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In this work, we establish the sum-capacity-achieving signaling schemes and the sum-
capacity of a 2-user multiple access Rayleigh fading channel with 1-bit output
quantization in the presence of Gaussian-mixture co-channel interference. The
considered Gaussian mixture channel is an accurate model to capture non-
Gaussian co-channel interference plus noise in practical wireless networks under
coexistence regimes, especially for those having heterogeneous structures and high
frequency reuse factor. By first examining the phases of the optimal input signals, we
demonstrate that these phases must be π/2 circularly symmetric. As a result, the
problem of optimizing the sum-rate is equivalent to minimizing the conditional output
entropy. By establishing the Kuhn-Tucker condition on the optimal amplitude input
distributions, we then show that the optimal input amplitudes are bounded. Our proof
relies on the convexity of the log of sum of Q functions. Then, given the linearity of the
conditional entropy over the feasible set of bounded amplitude distributions, it is
concluded that the optimal input signals must have constant amplitudes. Therefore,
the use of any π/2 circularly symmetric signaling schemes with constant amplitudes
and full power are sum-capacity-achieving. Using these optimal input signals, the sum-
capacity can finally be calculated.

Keywords: 1-bit ADC, achievable rate, Gaussian-mixture interference, multiple access channel, rayleigh fading,
sum-capacity

1 INTRODUCTION

Given the significant benefit in power and cost saving of 1-bit analog-digital-converter (ADC),
considerable efforts have been dedicated to signal designs and processing techniques for this ultra-
low resolution ADC in high-bandwidth and/or multi-antenna systems Liu et al. (2019); Jeon et al.
(2019); Choi et al. (2020); Xu et al. (2018); Zhang et al. (2016); Mo et al. (2017); Mollen et al. (2017);
Xiong et al. (2017); Jacobsson et al. (2017); Studer and Durisi (2016). Over the years, several
interesting information-theoretical results have been obtained for both point-to-point and multi-
user channels with 1-bit ADC under additive white Gaussian noise (AWGN). For example, it has
been shown in Singh et al. (2009); Mo and Heath (2015) that Quadrature phase Shift Keying
(QPSK) is capacity-achieving in point-to-point single- and multiple-antenna static channels.
Optimal signaling schemes and fundamental limits of 1-bit ADC have also been established for
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point-to-point fading channels in Krone and Fettweis (2010);
Mezghani and Nossek (2008); Vu et al. (2018), Vu et al. (2019).
Recently, under the assumption of AWGN, signal design and
fundamental limits of 1-bit ADC have also been extended to
multi-user static channels Rassouli et al. (2018) and multi-user
fading channels (Ranjbar et al., 2019; Ranjbar et al., 2020).
Specifically, it was shown in Rassouli et al. (2018) that any point
in the capacity region of a 2-user static Gaussian multiple access
channel (MAC) can be achieved by input signals with bounded
supports. Furthermore, an upper bound on the sum-capacity
was also developed in Rassouli et al. (2018). However, to our
knowledege, the detailed characteristics of the optimal signals
for such static Gaussian MACs remain unknown. In Ranjbar
et al. (2020), by exploiting the effect of fading, the detailed
characteristics of optimal input signals on the boundary of the
capacity region of a 2-user Gaussian fading MAC with 1-bit
ADC were also addressed.

Current and future active wireless systems (AWSs) such as 5G
and beyond cellular networks with their multi-tier heterogeneous
architectures are being designed to operate in the same or
adjacent spectrum to other existing wireless systems. For
example, proliferation in the number of wireless users and
devices fueled by emerging applications in e.g., Internet of
Things (IoT), unmanned systems, wearable technology, remote
sensing is leading to the design of active-active coexistence such
as LTE-U andWiFi in unlicensed bands, and incumbent, priority
and general authorized access in Citizens Broadband Radio
Service (CBRS) bands FCC (2020). Such coexistence is
intensifying concerns on co-channel and adjacent-channel
interference and its management for wireless systems.
Specifically, AWSs themselves need to cope with increased
active co-channel interference, which is generated in different
ways. For example, due to their heterogeneous structures and the
high frequency reuse factor, future AWSs require sharing of time-
frequency resources with existing users and this makes intercell
interference no longer negligible Osseiran et al. (2014); Chen and
Zhao (2014); Feng et al. (2014); Lin et al. (2014); Fodor et al.
(2012). In addition, radio frequency interference (RFI) mitigation
might not be perfect, which leads to residual interference. Such
intermittence and asynchronism make the statistical properties
of RFI at AWS complicated. In particular, the traditional
approach of treating co-channel interference plus noise as
Gaussian no longer holds Irio et al., 2020; Irio et al., 2019;
ElSawy et al. (2013); Lin et al. (2014). For example, aggregate
interference generated by small cells to macro cells are non-
Gaussian. It is due to the effect of dominant interferers, and the
central limit theorem no longer holds Quek et al. (2013). In
many wireless networks, especially heterogeneous AWSs, co-
channel interference plus noise can be accurately modeled as
Gaussian mixture (GM) Irio et al. (2020); Quek et al. (2013);
Gulati et al. (2010); Stein (1995); Middleton (1999); Wang and
Poor (1999); MIT Lincoln Laboratory (Reynolds, 2009); Erseghe
et al. (2008); Moghimi et al. (2011); Bayram and Gezici (2010);
Nasri and Schober (2009); Kenarsari-Anhari and Lampe (2010);
Bhatia and Mulgrew (2007).

During the last few years, there have been several
contributions on fundamental limits and optimal signal

designs for non-Gaussian AWSs Das (2000); Fahs et al.
(2012); Tchamkerten (2004); Oettli (1974); Cao et al. (2014);
Vu et al. (2015); Ranjbar et al. (2018); Dytso et al. (2017).
However, the results are rather limited. It is because for non-
Gaussian channels, the assumption of having Gaussian input
signals is no longer valid. Due to the difficulty in studying the
detailed properties of the optimal inputs and in establishing the
capacity in closed-form for a non-Gaussian channel, numerical
methods are usually need to find the capacity-achieving signal,
even for a point-to-point channel Vu et al. (2015); Le et al.
(2016). In our recent work in Rahman et al. (2020a), Rahman
et al. (2020b), the detailed characteristics of a capacity-achieving
scheme were studied for a point-to-point Gaussian mixture
channel using 1-bit output quantization. In particular, it was
shown in Rahman M. H. et al. (2020) that for a general GM
channel, the maximum number of mass points in the optimal
signal is four. In addition, under the special case of zero-mean
GM components, QPSK is optimal. Unfortunately, at the
network level, signal design and network information-
theoretical results for non-Gaussian noise and interference
are complete lacking. Therefore, considering non-Gaussian
interference plus noise in multi-user AWSs presents new
challenges.

Motivated by the above discussions, we investigate the
network information-theoretical limits of a 2-user multiple
access Rayleigh fading channel with 1-bit output quantization
in the presence of Gaussian-mixture co-channel interference.
Specifically, we establish the sum-capacity-achieving signaling
schemes and the sum-capacity of the considered GM MAC,
which is an accurate model to capture non-Gaussian co-
channel interference plus noise in practical wireless
networks under coexistence regimes, especially for those
having heterogeneous structures and high frequency reuse
factor. In general, the problem of maximizing the sum-rate
over input signals to determine the sum-capacity is both
analytically and computationally challenging, especially on
the space of multi-dimensional probability distributions
with a non-linear mapping from the inputs to the output
and non-Gaussian noise plus interference. Therefore, the
main contribution of this work lies in the explicit
establishment of optimal signaling schemes for such non-
linear and non-Gaussian multi-user channels. Our approach
is to separate the phases and amplitudes of the input signals to
study their effects to the main sum-rate optimization problem.
The specific contributions of our work can be summarized as
follows:

• In the first part of our work, we demonstrate that the phases
of the optimal inputs must be π/2 circularly symmetric.
While this property has been shown before over various 1-
bit ADC single-user, it is not trivial to extend to multi-user
channels in the presence GM noise. Given the π/2 circularly
symmetric property, it is then demonstrated that the
problem of optimizing the sum-rate is equivalent to
minimizing the conditional output entropy.

• More importantly, in the second part of the paper, by
establishing and examining the Kuhn-Tucker condition
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(KTC) on the optimal amplitude input distributions, we
then show that the optimal input amplitudes are
bounded. Towards this end, we exploit the convexity
of the log of sum of Q functions to deal with the
presence of a mixture of Gaussian components.
Furthermore, since the main objective function is now
linear over the feasible set of bounded amplitude
distributions, it achieves the minimum value at an
extreme point. As a result, we can conclude that the
optimal input signals must have constant amplitudes.
Therefore, the use of any π/2 circularly symmetric
signaling schemes with constant amplitudes and full
power are sum-capacity-achieving. Using these optimal
input signals, the sum-capacity can finally be established

2 A 2-USER MAC IN RAYLEIGH FADING
WITH 1-BIT ADC AND ACHIEVABLE
SUM-RATE
2.1 Channel Model
We consider a 2-user multiple access channel (MAC) under GM
noise plus interference N as depicted in Figure 1. The two users
transmit their own signals X1 and X2, respectively, to the base
station being equipped with an 1-bit ADC. These two transmitted
signals X1 and X2 are imposed by the power constraints
E[X1|2]≤P1 and E[|X2|2]≤P2. The complex signal Z
received at the base station is given as

Z � H1X1 +H2X2 +N. (1)

Here, the total noise plus interference N follows a GM
distribution, which is a mixture of M Gaussian components,
and its probability density function (PDF) is given as

pN(n) �∑M
i�1

εiCN n, 0, σ2i( ). (2)

In Eq. 2, CN (n, 0, σ2i ), 1 ≤ i ≤ M, is the ith complex
Gaussian component with mean zero and variance σ2i , and
{εi} are the mixing probabilities satisfying ∑M

i�1εi � 1. Note
that for a given complex realization n of N, pN(n) in Eq. 2
gives us the value of the PDF at that complex point n. As an
illustrative example, Figure 2 shows the traditional Gaussian
PDF and the 2-term GM PDF, both having zero mean and
unit variance. Note that for the 2-term GM PDF, we use ε1 �
0.2, ε2 � 0.8, σ21 � 2, and σ22 � 0.75.

Furthermore, in Eq. 1,H1 andH2 are the complex fading gains
from user 1 and user 2 to the base station, respectively. In this
paper, we consider Rayleigh fading channels, where H1 and H2

are circular symmetric Gaussian random variables with mean
zero and variance c21 and c22. Their PDFs are given as

fH1 h1( ) � CN h1, 0, c
2
1( ),

fH2 h2( ) � CN h2, 0, c
2
2( ). (3)

FIGURE 1 | A 2-user fading MAC under GM noise plus interference with 1-bit output quantization.

FIGURE 2 | The Gaussian and 2-component GM PDFs.
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In addition, the fading channel gains are assumed to be known
at the base station, but not the users, and they change
independently over time.

With 1-bit output quantization, the real and imaginary
parts of the received signal Z will be fed through a 1-bit
quantizer, which results in the following complex binary
outputs:

Y � Quant(Z) � Quant H1X1 +H2X2 +N( ), (4)

where Quant (·) is the 1-bit quantization operation defined as:

Quant(x) � 1 x≥ 0
−1 x< 0.{ (5)

It is then easy to see that the output Y can only take on one of
the following values in Y � 1 + 1j, 1 − 1j,−1 + 1j,−1 − 1j{ }.
2.2 Ergodic Sum-Rate and Sum-Capacity
For a given set of input distributions FX1(x1) and FX2(x2), the
ergodic sum-rate of the considered MAC is the joint mutual
information (MI) between the inputs X1 and X2 and the
output Y, which is given as Gamal and Kim (2011).

I X1, X2;Y |H1, H2( ) � EH1 ,H2 I X1, X2;Y |H1 � h1, H2 � h2( )[ ].
(6)

In Eq. 6, the expectation E [·] is performed over fading gains
H1 and H2, and I(X1, X2;Y |H1 � h1, H2 � h2) is the
conditional joint MI for given H1 � h1 and H2 � h2. The
ergodic sum-rate can be expressed in terms of joint and output
entropies as follows:

I X1, X2;Y |H1, H2( ) � H Y;FX1, FX2 | H1, H2( )
−H Y | X1, X2, H1, H2( ). (7)

In Eq. 7, the joint entropy H(Y;FX1, FX2 | H1, H2) is
calculated as

H Y;FX1 , FX2 | H1, H2( ) � EH1 ,H2 H Y;FX1 , FX2 | H1 � h1 , H2 � h2( )[ ]
� − ∫

H1

∫
H2

∑
y∈Y

p y;FX1 , FX2 |H1 � h1, H2 � h2( )
× logp y;FX1 , FX2|H1 � h1 , H2 � h2( )dFH1dFH2 .

(8)

Note that FH1 and FH2 are the cumulative distribution
functions (CDFs) of H1 and H2, respectively, and dFH1 �
fH1dh1 and dFH2 � fH2dh2, where the PDFs fH1 and fH2 are
given in Eq. 3. In addition, p(y;FX1, FX2|H1 � h1, H2 � h2) is the
joint density function for given fading realizations H1 � h1 and
H2 � h2, which can be calculated as

p y;FX1, FX2|H1 � h1, H2 � h2( )
� ∫

x1

∫
x2

p y|X1 � x1, X1 � x1, H1 � h1, H2 � h2( )dFX1dFX2, (9)

where

p y|X1 � x1, X1 � x1, H1 � h1, H2 � h2( )
� ∑M

i�1
εiQ −

�
2

√
R x1h1 + x2h2( )R(y)

σ i
( )Q −

�
2

√
I x1h1 + x2h2( )I(y)

σ i
( ).

(10)

It should be mentioned that y ∈ Y. Furthermore, in Eq.
10, Q(x) � 1��

2π
√ ∫∞

x
e−v2

2 dv is the well-known Q function, and
R(·) and I(·) represent the real and imaginary parts of a
complex number, respectively. In addition, the conditional
output entropy can be written as:

H Y | X1, X2, H1, H2( ) � EH1 ,H2 H Y | X1, X2, H1 � h1, H2 � h2( )[ ]
� − ∫

H1

∫
H1

∫
X1

∫
X2

∑
y∈Y

p y|X1 � x1, X2 � x1, H2 � h1, H2 � h2( )
× logp y|X1 � x1, X2 � x2, H1 � h1, H2 � h2( )dFX1dFX2dFH1dFH2 .

(11)

For simplicity, hereafter, we shall use the notations
p(y|x1, x2, h1, h2) and p(y;FX1, FX2 | h1, h2) to refer to the
density functions p(y|X1 � x1, X2 � x2, H1 � h1, H2 � h2)
and p(y;FX1, FX2 | H1 � h1, H2 � h2), respectively.

The ergodic sum-capacity Cs of the considered MAC is the
maximum ergodic sum-rate over all feasible input distributions
FX1(x1) and FX2(x2) under the power constraints, which is
given as:

Cs � max
FX1

,FX2
E |Xj |2[ ]≤Pj,j�1,2

I X1, X2;Y |H1, H2( ). (12)

3 SUM-CAPACITY ACHIEVING INPUT
SIGNALS

In general, the problem of maximizing MI over input
distributions under certain input constraints as in Eq. 12
has been extensively studied, but tractable solutions can
only be obtained for very few specific cases when the
mapping from the inputs to output is linear, and the
noise is additive Gaussian. Unfortunately, for the
considered non-Gaussian channel, we have a non-linear
mapping from the inputs to the output under the
presence of GM noise. Therefore, this optimization
problem is not trivial. In the following, our approach to
solve Eq. 12 is to first address the optimal phases. The
optimal amplitude distributions are then investigated to
determine the complete input distributions.

3.1 Optimal Phase Distributions
To examine the effect of the input phase distributions, we first
re-write the conditional density function in Eq. 10 using the
amplitudes and phases as:

p y | x1, x2, h1, h2( )
�∑M

i�1
εiQ −

�
2

√ |h1‖x1| cos θx1 + θh1( ) + |h2‖x2| cos θx2 + θh2( )( )
σ i

R(y)( )
× Q −

�
2

√ |h1‖x1| sin θx1 + θh1( ) + |h2‖x2| sin θx2 + θh2( )( )
σ i

I(y)( ).
(13)

The joint and output entropies in Eqs. 8, 11, respectively, can
then be expressed as
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H Y;FX1 , FX2 | H1 , H2( ) � EH1 ,H2 H Y;FX1 , FX2 | H1 � h1 , H2 � h2( )[ ]
� ∫

H1

∫
H2

∑
y∈Y

∫
X1

∫
X2

∑M
i�1

εiQ −
�
2

√ |h1‖x1 | cos θx1 + θh1( ) + |h2‖x2| cos θx2 + θh2( )( )
σ i

R(y)( )⎧⎪⎨⎪⎩⎡⎢⎢⎢⎢⎢⎢⎢⎣
× Q −

�
2

√ |h1‖x1| sin θx1 + θh1( ) + |h2‖x2 | sin θx2 + θh2( )( )
σ i

I(y)( )dFX1dFX2}
× log ∫

X1

∫
X2

∑M
i�1

εiQ −
�
2

√ |h1‖x1 | cos θx1 + θh1( ) + |h2‖x2| cos θx2 + θh2( )( )
σ i

R(y)( )⎧⎪⎨⎪⎩
× Q −

�
2

√ |h1‖x1| sin θx1 + θh1( ) + |h2‖x2 | sin θx2 + θh2( )( )
σ i

I(y)( )dFX1dFX2}]dFH1dFH2 ,

(14)

and

H Y|FX1 , FX2 , H1 , H2( )
� ∫

H1

∫
H2

∫
X1

∫
X2

ξ ∑M
i�1

εiQ −
�
2

√ |h1‖x1| cos θx1 + θh1( ) + |h2‖x2 | cos θx2 + θh2( )( )
σ i

R(y)( ){
× Q −

�
2

√ |h1‖x1 | sin θx1 + θh1( ) + |h2‖x2| sin θx2 + θh2( )( )
σ i

I(y)( )}dFX1dFX2dFH1dFH2].
(15)

In Eq. 15, ξ(·) is an entropy function of the distribution in Eq.
10, which is calculated as:

ξ ∑M
i�1

εiQ fR x1, x2, h1, h2( )R(y)( )Q fI x1, x2, h1, h2( )I(y)( ){ }
� − ∑

y∈Y
∑M
i�1

εiQ fR x1, x2, h1, h2( )R(y)( )Q fI x1, x2, h1, h2( )I(y)( )( )
× log ∑M

i�1
εiQ fR x1, x2, h1, h2( )R(y)( )Q fI x1, x2, h1, h2( )I(y)( )( ).

(16)

To determine the optimal phases of the input signals, for a
given set of the inputs FX1 and FX2, construct the following two
other input distributions:

Fπ/2
X1

x1( ) � 1
4
∑3
k�0

FX1 x1e
jkπ2( ),

Fπ/2
X2

x2( ) � 1
4
∑3
l�0

FX2 x2e
jlπ2( ). (17)

It is not difficult to verify that the two new distributions are π/2
circularly symmetric. Note that a density function FX(X) is π/2
circularly symmetric if FX(X) � FX (Xejπ/2) for any integer j. As we
demonstrate in Appendix A, the use of Fπ/2

X1
(x1) and Fπ/2

X2
(x2)

results in a uniform output Y, and the corresponding output entropy
inEqs. 8, 14will bemaximized, and it is equal to 2. Now, let compare
the conditional entropy in Eq. 15 for two pairs of inputs,
(FX1(x1), FX2(x2)) and (Fπ/2

X1
(x1), Fπ/2

X2
(x2)). We first write this

conditional entropy when the pair (Fπ/2
X1

(x1), Fπ/2
X2

(x2)) is used as:

H Y|Fπ/2
X1
, Fπ/2

X2
, H1 , H2( )

� ∫
H1

∫
H2

∫
X2

∫
X1

1
16
∑3
k�0
∑3
l�0

ξ ∑M
i�1

εiQ −
�
2

√ |h1‖x1 | cos θx1 + θh1( ) + |h2‖x2 | cos θx2 + θh2( )( )
σ i

R(y)( )⎧⎨⎩
×Q −

�
2

√ |h1‖x1 | sin θx1 + θh1( ) + |h2‖x2 | sin θx2 + θh2( )( )
σ i

I(y)( )}dFX1 x1e
jkπ2( )dFX2

x2e
jlπ2( )dFH1dFH2

(18)

Because we consider Rayleigh fading, and the channel is
ergodic, the expectation over H1 and H2 in Eq. 18 can be
written in terms of their amplitudes and phases as
EH1EH2 � E|H1|E|H2|EθH1

EθH2
. Furthermore, we know that the

phases of fading gains (θH1, θH2) are uniform. As such, the
inner expectations over (θH1, θH2) do not depend on the phases
of the inputs (ϕX1

, ϕX2
). Following the same argument as in

Ranjbar et al. (2020), we can simply let ϕX1
� ϕX2

� 0 without
changing the conditional entropy. Therefore, we have:

H Y|Fπ/2
X1
, Fπ/2

X2
, H1 , H2( )

� ∫
H1

∫
H2

∫
|X2 |

∫
|X1 |

1
16
∑3
k�0
∑3
l�0

ξ ∑M
i�1

εiQ −
�
2

√ |h1‖x1 | cos θh1( ) + |h2‖x2| cos θh2( )( )
σ i

R(y)( )⎧⎨⎩
×Q −

�
2

√ |h1‖x1 | sin θh1( ) + |h2‖x2| sin θh2( )( )
σ i

I(y)( )}dFX1 x1e
jkπ2( )dFX2

x2e
jlπ2( )dFH1dFH2

� ∫
H1

∫
H2

∫
|X2 |

∫
|X1 |

ξ ∑M
i�1

εiQ −
�
2

√ |h1‖x1| cos θh1( ) + |h2‖x2 | cos θh2( )( )
σ i

R(y)( )⎧⎨⎩
×Q −

�
2

√ |h1‖x1 | sin θh1( ) + |h2‖x2| sin θh2( )( )
σ i

I(y)( )}dFX1 x1( )dFX2 x2( )dFH1dFH2

� H Y|X1 , X2 , H( ).

(19)

Since the two conditional entropies are the same, it is then clear
that the use of (Fπ/2

X1
, Fπ/2

X2
) leads to a better sum-rate. As a result, it

can be concluded that the optimal input distributions are π/2
circularly symmetric. With such input signals, the output entropy
in Eq. 8 is 2. Therefore, from Eq. 7, the sum-rate maximization
problem to find the sum-capacity Cs in Eq. 12 becomes a
minimization problem of the conditional output entropy as:

Cs � 2 − min
FX1 ,FX2

E |Xj|2[ ]≤Pj,j�1,2

H Y|X1, X2, H1, H2( ), (20)

where FX1 and FX2 are both π/2 circularly symmetric. Since the
objective function H(Y|X1, X2, H1, H2) is the function of FX1 and
FX2 only, for the sake of convenience, we will use H(FX1, FX2) to
refer to H(Y|X1, X2, H1, H2). The optimal solutions, denoted as
F**
X1

and F**
X1
, can be therefore expressed as:

F**
X1
, F**

X2
( ) � arg min

E |X1|2[ ]≤P1 ,E |X2 |2[ ]≤P2

H FX1, FX2( ). (21)

3.2 Optimal Amplitude Distributions
Given the characteristic of the optimal phases established in the
previous section, we now turn out attention to the optimality of
the amplitude distributions.

To provide more insights on the solutions of Eq. 21, we first
examine a simplified optimization problem by fixing the
distribution FX2. In particular, we know that the set of input
probability distributions with second moment constraint is
convex and compact Abou-Faycal et al. (2001). Furthermore,
H(FX1, FX2) is a continuous function of FX1 Ranjbar et al. (2020).
Therefore, if we select a fixed distribution FX2, there always exists
an optimal solution F*

X1
to minimize H(FX1, FX2). That is:

F*
X1

� arg min
FX1 ,E |X1 |2[ ]≤P1

H FX1, FX2( ). (22)

We know that the entropy function H(FX1, FX2) is weak
continuous and weakly differentiable of FX1 Borwein and
Lewis (2010). Therefore, we can establish the Kuhn-Tucker
condition (KTC) for which a distribution F*

X1
is the solution

of Eq. 22 as follows:
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DF*X1
H FX1, FX2( ), FX1 − F*

X1
( )

+ μ1DF*
X1

g FX1( ), FX1 − F*
X1

( )≥ 0 ∀FX1, (23)

where μ1 is the Lagrangian multiplier and D (·) is the directional
derivative. Before examining further the above KTC, we state the
following result regarding μ1.

Proposition 1. The Lagrangian multiplier μ1 in Eq. 23 is
positive. Equivalently, for the optimization problem in Eq. 22,
full-power P1 is used.

Proof. LetΩ1 is the set of the feasible set ofFX1 that satisfies E [|X1|
2]

≤ P1. The first consequence of having π/2 circularly symmetric input is
that for a fixedFX2,H(FX1, FX2) is a linear function ofFX1 and power
constraint g(FX1) � ∫ |x1|2dFX1 − P1 is a linear function of FX1

Cover and Thomas (2006). It is then clear that the objective function
H(FX1, FX2) achieves its minimum an extreme point of Ω1 Winkler
(1988). In the following, we will show that any distribution with the
second moment being smaller than P1 is not an extreme point of the
set. Towards this end, let consider a distribution FXt onΩ1 such that E
[|Xt|

2]� Pt< P1. Let us assume, there exists a positive δ such that 0< Pt

− δ, Pt + δ < P1. In addition, we define, FX′ t �
���
Pt−δ
Pt

√
FXt and

FX″t �
���
Pt+δ
Pt

√
FXt. It is obvious that E[|X′t|2] � Pt−δ

Pt
E[|X′t|2] �

Pt − δ and E[|X″t|2] � Pt + δ. Which means both FX′ t and FX″ t

are in Ω1. Now, consider the following linear combination:

tFX′ t + (1 − t)FX″ t � t

�����
Pt − δ

Pt

√
+ (1 − t)

�����
Pt + δ

Pt

√⎛⎝ ⎞⎠FXt

� t

�����
Pt − δ

Pt

√
−
�����
Pt + δ

Pt

√⎛⎝ ⎞⎠ +
�����
Pt + δ

Pt

√⎛⎝ ⎞⎠FXt. (24)

It can then be verified that when choosing t such as:

t �

�����
Pt + δ

Pt

√
− 1�����

Pt + δ

Pt

√
−
�����
Pt − δ

Pt

√ ,

we have tFX′ t + (1 − t)FX″t � FXt. Thus, FXt is a convex
combination of two other distributions in the feasible set.
Therefore, FXt cannot be an extreme point on the set Ω1

Winkler (1988). It can then be concluded that the power
constraint must be active, and μ1 is positive.

With a positive μ1, we shall analyze the properties of the amplitude
of F*

X1
. To do that, we re-write the entropy H(FX1, FX2) as:

H FX1, FX2( ) � − ∫
X1

U y;FX1|x2, h1, h2( )dFX1, (25)

where

U y;FX1|x2, h1, h2( )
� ∫

X2

∫
H1

∫
H2

∑
y∈Y

p y |x1, x2, h1, h2( )logp y |x1, x2, h1, h2( )dFX2dFH1dFH2.

(26)

Then, the KTC in Eq. 23 can be re-written as:

−U y;FX1|x2, h1, h2( ) + μ1 |x1|2 − P1( )≥H F*
X1
, FX2( ) ∀FX1,

(27)

with the equality being achieved for any mass point x1 ∈ E*
X1
,

where E*
X1

is the set of point of increase of the optimal F*
X1
.

Before further examining this KTC, we have the following
proposition regarding the log-convexity of the sum of Q
functions.

Proposition 2. log(∑M
i�1 εi[Q(ai + bi

��
x

√ )]2) is a convex
function for non-negative ai, bi and for x ≥ 0.

Proof. The proof is straightforward. Specifically, it can be
verified that log([Q(ai + bi

��
x

√ )]2) is convex. Equivalently,
ϵiQ(ai + bi

��
x

√ )2 is log-convex. Furthermore, the sum of log-
convex functions are log-convex. Therefore,∑M

i�1 εi[Q(ai + bi
��
x

√ )]2 is log-convex.
The result in Proposition 2 helps establish the finiteness

U(y;FX1|x2, h1, h2) in Eq. 27, which is stated as follows:
Lemma 1. For any FX1 in Ω1, U(y;FX1|x2, h1, h2) is finite.
Proof. Because 0 ≤ p(y|x1, x2, h1, h2) ≤ 1, it is apparent that

U y;FX1 |x2, h1, h2( )
≤ ∫

X2

∫
H1

∫
H2

∑
y∈Y

p y | x1, x2, h1, h2( )logp y | x1, x2, h1, h2( )∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣dFX2dFH1dFH2

≤ ∫
X2

∫
H1

∫
H2

∑
y∈Y

logp y |x1, x2, h1, h2( )∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣dFX2dFH1dFH2

≤ ∫
X2

∫
H1

∫
H2

4 logmin
y∈Y

p y |x1, x2, h1, h2( ) ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ dFX2dFH1dFH2 .

(28)

As shown in Appendix B, we have:

min
y∈Y

p y |x1, x2, h1, h2( )≥ ∑M
i�1

εi Q

�
2

√
h1| |

����
x1| |2

√ + h2| |
����
x2| |2

√( )
σ i

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦2.
(29)

Then, by applying the convexity property of
log(∑M

i�1 εi[Q(ai + bi
��
x

√ )]2), it follows that:
U y;FX1 |x2, h1, h2( )
≤ ∫

X2

∫
H1

∫
H2

−4 log ∑M
i�1

εi Q

�
2

√
h1| | ��P1

√ + h2| |
����
x2| |2

√( )
σ i

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦2dFX2dFH1dFH2

≤ − 4 log ∑M
i�1

εi Q

�
2

√
c1

��
P1

√ + c2
��
P2

√( )
σ i

( )[ ]2 <∞.

(30)

The finiteness of U(y;FX1|x2, h1, h2) in Eq. 27 leads to the
following important result:

Theorem 1. The optimal input distribution F*
X1

in (22) for a
given FX2 has a bounded amplitude.

Proof. The proof is done by contradiction. Specifically,
assume that the amplitude of F*

X1
is not bounded. It means

there exists a mass point of F*
X1

that goes to infinity. When it
happens, it is clear that the LHS of the KTC in 27 goes to infinity
for a positive μ1. On the other hand, the RHS of 27 is the
conditional entropy, and it is always less than or equal to 2. That
results in a contradiction. Hence, the amplitude of F*

X1
must be

bounded.

Frontiers in Communications and Networks | www.frontiersin.org October 2021 | Volume 2 | Article 7341656

Rahman et al. Optimal Signaling Schemes and Sum-Capacity

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


Given Theorem 1, we can now focus on the set of bounded
FX1, denoted as Fb

X1
, and consider the following conditional

entropy minimization problem for a fixed Fb
X1
:

F*
X2

� arg min
FX2 ,E |x2 |2[ ]≤P2

H Fb
X1
, FX2( ). (31)

A similar result as in Theorem 1 but for F*
X2

is then given in the
next theorem.

Theorem 2. The optimal input distribution F*
X2

in Eq. 31 for a
given Fb

X1
has a bounded amplitude.

Proof. The proof follows a similar procedure as before, and it
can be summarized as follows. We can first establish the KTC for
Eq. 31 as

−U y;FX2|Fb
X1
, h1, h2( ) + μ2 |x2|2 − P2( )≥H F*

X2
( ), (32)

where μ2 is the non-negative Lagrangian multiplier. It can then be
verified that full-power power P2 is used, and μ2 > 0. Furthermore,
we have:

U y;FX2|x1, h1, h2( )
� ∫

X1

∫
H1

∫
H2

∑
y∈Y

p y |x1, x2, h1, h2( )logp y |x1, x2, h1, h2( )dFb
X1
dFH1dFH2 .

(33)

In a similar manner as in the proof of Lemma 1, we can then
show that U(y;F*

X2
|x1, h1, h2) is finite. As a result, if the

amplitude of F*
X2

is not bounded, the LHS of Eq. 32 goes to
infinity when |x2| approaches infinity, while the RHS of (32) is
finite, which is not possible.

Now, by combining the results from Theorems 1 and 2, we
can conclude the capacity-achieving input distributions F**

X1

and F**
X2

in Eq. 21 are π/2 circularly symmetric, and they both
have bounded amplitudes. In the following, using a similar
analysis as in Winkler (1988); Vu et al. (2019); Ranjbar et al.
(2020), we shall demonstrate that both F**

X1
and F**

X2
in fact have

constant amplitudes. First, let Lj, j � 1, 2 is the set of
amplitudes of all the distributions that are π/2 circularly
symmetric and bounded amplitude on the feasible set Ω. It
then follows that

F**
X1
, F**

X2
� arg min

FXj∈Lj ,j�1,2
H FX1, FX2( ) (34)

Since all input distributions are π/2 circularly symmetric,
as similar to the analysis we made earlier, the objective
function H(FX1, FX2) is independent of the phase (θX1, θX2).
Equivalently, H(FX1, FX2) depends only on the amplitude of
the input distributions. More importantly, for a fixed input
distribution of one user, the objective function H(FX1, FX2) is
linear and continuous over the input distribution of the other
user. Therefore, for a fixed input distribution of one user,
H(FX1, FX2) is minimized at an extreme point on the feasible
set of the distributions of the other user. As a result, this
optimal input must have a single mass point only. The proof
of such uniqueness of the extreme point follows the same
argument using a convex combination of multiple extreme
points we made in the proof of Proposition 1. The detailed

proof is therefore omitted here for brevity. By applying the
same argument to both user 1 and user 2, it can then be
concluded that the optimal F**

X1
and F**

X2
contain only a single

mass point in their amplitudes.
Given the above results, we can conclude that the optimal

distributions F**
X1

and F**
X2

are π/2 circularly symmetric, and they
have constant amplitudes

���
P1

√
and

���
P2

√
, respectively. Then by

setting ϕX1
� ϕX2

� 0 without changing the value of the
conditional entropy as in Eq. 19, the sum-capacity of the
considered GM MAC is calculated as:

Cs � 2 − EH1EH2 ξ ∑M
i�1

εiQ −
�
2

√
h1| | ��P1

√
cos θh1( ) + h2| | ��P2

√
cos θh2( )( )R(y)

σ i
( )⎛⎝⎡⎢⎢⎣

×Q −
�
2

√
h1| | ��P1

√
sin θh1( ) + h2| | ��P2

√
sin θh2( )( )I(y)

σ i
( ))]. (35)

Note that ξ(·) is an entropy function of the corresponding
distribution.

It is not hard to verify that in the case of a single-user channel
under power constraint P and fading H, the single-user capacity C
can be obtained from Cs in 35 by setting P1 � P and P2 � 0, and it
is given as:

C � 2 − EH ξ ∑M
i�1

εiQ −
�
2

√ |h| ��P√
cos θh( )( )R(y)
σ i

( )⎛⎝⎡⎢⎢⎣
Q −

�
2

√ |h| ��P√
sin θh( )( )I(y)
σ i

( ))]. (36)

Furthermore, C can be achieved by a π/2 circularly symmetric
input having a constant input, e.g., QPSK.

As the final note, we would like to mention that the
developed results above apply directly to the traditional
Gaussian channel. It is because GM include Gaussian as a
special case with M � 1.

4 SUM-RATE AND SUM-CAPACITY:
NUMERICAL EXAMPLES

In the following, we will provide several examples to verify the
optimality of F**

X1
and F**

X2
in terms of the sum-rate. Unless

otherwise stated, we assume that the fading gains have unit
variance.

First, let consider a 1-bit ADC MAC under a 2-term GM
noise with ε1 � 0.45, ε2 � 0.55 and σ21 � 2.1, σ22 � 0.1. For this
channel, it is assumed that the two users have equal transmit
power P � P1 � P2. We consider several signaling schemes,
including phase Shift Keying (PSK) and Quadrature
Amplitude Modulation (QAM), for user 1 and user 2,
respectively: 1) QPSK + QPSK; 2) QPSK+8-PSK; 3) 16-
QAM+16-QAM; and 4) Gaussian + Gaussian. Figure 3
shows the sum-rates achieved by these modulation
schemes over a wide range of SNR, which is defined as
SNR � P/E[|N|]2. These sum-rates are numerically
calculated from Eqs. 7, 8, 11 using the corresponding
input signals. The sum-capacity calculated from Eq. 35 is
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also provided. In addition, the single-user capacity C in Eq.
36 is plotted as a reference.

The superiority of QPSK + QPSK and QPSK+8-PSK can
clearly be seen from Figure 3. The reason for that is because
such input signals are π/2 circularly symmetric with constant
amplitudes, which are sum-capacity-achieving. It is also clear
from Figure 3 that over the considered SNR range, the single user
capacity C is always smaller than the sum-capacity Cs. While the
single-user case corresponds to a corner point of the 2-user
capacity-region, operating at this corner point is clearly sub-
optimal. However, the results shown in Figure 3 indicates that
both Cs and C asymptotically approach 2 bits/sec/Hz at a
sufficiently high SNR. This fact can also be verified from Eqs.
35, 36.

Our results on the optimal signaling schemes also hold for a
general GM channel having any number of Gaussian
components. To demonstrate it, Figure 4 presents the sum-
rates achieved by the same signaling schemes over a MAC
under GM noise having three Gaussian components with ε1 �
0.9, ε2 � 0.05, ε3 � 0.05 and σ21 � 0.2, σ22 � 0.1, σ23 � 16.3. Note
that both users are assumed to use the same transmit power. As
we mentioned earlier, the sum-capacity is calculated using Eq.
35, while the other sum-rates are obtained from Eqs. 7, 8, 11.
For comparison, the single-user capacity in Eq. 36 is also
provided. It can be seen from Figure 4 that QPSK + QPSK and
QPSK+8-PSK outperform the other signaling schemes in
terms of the sum-rate. As similar to the previous results for
the 2-term GM channel, the sum-capacity Cs is significantly
larger than the single-user capacity C over the SNR range of
interest.

In Figures 5, 6, the sum-rates are plotted for the considered 2-
GM and 3-GM channels, respectively, but using un-equal
transmit power with P1 � P and P2 � 3P. Note that in this
case, we still define SNR as SNR � P/E[|N|]2. Clearly, the
optimality of QPSK + QPSK and QPSK+8-PSK is persistent

with the results achieved in the case of equal transmit power.
Note that we also observe the same sub-optimality of a single-user
capacity case in terms of sum-capacity. The results, however, are
omitted for brevity.

Finally, Figure 7 compares the sum-capacities of three
different channels: the Gaussian, 2-term GM, and 3-term GM
channels. Note that we use the same 2-term and 3-term GMs as
before. For simplicity, we assume the equal transmit power again
with P1 � P and P2 � P, and use SNR � P/E[|N|]2 as before. With
the chosen parameters, we achieve the highest sum-capacity over
the 3-term GM channel. The Gaussian noise is the worst-case
noise in this case. However, it is clear from Eq. 35 that the sum

FIGURE 3 | Sum-rates achieved by different pairs of input signals and
Single-user capacity over the 2-term GMMAC. The two users are assumed to
have equal transmit power P � P1� P2 and single-user has transmit power P.

FIGURE 4 | Sum-rates achieved by different pairs of input signals and
Single-user capacity over the 3-term GMMAC. The two users are assumed to
have equal transmit power P � P1� P2 and single-user has transmit power P.

FIGURE 5 | Sum-rates achieved by different pairs of input signals over
the 2-term GM MAC. The two users are assumed to have unequal transmit
power P1 � P and P2 � 3P.
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capacity Cs is sensitive to the choice of M and the set of {ϵi} and
{σi}, 1 ≤ i ≤M. Due to the complexity of the function Cs in Eq. 35,
it is not straightforward to analytically compare the sum-
capacities of different Gaussian and GM channels. We believe
that such interesting investigation requires additional studies.

5 CONCLUSION

In this paper, we have addressed the optimal input distributions
and the sum-capacity of a 2-user Rayleigh fading MAC under a
general Gaussian-mixture noise plus interference with 1-bit
ADC. The phases of the optimal inputs were first shown to
be π/2 circularly symmetric. By exploiting this result, it was
proved that the amplitudes of the optimal input distributions
must only have a single mass point in order to minimize the
conditional entropy. As a result, the sum-capacity achieving
signaling schemes are π/2 circularly symmetric with a single
mass point amplitude using full power. The advantages of the

proposed signaling schemes in terms of the sum-rate were also
clearly demonstrated.
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APPENDIX A

Proof that H(Y;Fπ/2
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From Eq. 13, it can be verified that
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2 , x2ej
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2 , h1, h2). Then we

have the following:
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(37)

The third equality is based on the variable transformation and
the fourth equality is due to the fact that
p(ye−jkπ2 |x1ej

kπ
2 , x2ej

kπ
2 , h1, h2) � p(yejkπ2 | x1e−jkπ2 , x2e−j

kπ
2 , h1, h2).

Thus, the output is uniform, and H(Y;Fπ/2
X1

, Fπ/2
X2

|H1, H2) � 2.

APPENDIX B

The Inequality MIN
Y∈Y
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(38)

Note that the last inequality comes from the fact that Q(x) is a
decreasing function of a positive x.
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