu
et al., 2020) and TFDNet (Chen et al., 2020) are typical input data
reconfiguration NN, while DBMLP (Zhao and Chi, 2020) and
MIMO-MBNN (Zou et al., 2020) are typical network
reconfiguration NN. FSDNN (Chi et al., 2020) and PCVNN
(Chen et al., 2021) have the characteristics of both input data
and network reconfiguration. Error vector magnitude (EVM)
based loss function (Stainton and Haigh, 2021) is a classic type-
three network. Different reconfiguration methods imply mapping
different communication concepts onto neural networks. We will
present why these reconfiguration NNs work well in VLC and
how to define these neural networks. Our goal is to give the reader

a clear route to the subsequent work on neural network equalizers
for VLC. It can be envisioned that high-speed VLC will become
an integral part of 6G and cooperate with other communication
approaches to build 6G space-air-ground-sea integrated
networks.

INPUT DATA RECONFIGURATION NEURAL
NETWORK

Input data reconfiguration neural network mainly originated
from the idea of functional linked artificial neural network
(FLANN) (Patra et al., 2008). In a visible light communication
system, the received data is serial timing signal. The signal
impairment is submerged in the data series, such as memory
effect and nonlinearity. An untransformed signal will overload
the neural network, bringing large computational complexity and
long computation time. So, in input data reconfiguration NN, the
main goal is to manually extract more communication features
that will be used as input to the neural network, such as higher-
order terms or frequency domain information. For the selection
of the network output and the label, it is usually a simple
corresponding time series data.

GK-DNN
The non-linear effect of devices and the channel in the VLC
system will seriously affect its performance. Traditional non-
linear equalization algorithms based on the Volterra series suffer
from the exponential increment of computational complexity as
they deal with the third-order nonlinear responses or above.
Recently, the DNN-based post-equalization methods with
powerful nonlinear fitting ability have been developed by
researchers to compensate for the nonlinearity in a VLC
system. What’s more, the Gaussian kernel-aided DNN (GK-
DNN) equalizer (Chi et al., 2018) has been reported to

FIGURE 1 | Overview of three categories of NN equalizers.
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accelerate the training processing and greatly relieve the
computational complexity of the equalizer.

The schematic diagram of the proposed GK-DNN is shown in
Figure 2. As being one of the input data reconfiguration neural
networks, here, we focus on the input layer of the GK-DNN.
Firstly, the input data could be obtained by windowing the
received signal sequence. The window length is n, considering
the adjacent (n-1)/2 symbols’ influence towards the central one.
Then these windowed samples (or input data) would go through a
functional mapping based on Gaussian function, which helps
map the input data to a non-linear space to reduce the number of
iterations and duration of the fitting. This idea is enlightened by
the assumption that the adjacent (n-1)/2 symbols’ influence
towards the central one is in accordance with the Gaussian
distribution. The Gaussian kernel could be expressed as follows:

k(t, t’)
i
� exp{ − (π(t − t’)

a
)2} � exp

⎧⎪⎨⎪⎩ −⎛⎝π(i − i+1
2 )

a
⎞⎠2⎫⎪⎬⎪⎭, i � 1, 2 . . . n

(1)
where, a � 1/β

��������(log 2)/2√
Here, t is the expressions in the continuous domain and t’ is

the central time. ɑ is the parameter that controls the scope of the
Gaussian kernel related to the 3dB bandwidth. As the ɑ increases,
the variance of the Gaussian kernel mapping function decreases,
which helps better emulate the nonlinear effect of the channel.
Generally, the larger the ɑ is, the faster the training process would
be. Subsequently, after the kernel function mapping, the mapped
data would be input into the DNN. Here in the case of GK-DNN,
two hidden layers where the ReLU activation function is utilized
to emulate the nonlinearity of the system. The reason for
choosing two hidden layers is a trade-off between
consideration of the universal approximation theorem and the
number of neurons. It should be noted that the number of nodes
in the first hidden layer needs to be large enough to describe the
relationship between features and labels. On the other hand, the
number of nodes in the first hidden layer should not be too large
in case of the massive computational complexity and long
training time. Finally, the decision result is output through the

softmax layer, where the number of nodes in the output layer is
the same as the number of levels of the transmitted signal. With
the kernel reducing the iteration epochs by nearly half (47.06%),
the GK-DNN equalizer could efficiently realize the post
equalization of the received signal in VLC system. And it
could significantly improve the system’s anti-nonlinearity
performance with the aid of DNN’s powerful nonlinear fitting
ability.

MPANN
Utilizing neural networks as an equalizer for mitigating both the
linear and nonlinear distortions in VLC systems has become
common in recent years, while the great complexity still
restrains the practical implementation. The optimal equalization
performance usually comes at the cost of computational
complexity. For example, digital pre-distortion (DPD) greatly
relieves the equalizer’s complexity by moderately sacrificing
partial performance. Therefore, a robust equalizer with relatively
optimal equalization performance while still maintaining a low
complexity is expected to be designed for the VLC system.

A novel memory-polynomial ANN (MPANN) equalizer is
reported in (Hu et al., 2020) to simplify the network structure and
still maintain similar equalization performance as DNNs. The
structure of the applied MPANN is shown in Figure 3. Likewise,
the input data could be obtained by windowing the received signal
sequence. Here usually call the length of the window the memory
length. The input layer of MPANN is a memory-polynomial layer
(MP layer) where the input samples are expanded by one certain
function which is memory polynomial expansion. This operation
would map the input data to higher dimensional data space and
provide prior knowledge of the nonlinear model, which helps
significantly decrease the demanded nodes of the following NN
structure.

Then the output pattern of functional mapping in the MP
layer is multiplied by the corresponding weights and fed into the
following hidden layer, which is fully connected with the output
nodes of the MP layer. The outputs of the MP layer go through a
regular activating process (ReLU) and weighting process in the
hidden layer. Then finally the output layer is utilized to output the
equalized symbol. The weights in MPANN are usually trained

FIGURE 2 | Principle of GK-DNN

FIGURE 3 | Principle of MPANN
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and updated according to the backpropagation (BP) algorithm on
a large training set to minimize the mean square error (MSE)
between the predicted received signals and transmitted signals.
During the training process, the aim is to reduce the loss function
by updating the weights. Then the validation set and test set are
also used to prevent the overfitting problem and evaluate the
MPANN’s performance. It should be noted that the order of all
samples in every batch is randomized to avoid the memory effect
of the PRBS sequence during the training or testing process. The
experimental results also confirmed the fact that the MPANN
could achieve the same equalization performance, or even better
on some occasions, as the regular DNN while only requires less
than a quarter of the complexity.

TFDNet
The commonly used NN equalizers in a VLC system usually
process time-domain signals. However, this would sometimes
result in the spectrum difference between the equalized signal and
the original signal, which is not tally with the fact that the well-
learned signal should have the same spectrum as the original one.
This suggests that only considering the time-domain information
is not good enough. Therefore, researchers begin to take both
time and frequency-domain information into consideration to
obtain a better performance in VLC systems.

Inspired by the time-frequency analysis for audio speech
enhancement and image processing, a novel joint Time-
Frequency post-equalizer based on Deep Neural Network
(TFDNet) is reported in (Chen et al., 2020) to compensate the
nonlinear distortions in aVLC system. The schematic diagram of the
proposed TFDNet is shown in Figure 4. By considering both time
and frequency domain information simultaneously, the TFDNet
could reveal comprehensive information of non-stationary signals
received in a VLC system. Short-time Fourier transformation
(STFT) is utilized to transfer signal from one-dimension (1D,
time domain) to two-dimensions (2D, time-frequency domain). If
we assume the obtained STFT matrix as Y, and each row of Y,
denoted as Y(f), represents a certain frequency component, then the
mth element of Y(f) could be expressed as below:

Ym(f) � ∑∞
n�−∞

Y(n)G(n −mR) exp(−j2πfn) (2)

where G(n) represents the window function whose length is P.
Assuming the overlapping steps at the window edge is L, then the
stride R between adjacent DFTs would be R = P–L. After the STFT
operation, then matrix Y would be fed into the following network
column by column. The labels that the NN needs could always be
obtained by manipulating the original transmitting signal.
Similarly, the NN is trained to minimize the MSE and the
parameters of the net optimized by the Adam optimizer. The
nonlinear activating function is ReLU. , the inverse STFT (ISTFT)
is adopted to obtain the reconstructed transmitting signal x(n),
which could be expressed as below:

x(n) � ∫1
2

−1
2

∑∞
k�−∞

Ym(f) exp(j2πfn)df � ∑∞
k�−∞

xk(n) (3)

It should be noted that the analysis window must satisfy the
COLA constraint (Griffin and Lim, 1984) when using ISTFT to
ensure successful reconstruction of the original signal.
Experimental results also confirm that the proposed TFDNet
could resist severe nonlinear distortions and provide better
performance for a VLC system compared to other nonlinear
compensators such as Volterra and DNN. This multi-domain
analysis method provides us with new inspiration to introduce
more interdisciplinary digital signal processing methods in a VLC
system in the coming future.

NETWORK RECONFIGURATION NEURAL
NETWORK

Network reconfiguration neural network mainly lies in making
the same signal pass through different neural networks with
different properties. For example, as for linear and nonlinear
signal impairment, it is difficult to compensate for different
impairments using the same neural network. What’s more,
combining input data reconfiguration and network
reconfiguration, the extracted signal characteristics can be
passed through different networks to better recover the signal.
So, in network reconfiguration NN, the input signal is not limited
to the original signal, and different network structures are used as
branches with different functions. A corresponding sequence of
data is taken as the network output and the label.

DBMLP
In order to enhance the applicability of NN equalizer, the Dual-
branch multi-layer perception post-equalization algorithm
(DBMLP) is proposed to reduce energy and computing resource
consumptions (Zhao et al., 2019; Zhao et al., 2020). It reconstructed
the structure of the MLP post-equalization algorithm based on the
structure of the Volterra series post-equalization algorithm as a
template and proposed a dual-branch multi-layer perceptron post-
equalization algorithm. DBMLP combined the advantages of linear
adaptive filters and MLP, which could reduce the algorithm
complexity by 74.1% and improve the algorithm’s BER
performance. DBMLP’s core structure is the two tributaries, as
shown in Figure 5. In the first tributary, a CNN with one
convolution layer and one dense layer is utilized to emulate the

FIGURE 4 | Principle of TFDNet.
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linear distortion in the signal bandwidth. In the second tributary,
hollow MLP with a hollow operator layer and two dense layers is
applied to emulate the nonlinear distortion out of the signal
bandwidth. The nonlinearity of the output of the first tributary
is corrected by the output of the second tributary, and the hollow
layer can ignore the effect of the middle signal on the signals on
both sides. The expression of the hollow layer is followed, where L
is the memory depth.

hw([xn−L−1
2
, xn−L−1

2 +1, . . . , xn−1, xn, xn+1, xn+L−1
2 −1, xn−L−1

2
])

� [xn−L−1
2
, xn−L−1

2 +1, . . . , xn−1, xn+1, xn+L−1
2 −1, xn−L−1

2
] (4)

To further reduce power consumption and complexity and
enhance the applicability in practical UVLC systems, a pruning
algorithm is proposed based on the DBMLP (Zhao and Chi,
2020). During the training of the DBMLP, the partial pruning
algorithm needs to be applied after the several epochs training to
ensure that the DBMLP is trained to a relatively convergent state.
The partial pruning algorithm first sorts the absolute values of the
weights of the connections that need to be pruned. It then sets the
weights with smaller absolute values to 0 according to the
sparsity, thereby pruning the weights of DBMLP. The weights
of red connections in Figure 5 are not prunable, whereas the
weights of blue connections are prunable. Since the linear
mapping branch of the DBMLP has very few weights, pruning
these weights contributes little towards reducing the space
complexity of the entire equalizer. In addition, the number of
weights connected to the output nodes of the nonlinear branch is
also small. Further, since the number of parameters of these two
parts is low and over-parameterization is not severe, pruning
them seriously affects the BER performance of the DBMLP.
Hence, the green connections, which have no weight, do not
participate in the training and pruning process. The experimental
results confirm the superiority of this method.

MIMO-MBNN
In aMIMO-VLC system, not only inter symbol interference (ISI) is
severe but also inter-channel interference (ICI) is nonnegligible.
MIMO-MBNN which has a multi-branch neural network is

proposed for this issue. There are two linear branches and one
nonlinear branch in this equalizer. It is a combination of both
linear and nonlinear equalization that further removes the
nonlinear loss beyond the capability of linear LMS/RLS or
Volterra equalizer. When nonlinear loss becomes not negligible,
especially when the operation in amplitude increases, the method
would significantly outperform the three competitors mentioned.
This advantage is brought by NN, which is powerful in fitting
complex nonlinear functions. Another advantage is that signals
from both channels are imported to the neural network. Therefore,
the influence of ISI and ICI could be modeled and compensated in
the meantime. It is shown that MIMO-MBNN has an advantage in
operation rage 2.33 times larger than SISO-DNN and refreshed the
record of communication rate in single receiver MIMO (SR-
MIMO) VLC at that time (Zou et al., 2020).

In (Zou et al., 2020), it clearly states the reason of the three
branches by deduction. Suppose that the receiver has an identical
response to the two channels, and ignore the influence from the
third-order term, its amplitude response in high Vpp is written as:

Sr � f(Ain) � (a1Ain + a2A
2
in + a3A

3
in)

b
(5)

Where a1, a2, a3, b are obtained empirically. Sr is the received
symbol. In SR-MIMO, two independent signals S1(t) and S2(t)
would cause a complex response at the receiver following the
equation:

Sr1(t) � a1
b
(1
2
St1(t) ⊗ (h(t) cosω0t) + β

2
St2(t) ⊗ (h(t) sinω0t))

+ a2
b
(1
2
S2t1(t) ⊗ (h(t) cosω0t) + β

2
S2t2(t) ⊗ (h(t) sinω0t))

+ a3
b
(1
2
S3t1(t) ⊗ (h(t) cosω0t) + β

2
S3t2(t) ⊗ (h(t) sinω0t))

(6)
Where St1(t), St2(t), Sr1(t) are the transmitted symbol for
channel 1 and 2, and the received one for channel 1. β is the
amplitude normalized to channel 1. h(t) is the impulse response
of LED (assumed identical for both). Channel two shares a similar
equation but it exchanges the terms of St1(t), St2(t) and uses a
different β. The equation clearly suggests that there are linear and
nonlinear terms concerning the transmitted symbol, and thus it is
reasonable to apply specified branches in the equalizer.

Figure 6 illustrates the principle of MIMO-MBNN. It is used
to enhance the performance of single receiver MIMO, which
receives signals from two independent channels by one receiver
and must consider both the ICI and ISI. The input data are
arranged in vectors in fixed length as the training data vector. For
the linear regression branch, each of them only processes the
signal from a single channel. But the nonlinear regression branch
needs a signal from both channels. The linear branch acts like
LMS/RLS equalizer looking for the linear ISI and outputs the
result. In the meantime, the signals from the two channels are
imported into the nonlinear regression branch to compute the
cross terms related to nonlinear distortions and crosstalk.

FIGURE 5 | Principle of DBMLP
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Afterward, MBNN sums the NN output with that from either the
first or second linear branch as the equalized signal and feeds
them into the optimizer to update parameters. Although the
linear term might repeat in both linear and nonlinear branches,
the optimizer would gradually remove it from the NN output.

FSDNN
Frequency Slicing Deep Neural Network (FSDNN) is another
variation of DNN that could be applied to carrierless amplitude
and phase (CAP) modulation in a high-speed VLC system. Its

ability has been proved to decrease the total computation
complexity of traditional multi-layer perception (MLP) when
it comes to the equalization performance in VLC system (Chi
et al., 2020).

The frequency spectrum will suffer a nonlinear frequency
fading issue after going through the VLC channel. DNN serves
as an outstanding equalizer to equalize linear and nonlinear
distortion due to its unique multi-layer structure,
backpropagation algorithm, and advanced activation function.
However, the neural network structure must be complex enough

FIGURE 6 | Principle of MIMO-MBNN

FIGURE 7 | Principle of FSDNN
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to handle complicated linear and nonlinear distortions, which
means amounts of layers and nodes are needed if an MLP is used
to equalize such a received signal and try tomitigate the frequency
fading issue.

It is worth noticing that the high-frequency spectrum of a
received signal in VLC suffers more serious amplitude
attenuation while the low-frequency domain suffers less
fading, which means a complex MLP structure is unnecessary
for the low-frequency domain with low amplitude attenuation.
Therefore, the damage to the high-frequency and low-frequency
parts of the received signal is different, indicating that the
complexity of DNN can be relieved if these two parts of
signals are equalized separately, which are expected to relieve
the equalization pressure of followed DNN.

In brief, FSDNN could be described as a process of
reconstruction and combination of input data and neural
network structure. The received wide-band signal after
going through the VLC channel will be split into two
parallel narrow-band parts of high-frequency and low-
frequency, as shown in Figure 7. Its frequency spectrum will
be split into two sub-bands using a digital low-pass filter (LPF)
and a high-pass filter (HPF). In (Chi et al., 2020), two uniform
root-raise-cosine (RRC) filters f1(t) and f2 (t) have been
considered to filter the received signal R(t). Then two sub-
bands signals, S1(t) and S2 (t), as two groups of input data are
respectively fed into twoMLPs that trained individually. To reach
the best equalization performance in the system, the structure of
the two equalizers should be tested artificially and fixed to optimal
values, in which three main factors of DNN should be considered
and adjusted, including the number of layers, nodes in every
layer, taps, and epochs. Once the MLP is finished training and
their weights are fixed, the sum of the output signal from two
MLPs is the equalized and recovered signal.

The experiment result shows that the majority of the high-
frequency fading from the channel is well compensated after the
FSDNN and the complexity of the FSDNN to equalize two
narrow-band signals separately is reduced to a lower value
than the traditional DNN to equalize the whole-band signal
(Chi et al., 2020). The method of frequency slicing successfully
relieves the pressure on the training of NN. Moreover, the simple
structure of FSDNN shows superior robustness in varying Vpp
and bias current than traditional DNN when linear noise is the
main limitation in a VLC system.

PCVNN
Due to the incoherent characteristics of LED and the serious
attenuation of water medium, it is necessary to drive high power
of LED to improve the signal-to-noise ratio (SNR) in an
Underwater Visible Light Communication (UVLC) system. As
the signal amplitude increases, the nonlinearity becomes more
severe. So, the symbols located outside the constellation suffer
more nonlinear distortion than inside ones. Therefore, an
adaptive partition equalizer (PCVNN) is proposed (Chen
et al., 2021) based on complex-valued neural network (CVNN)
(Zhao et al., 2021), which has better performance and lower
complexity than traditional CVNN and real-valued NN (RVNN)
(Ahmad and Kumar, 2016).

The process of PCVNN is divided into several steps, as shown
in Figure 8. Firstly, the position of the received signal Y �
[y1, y2, . . . , yn] in the constellation is split into internal area
Yinner and Youter, an appropriate threshold can reduce the
computational complexity while maintaining great equalization
performance. An adaptive threshold selection scheme based on
bit error rate (BER) after LMS equalization is proposed.Yinner and
Youter are sent into two complex-valued neural networks
separately. For the complex-valued neural networks, the fully

FIGURE 8 | Principle of PCVNN.
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connected neural network structure is used. The i-th input
sequence Yinner(i) propagates through the hidden layer as
complex values. The complex output in the network is:

x̂inner � W2
in (f(W1

in yinner + B1
in )) + B2

in (7)
Where Wj

in and Bj
in (j = 1,2) are the weight matrix and offset

vector with complex values. f(·) represents the activation
function. A complex ReLU activation function (Trabelsi et al.,
2017) is utilized to process the real and imaginary parts of
neurons z, which is expressed as:

CReLU(z) � ReLU(Re(z)) + iReLU(I (z)) (8)
The following mean square loss is used as the loss function of

the complex-valued network (Hirose and Yoshida, 2012):

E � 1
M

∑M
m�1

einner�einner (9)

Where einner(i) � xinner(i) − x̂inner(i). Then the backpropagation
algorithm is executed to adjust the weights of CVNN. When the
training of Yinner and Youter is both completed, the PCVNN can
equalize the invisible input symbols.

Experiments demonstrate that PCVNN can achieve the bit
error rate below the 7% hard-decision forward error correction
(HD-FEC) limit of 3.8 × 10−3 at 2.85 Gbps similar to the standard
complex-valued network, yet with 56.1% total computational
complexity reduction (Chen et al., 2021).

LOSS FUNCTION RECONFIGURATION
NEURAL NETWORK

In recent years, neural networks have been widely employed for
signal processing such as equalization and classification. In themodel
training phase, the loss function is used to evaluate the difference
between the predicted results and the true value, which plays an
important role in the backpropagation process.When NN is used for
classification, the cross-entropy loss function is widely used.While for
equalization,MSE is themost used loss function.However, BER is the
typical evaluation indicator in a communication system, so that the
loss function of the model and the eventual metrics are not matched.
Unfortunately, BER is not suitable to act as a loss function, because it
is possible that there is no bit error but signal distortion exists, and it
will lead to gradient disappearance. Therefore, a modified loss
function that has a direct connection with BER is required.

In (Stainton and Haigh, 2021; Stainton et al., 2021), loss
function based on EVM is first proposed in visible light
communication. Supposing the predicted results y of the NN,
and the target x, the loss function E denotes the magnitude of the
error vector, which can be utilized to calculate the EVM:

E �
��������������������(yI − xI)2 + (yQ − xQ)2√

(10)

EVM �

������������
1
N

∑E

1
N

∑(y2
I + y2

Q)
√√√

(11)

For a 1-dimensional signal, using MSE as a loss function
performs similarly to using EVM as a loss function. While for 2-
dimensional (complex-valued) signal, EVM has a closer
relationship with BER (Schmogrow et al., 2011). This is
because MSE focuses explicitly on sample amplitudes and does
not consider any phase offset from the ideal constellation points.
Experimental results indicate that the proposed EVM loss
function performs better in equalization for complex-valued
signals compared with using MSE as a loss function. In a
spectrally efficient frequency division multiplexing (SEFDM)
VLC system, up to 50% bandwidth compression can be
supported. However, using EVM as a loss function the model
tends to overfitting (Stainton and Haigh, 2021) when there is no
compression. In addition to that, the above EVM enhancement is
only applicable to real-valued neural networks. If a complex-
valued network is used, the EVM and the complex-valued MSE
are not fundamentally different.

Apart from the EVM loss function, several modified loss
functions have also been proposed in wireless communication
such as weighted sum-rate based loss function (Huang et al.,
2018), which adds an extra penalty item and a hybrid loss
function (Dörner et al., 2017), which adds the weighted MSE
to the cross-entropy.

DISCUSSION AND FUTURE TRENDS

The NN equalizer in the research of the physical layer of VLC is
still in its early stage. Although previous works have shown
promising results, the relationship between the visible light
communication model and the neural network model is still
not clear enough. Some work has made efforts on the nonlinear
interpretation of VLC (Neokosmidis et al., 2009; Hu et al., 2021).
However, due to the additional electro-optical conversion, it is
difficult to represent using a mathematical formula. A sample
example is that the recombination of carriers and holes
(Windisch et al., 2000). The operating conditions of carrier
recombination change as the signal amplitude changes,
resulting in a dynamic electro-optical conversion formula
rather than a static one. On the other hand, neural networks
are indeed powerful equalization tools, but at the cost of huge
computational complexity, extremely long computation time,
and very poor generalization. These shortcomings will be
amplified in the communication field, particularly in the real-
time communication of 6G. Hence, there are numerous
challenges and research directions of NN equalizers that
should be pursued in the future.

Input Data Reconfiguration Neural Network
The major goal of this sort of neural network is to improve the
neural network’s ability to extract communication features. In a
communication system, the received signal is serial data that
changes over time. In the ideal case, each signal is sampled exactly
and without channel impairment. However, ISI will be
introduced due to frequency selective fading. As the high-
frequency response decays, the time domain pulses begin to
broaden and spread into the adjacent time-series signal. This
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problem is greatly magnified in VLC due to the limited
bandwidth. Another challenge is nonlinearity. In addition to
the electro-optical conversion nonlinearity mentioned above,
there are also nonlinearities in amplifiers, receivers, etc. that
need attention.

To address ISI, traditional equalizers usually have a concept of
taps to represent memory depth. This also applies in the neural
network equalizer. Thus, we can see that in the input signal of the
NN, it is usually the sliding window of the received signals. For
nonlinearity, the easiest way is to use a nonlinear activation
function and keep iterating through the neural network. This
comes at a cost that is difficult to bear by the communication
system. Therefore, memory polynomial expansion, Gaussian,
Fourier basis functions, Volterra series, and other
trigonometric polynomials (e.g., Chebyshev, etc.), which
could consider both ISI and nonlinear, can be used as a
way to reconstruct the input data. Frequency response is
another important characteristic in a VLC system. It is
difficult for the NN to identify the difference in frequency
response by itself. So, it is a normal idea to use frequency-
domain signals as input signals. Apart from that, Short-time
Fourier transform or Wavelet transform is a smarter way to be
able to consider the time dimension along with the frequency
domain.

Network Reconfiguration Neural Network
In this neural network, the main objective is to give the network
the ability to handle different impairments. Because of poor
frequency response, high voltage nonlinearity, or different
transmission channels, it is difficult to implement a universal
neural network. The difficulty of this network design is based on
what dimension to divide it. The designer has to identify the
limitation of the communication system. If the system is
bandwidth-constrained, as is often the case with a VLC
system, the high-frequency and low-frequency signals will
obviously experience different attenuation. This is the reason
why FSDNN was proposed. If the system is nonlinearly
constrained, high- and low-level signals will experience
different electro-optical responses, such as the proposed
PCVNN. As can be seen here, in order to get the signal into
different networks, it is often also necessary to combine it with the
input data reconstruction neural network. The former network
can split the signal into different parts, which then logically go
into different neural network models. A classical approach is to

use the decision-feedback structure in the neural network (Yi
et al., 2020).

Other kinds of network reconfiguration neural networks,
such as convolutional neural network (CNN) (Chuang et al.,
2018; Liu et al., 2019; Abu-romoh et al., 2021), recurrent neural
network (RNN) (Peng et al., 2021), and cascade RNN(CRNN)
(Xu et al., 2020a) change the structure of the network from
another perspective. CNN is often used as a tool for image
recognition. In TFDNet, the input signal has been transformed
into a two-dimensional signal, which can be treated as an image.
However, the computation using CNN has not been considered
yet, and the common MLP is still used. RNNs are often used to
process sequential data, such as speech, which seems to fit
equally well with communication data. Further, bidirectional
RNN (BRNN) is used in communication systems (Schaedler
et al., 2021) that can consider both before and after timing data,
just like the traditional equalizer concept of time windows.
Furthermore, transformer (Amoiralis et al., 2009; Xu et al.,
2020b) and multi-task NN(Xu et al., 2021), which have
achieved great success in many AI fields such as natural
language processing, computer vision, audio processing, etc.
at this stage, are also expected to get better results in the field of
communication.

Loss Function Reconfiguration Neural
Network
In this kind of reconfiguration neural network, research progress
is much slower than the other two networks. Because it is difficult
to learn from neural network work in other fields. Using MSE in
the majority of neural networks always gives great results, which
also leads to a lack of motivation to explore. Another challenge is
the reconstruction of the activation function, which requires both
deep mathematical skills and communication knowledge.

BER is the typical and most important evaluation indicator in
a communication system. But as mentioned above, it is not a good
choice of a loss function. Typical metrics for communication
systems include EVM (Stainton and Haigh, 2021), cross-entropy
(Dörner et al., 2017; Yi et al., 2018), and so on. A tricky way to
implement the reconfigured cost function is to combine several of
these metrics. An effective direction is to target constellation
points, such as the rotation angle between the constellation point
of the recovered signal and the standard constellation point. Or it
can use the maximum Euclidean distance to judge the

TABLE.1 | Summary of three categories of NN equalizers.

Category
of neural network

Definition Application scenarios Challenge

Input Data
Reconfiguration

The data is transformed before
entering the network

Data with a priori knowledge, such as memory
effects, nonlinear approximations and so on

Requires deep knowledge of prior knowledge, and
incorrect feature extraction can dramatically deteriorate
performance

Network
Reconfiguration

With different network structures, or
multiple networks for different tasks

Large differences in channel impairment or the
dimension of signal damage is more specific

Requires a good understanding of channel impairment,
otherwise it will be over- or under-fitted

Loss Function
Reconfiguration

Optimize the loss function There is a gap between the MSE and the final
performance metrics

Theoretical derivations are needed to adapt the BP
algorithm
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equalization performance. Another direction is to use the signal
as the input of the loss function after dimensionality increase or
dimensionality reduction, such as Haar Transform (Stanković
and Falkowski, 2003), principle component analysis (PCA)
(Wold et al., 1987) and independent component analysis
(ICA) (Comon, 1994).

CONCLUSION

In this paper, three categories of neural network equalizers,
input data reconfiguration NN, network reconfiguration NN,
and loss function reconfiguration NN are proposed for a VLC
system. All of these reconfigurations allow neural networks to
better explain the communication system and reflect the
characteristics of the communication model. Almost all
neural network equalizers in VLC can be classified into
these three categories. The summary is shown in Table.1.
Previous research work may not be aware of these, but it is
clear from our analysis that they have something in common.
Besides, we can see that there is still a lot of research space for
loss function reconfigured neural networks. In addition, neural
networks combining multiple categories should be expected to
have better performance, as in the case of FSDNN combining

both input data and network reconfiguration. As the research
progresses, it is looking forward to the large-scale application
of neural networks in 6G VLC, and achieving far beyond
previous achievements.
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