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Scalable and sustainable AI-driven analytics are necessary to enable large-scale and
heterogeneous service deployment in sixth-generation (6G) ultra-dense networks. This
implies that the exchange of raw monitoring data should be minimized across the network
by bringing the analysis functions closer to the data collection points. While federated
learning (FL) is an efficient tool to implement such a decentralized strategy, real networks
are generally characterized by time- and space-varying traffic patterns and channel
conditions, making thereby the data collected in different points non independent and
identically distributed (non-IID), which is challenging for FL. To sidestep this issue, we first
introduce a new a priori metric that we call dataset entropy, whose role is to capture the
distribution, the quantity of information, the unbalanced structure and the “non-IIDness” of
a dataset independently of the models. This a priori entropy is calculated using a multi-
dimensional spectral clustering scheme over both the features and the supervised output
spaces, and is suitable for classification as well as regression tasks. The FL aggregation
operations support system (OSS) server then uses the reported dataset entropies to
devise 1) an entropy-based federated averaging scheme, and 2) a stochastic participant
selection policy to significantly stabilize the training, minimize the convergence time, and
reduce the corresponding computation cost. Numerical results are provided to show the
superiority of these novel approaches.
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1 INTRODUCTION

6Gwireless networks announces the era of massive heterogeneous digital services, that extend the vertical
use cases to the final consumer, which is challenging from a network management point of view. Indeed,
in this new context, classical centralized monitoring, analysis, and control would become impractical, as
they usually represent a single point of failure and suffer from large overhead. Alternatively, decentralized
service processing would bring scalability, low raw data exchange and therefore more system
sustainability. In this regard, distributed artificial intelligence (AI) approaches, and in particular FL
schemes, can play a pivotal role in leveraging the potential of scatteredmonitoring data across the network
as well as the computing power of edge cloud, while reducing the computational costs and enabling fast
local analysis and decision. Nevertheless, FL performance is often limited by the convergence delay due to
several conceptual and operational issues that are reviewed in the sequel.

1.1 Related Work
In (Brendan McMahan et al., 2017), the authors have proposed the federated averaging (FedAvg)
algorithm that synchronously aggregates the parameters, and is thus susceptible to the so-called
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straggler effect, i.e., each training round only progresses as fast as
the slowest edge device since the FL server waits for all devices to
complete local training before the global aggregation can be
performed. Alternatively, the asynchronous model in (Sprague
et al., 2018) has been introduced to improve the scalability and
efficiency of FL. For asynchronous FL, the server updates the
global model whenever it receives a local update which grants
more robustness against participants joining halfway during a
training round, as well as when the federation involves
participating devices with heterogeneous processing
capabilities. However, the model convergence is found to be
significantly delayed when data is non independent and
identically distributed (non-IID) and unbalanced (Zhao et al.,
2018). To solve this issue, it has been proposed to distribute a
public dataset to the FL clients at the beginning. However, such a
dataset may not always exist, or the participants may refuse to
download them for security reasons. Therefore, an alternative
solution was to construct an approximately IID dataset using
inputs from a limited number of privacy insensitive participants
(Yoshida et al., 2019). In the Hybrid-FL protocol, the server asks
random participants if they allow their data to be uploaded.
During the participant selection phase, apart from selecting
participants based on computing capabilities, participants are
selected such that their uploaded data can form an approximately
IID dataset in the server, i.e., the amount of collected data in each
class has close values. Thereafter, the server trains a model on the
collected IID dataset, and merges this model with the global
model trained by the participants. Nevertheless, requests for data
sharing are not in line with the original intent of FL. As an
improvement, the authors in (Xie et al., 2019) have proposed the
FedAsync algorithm in which newly received local updates are
adaptively weighted according to staleness, that is defined as the
difference between the current epoch and the iteration to which
the received update belongs to. For example, a stale update from a
straggler is outdated since it should have been received in
previous training rounds. As such, it is given a smaller weight.
In addition, the authors prove the convergence guarantee for a
restricted family of non-convex problems. However, the current
hyperparameters of the FedAsync algorithm still have to be tuned
to ensure convergence in different settings. Hence, the algorithm
is still unable to generalize to suit the dynamic computation
constraints of heterogeneous devices. Given this uncertainty
surrounding the reliability of asynchronous FL, synchronous
FL remains the most commonly used approach (Keith et al.,
2019). In this context, it has been confirmed that the correlation
between the model parameters of different clients is increasing as
the training progresses, which implies that aggregating
parameters directly by averaging may not be a reasonable
approach in general (Xiao et al., 2020). Besides, a fair resource
federated learning approach has been studied recently in (Tian
et al., 2020), which introduces a weighted averaging that gives
higher weights to devices with the worst performance (i.e., the
largest loss) to let them dominate the objective, and thereby
impose more uniformity to the training accuracy. Finally, authors
in (Niknam et al., 2019) and (Yang et al., 2021) have listed the
different FL motivations, challenges and applications on 6G and
wireless communications, where FL has been presented as a

solution to address energy, bandwidth, delay and privacy
questions in wireless communications. As energy consumption
is one of the important aspects to consider in FL, in (Tran et al.,
2019) the trade-off between learning time, learning accuracy and
terminals power consumption has been investigated.

1.2 Contributions
In this paper, our contribution is two-fold.

• We first introduce the concept of the entropy of a dataset in
both classification and regression tasks, where we jointly
consider the features and supervised outputs to characterize
the distribution of its samples and the underlying quantity of
information based on a custom spectral clustering strategy.
This generalized entropy captures the diversity of a dataset as
well as its unbalanced structure and non-IIDness.

• By leveraging the proposed entropy as an a priori
information, we develop two novel FL strategies to make
central units (CUs) at 6G Edge-RAN collaborate in learning
a certain resource usage, namely, 1) Entropy-weighted
federated aggregation which involves all the CUs in the
FL training task while prioritizing the most balanced and
uncorrelated datasets (i.e., those maximizing the entropy)
and 2) Entropy-driven stochastic policy for selecting only a
subset of CUs to take part in the FL task. This consists on
sampling, at each FL round, the active CUs according to an
entropy-based probability distribution, which dramatically
reduces the convergence stability and time, as well as the
underlying resource consumption by avoiding concurrent
training by all CUs at each round.

2 NETWORK DESCRIPTION AND DATA
COLLECTION

2.1 Edge-RAN
As depicted in Figure 1, the considered network corresponds to a 6G
edge-RAN under the central unit (CU)/distributed unit (DU)
functional split, where each transmission/reception point (TRP) is
co-located with its DU, while all CUs are hosted in an edge cloud
where they run as virtual network functions (VNFs). Each CU k (k �
1, . . ., K) performs RAN key performance indicators (KPIs) data

collection to build its local dataset Dk � {x(i)k , y(i)k }
Dk

i�1 of size Dk,

where x(i)k stands for the input features vector while y(i)k represents
the corresponding output. Given that this dataset is generally non-
exhaustive to train accurate analytical models, the CU takes part in a
federated learning task wherein an OSS server—located at the core
cloud—plays the role of a model aggregator. In this work, the CUs
and the OSS are connected via fiber transport links, which present a
very stable behavior (compared to the wireless channel), and have no
effect on the accuracy of the FL.

2.2 Data Collection
Table 1 shows the features and the supervised output of the local
datasets, which have been collected from a live LTE-Advanced (LTE-
A) RAN with a granularity of 1 h. The considered TRPs cover areas
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with different traffic profiles—both in space and time—that tightly
depend on the heterogeneous users distribution and behavior in each
context (e.g., residential zones, business zones, entertainment events,
. . .). On the other hand, the radio KPIs are correlated with the time-
varying channel conditions. These realistic datasets are therefore
non-IID, which is more challenging for FL algorithms as studied in
(Li et al., 2021).

3 PROPOSED ENTROPY-BASED
FEDERATED LEARNING

To tackle the FL convergence in practical non-IID setups, we seek
an objective and compressed metric capturing both the
distribution of a dataset and its quantity of information, while
not depending on the local models. In this regard, we introduce
the notion of dataset entropy that is a sufficient statistic to
characterize the unbalanced structure of a dataset, as well as
its independence from other datasets. Specifically, the entropy is
maximized under a uniform distribution with low probability
mass function (PMF). By relying on the a priori entropies of all
CUs, the aggregation server can implement novel CUs selection

and models combining schemes to accelerate and stabilize the FL
convergence.

3.1 Dataset Entropy
Since we are targeting a generalized definition of the entropy, the
labels of a classification dataset are not reliable to reflect the
distribution of data since it does not apply to regression tasks
where the supervised output is continuous, and it omits the effect
of the input features. In particular, samples with different feature
values but presenting approximately similar outputs are not
providing the same information and might not necessarily fit
in the same group of data. Therefore, in order to accurately
discern the samples, we consider a joint approach where both the
features and the supervised output are used. To that end, each CU
uses a clustering algorithm that operates on the so-called
similarity matrix Sk whose entries measure the logical
correlations between the dataset samples vectors including
both the features and the supervised output, i.e.,

~x(i)k � x(i)k y(i)k[ ]. (1)

This matrix is built using a radial basis function (RBF) kernel
with parameter σ. As such, the (i, j)-th matrix element is given by

s(k)i,j � exp − d ~x(i)k , ~x(j)k( )
σ2

⎛⎝ ⎞⎠, (2)

where d stands for the pairwise logical distance between samples’
vectors i and j. Let F denote the number of features in the datasets.
A general definition of this distance that involves both the
features and the output can be written as

d ~x(i)k , ~x(j)k( ) � ∑F+1
f�1

αf |x(i,f )k − x(j,f )k |, (3)

where {αf} stand for the weights of each feature/output in the
distance and verify ∑F+1

f�1αf � 1. They can be fine-tuned to orient
the clustering towards the direction of the most relevant features or
prioritize the output. For the sake of simplicity, and to avoid

FIGURE 1 | Network architecture.

TABLE 1 | Dataset features and output.

Feature Description

Cell Throughput Cell Downlink Average Throughput
User Throughput User Downlink Average Throughput
BLER Average Block Error Rate
# Users Downlink Average Active Users
MIMO Rank Average MIMO Rank
DL PRB Downlink PRB Usage Percentage
TA Average Timing Advance
CQI Average Channel Quality Index
QPSK Percentage of QPSK modulation usage

Output Description

Traffic Traffic Volume (Output)
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generating a high number of scenarios, we settle in this work to the
typical setting where the weights are uniform, i.e., αf � 1/(F + 1).
Further investigation on the effect of the weights on the entropy is
left for future works.

Since basic clustering algorithms usually require the target
number of clusters as an input, we resort to the well-established
self-tuning spectral clustering (STSC) technique that presents a
time complexity of O(D3

k), but is still practical as long as the
dataset size Dk < 103 (Tsironis et al., 2013). Since in our case we
have only small datasets for each CU (e.g., of size 100)—which is
by the way one of the reasons to resort to federating learning, the
clustering scheme is viable in our case.

The STSC relies on the eigenvalues and eigenvectors of the
similarity matrix. To that end, we first define Λ to be a diagonal
matrix with

Λ(k)
i,i � ∑Dk

j�1
s(k)i,j , (4)

and construct the normalized affinity matrix

Lk � Λ−1/2SkΛ−1/2. (5)

When Λ is strictly block diagonal, its eigenvalues and
eigenvectors are the union of the eigenvalues and eigenvectors
of its blocks padded appropriately with zeros. Let Xk denotes the
block diagonal matrix gathering the eigenvectors. In this case, we
can automatically cluster a dataset into an appropriate number of
clusters that minimizes a custom cost function defined in terms of
the coefficients of a rotated and normalized version of matrix Xk

(Zelnik and Pietro, 2004). Let us assume that for CU k, the
clustering yields nk clusters Ck,1, . . . , Ck,nk with probabilities
Pr(Ck,1), . . . ,Pr(Ck,nk) over dataset Dk, which are calculated via
the number of samples per cluster Δk,p as

Pr Ck,p( ) � Δk,p

Dk
. (6)

The Corresponding Entropy Is Then Defined as

εk � −∑nk
p�1

Pr Ck,p( )log Pr Ck,p( ){ }. (7)

By letting the CUs report their dataset entropies {εk}Kk�1 to the
aggregation server before starting the training, it becomes
possible to devise advanced entropy-driven FL strategies that
prioritize the CUs with high entropy datasets.

3.2 Entropy-Driven FL Combining
In this strategy, the aggregation server directly uses the entropies to
perform a weighted averaging of all CUs local models at each round
t, i.e.,

W(t+1) � ∑K
k�1

εk
�ε
W(t)

k , (8)

where

�ε � ∑K
p�1

εp (9)

is the cumulative sum of the different CUs entropies that serves as a
factor. This allows the CUs with high entropies to dominate and
orient the FL training, although this requires the participation of
all CUs.

3.3 Entropy-Driven Stochastic FL Policy
To optimize the federated learning computation time as well as
the underlying resource consumption, we aim at selecting only a
number of active CUs in each FL round. In this respect, we
introduce an entropy-driven stochastic CU selection policy
wherein the aggregation server first generates a probability
distribution over all the CUs using their received entropies. In
fact, CUs with high entropies hold datasets that are rich in terms
of quantity of information and can lead to more generalized
models in the training. A direct strategy would consist on
selecting the m CUs with highest entropies during all the
training. But since the datasets of CUs with low entropy can
also hold samples that are non-existing in the other high entropy
datasets and yet can help in further generalizing the FLmodel, the
idea we have proposed is to give them a chance by implementing a
softmax stochastic policy, where each CU can participate in the
training with a probability proportional to its entropy. Hence, in
the long-term, even CUs with low entropy are given a chance in
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some rounds to train the model. This leads to a fast convergence
(since it orients the training to the CUs with high potential) while
ensuring a more general model at the end.

This is achieved by a direct softmax activation layer, i.e.,

πk � exp {εk}∑K
p�1 exp {εp}

. (10)

Next, at each FL round t, as illustrated in Figure 2, the server
selects a subset ofm<KCUs to participate in the training by sampling
the non-uniform CUs set with probabilities {π1, . . ., πK}, i.e.,

CU(t)
k1
, . . . ,CU(t)

km
∼ {π1, . . . , πK | CU1, . . . ,CUK}, (11)

which ensures that, by the convergence round, the CUs would
have stochastically taken part in the FL task according to the
initial probability distribution, while avoiding the concurrent
training by all CUs at each round. In this case, the model
averaging at round t is performed as

W(t+1) � ∑
k∈{k1 ,...,km}

Dk

D
W(t)

k . (12)

Where D is the total samples over all CUs datasets. This entropy-
driven stochastic policy is summarized inAlgorithm 1, whereL(·, ·)
stands for the mean square error (MSE) loss function, and b is the
bias, while the rest of FL setting parameters is provided in Table 2.

4 STOCHASTIC FEDERATED LEARNING
CONVERGENCE ANALYSIS

In this section, we analyze the convergence probability of the
stochastic federated learning. In this intent, a closed-form

expression for the lower bound of the convergence probability
is derived, reflecting the effects of the CUs selection probability
and the datasets sizes.

Theorem 1 (Convergence Analysis of the Stochastic Federated
Learning). Consider that the CUs selection in the stochastic federated
learning follows a policy {π1, . . ., πK}, and let Ω and Bk stand for the

upper bounds on the weights and the norm of subgradient∇L(W(t)
k ),

respectively. Let αk ∼ B(πk) denote the CU activation bit. Then, the
federated learning convergence probability satisfies

Pr
1
T

∑T
t�1

E L W(t)( ) − L W*( )( )< ϵ⎡⎣ ⎤⎦≥ ϕ(ϵ), (13)

where

ϕ(ϵ) � 1 − exp − { Tε2

2 2∑K
k�1πk

Dk
DBkΩ( )2*} (14)

Proof. First, by means of the subgradient inequality we have at
round t:

E(t) � L W(t)( ) − L W*( )≤ 〈∇L,W* −W(t)〉. (15)

Using Cauchy-Schwarz inequality, we get

E(t) ≤ ∇L W(t)( )����� ����� W(t) −W+
���� ����. (16)

By recalling the federated learning aggregation Eq. 12, we can
write

∇L W(t)( ) � ∑K
k�1

αk
Dk

D
∇L W(t)

k( ). (17)

Therefore, from Eqs 16, 17 and by invoking the triangle
inequality we have

E(t) ≤ ∑K
k�1

αk
Dk,n

Dn
∇L W(t)

k( )����� ����� W(t) −W+
���� ����

≤ 2 ∑K
k�1

αk
Dk

D
BkΩ

(18)

By the monotonicity of the expectation, we have

E(E(t))≤ 2∑K
k�1

πk
Dk

D
BkΩ � C. (19)

FIGURE 2 | Entropy-driven stochastic federated learning policy.

TABLE 2 | FL settings.

Parameter Description Value

T Number of rounds 20
L Number of epochs 50
K Number of CUs 6
M Number of selected CUs 3
Dk Local dataset size 100
η Learning rate 0.001
Σ Kernel parameter 1.0
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Bymeans of Hoeffding-Azuma’s inequality (Hoeffding, 1963), we
have

Pr
1
τ
∑τ
t�1

E(E(t))< ϵ | τ � T⎡⎣ ⎤⎦≥ 1 − exp −⎧⎨⎩Tε2

2C2

⎫⎬⎭, (20)

5 NUMERICAL RESULTS

5.1 Settings and Baselines
5.1.1 DNN Setting
The structure of the global model weights matrix W has been
defined by the server to satisfy the findings of (Ke and Liu, 2008),
where the authors have estimated the required number Q of
neurons per layer based on the number H of hidden layers, the
dataset sizes Dk, and the number of features F as

Q � F + �����������
maxk�1,...,KDk

√
H

, (21)

which is confirmed via Figures 3, 4, where the best setting of the
DNN model neurons turns out to be Q � 4 for H � 3. As a
benckmark, the performance of our proposed approaches is
compared with LossFedAvg (Li et al., 2021) and FedAvg
(Brendan McMahan et al., 2017). FL settings are listed on

FIGURE 3 | Different number of layers configurations comparison for η �
0.001.

FIGURE 4 | Different number of neurons per layer configurations
comparison for η � 0.001.

FIGURE 5 | Convergence of entropy-weighted vs. learning rate.

FIGURE 6 | FL training loss vs. number of rounds for η � 0.001.
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Table 2, where FL system consists of K � 6 DUs running local
DNN with a learning rate η � 0.001 for T � 20 rounds.

5.1.2 Learning Rate
The learning rate is a key parameter inMLmodels, therefore we have
to select carefully its right value. In this perspective, we have
simulated different learning rate values to illustrate Entropy-
Weighted model convergence behaviour. In this respect, Figure 5
shows fast convergence of Entropy-Weighted model with learning
rate η � 0.01, while for η � 0.001 it is showing a stable yet more slow
convergence to the same loss as the case of η � 0.01. Note that the
adopted DNN optimizer is Adam optimizer (Kingma and Ba, 2015).

5.2 Numerical Results Analysis
5.2.1 Convergence
Figures 6A,B illustrate the gains achieved by the entropy-
weighted approach compared to the baseline FedAvg and
LossFedAvg. The comparison is done for both balanced and
unbalanced non IID datasets. As showcased in Table 3, the
entropy metric varies in balanced datasets, since the clustering
technique takes into account the correlation between features as
well as the supervised output. In the unbalanced scenario, the
entropy difference between CUs is even clearer and demonstrates
also that datasets with smaller size can sometimes yield more
clusters compared to larger datasets, which further corroborates
the role of the introduced entropy metric in characterizing a
dataset efficiently.

A slightly lower losses are met with the entropy-weighted
approach rather than the entropy stochastic policy, but both
methods have the same convergence trend. In Figure 6A,B both
entropy-based FL converge faster than FedAvg and LossFedAvg.
Knowing how critical is the bandwidth occupation for FL exchanges,
and how the CUs local model training is power consuming,
especially in 6G mobile systems, our introduced entropy
stochastic policy shows good results. This aspect becomes more
critical if the FL result is an input for fast decision-making algorithms
such as network slicing orchestration or resources scheduling.

Better than FedAvg and LossFedAvg, the entropy stochastic
policy convergence trend is oscillating around entropy-weighted
as in Figure 6A,B.

5.2.2 Time Complexity and Scalability
Another important achievement with the entropy stochastic
policy is the reduction of the required time for a given
number of rounds and exchanges between the OSS server and
the CUs towards convergence, as shown in Figure 7, wherein the
convergence time difference between the entropy-weighted
approach and the entropy stochastic policy is exponentially
growing with the number of FL rounds. Note that the
corresponding wall-clock time performance is tightly
dependent on the computation capabilities of both the OSS
server and the CUs, but it shows that the stochastic policy FL
minimizes the computation burden by selecting only a subset of
CUs to take part in the training according to their prior entropy

TABLE 3 | Results: Datasets clustering.

CU number Balanced Unbalanced

Nb samples Nb clusters Entropy Nb samples Nb clusters Entropy

1 100 2 0.692 100 2 0.692
2 100 2 0.592 70 3 1.026
3 100 2 0.676 90 2 0.515
4 100 3 0.998 80 4 1.238
5 100 3 1.051 50 3 1.068
6 100 2 0.676 60 2 0.690

FIGURE 7 | Models time convergence for η � 0.001.
FIGURE 8 | Models convergence for heterogeneous learning rate sets.
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measure, no matter how the number of CUs grows in the
network. This proves the scalability of the proposed stochastic
FL in large-scale deployments scenarios. More results can be
generated for different values of K and m.

5.2.3 Learning Rate Sets
We have trained both entropy-weighted and LossFedAvg models
using specific learning rate per each FL CU. As illustrated in
Figure 8, better convergence is achieved with both used sets of
learning rates compared to fixed η � 0.001. Where set1 is a
random selection of CUs learning rates, while in set2, η has been
chosen according to each CU’s entropy value, i.e., CUs with high
entropy are assigned small η values and vice-versa. Note that the
random learning rate strategy exhibits unstable convergence since
it allows CUs with low entropy to learn faster and therefore
dominate in some cases.

6 CONCLUSION

In this paper, we have introduced a novel a priori metric termed
dataset entropy to characterize the distribution, the quantity of
information, the unbalanced structure and the “non-IIDness” of a
dataset independently of the models. This entropy is calculated via
a generalized clustering strategy that relies on a custom similarity
matrix defined over both the features and the supervised output

spaces, and supporting both classification and regression tasks. The
entropy metric has been then adopted to develop 1) an entropy-
based federated averaging scheme, and 2) a stochastic CU selection
policy to significantly stabilize the training, minimize the
convergence time, and reduce the corresponding computation
cost. Numerical results have been provided to corroborate these
findings. In particular, the convergence time difference between
Entropy-Weighted and Entropy Stochastic Policy schemes is
exponentially growing with the number of FL rounds. Another
important result is Entropy Stochastic Policy model convergence,
which is better than FedAvg and LossFedAvg and oscillating near
Entropy-Weighted model.
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