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Offset quadrature amplitude modulation-based filter bank multicarrier (FBMC/OQAM) is
among the promising waveforms for future wireless communication systems. This is due to
its flexible spectrum usage and high spectral efficiency compared with the conventional
multicarrier schemes. However, with OQAMmodulation, the FBMC/OQAM signals are not
orthogonal in the imaginary field. This causes a significant intrinsic interference, which is an
obstacle to apply multiple input multiple output (MIMO) technology with FBMC/OQAM. In
this paper, we propose a deep neural network (DNN)-based approach to deal with the
imaginary interference, and enable the application of MIMO technique with FBMC/OQAM.
We show, by simulations, that the proposed approach provides good performance in
terms of bit error rate (BER).
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1 INTRODUCTION

Future wireless communication systems are expected to support a variety of use cases that are
categorized into three categories: enhanced mobile broadband (eMBB), enhanced type
communications (eHTC), and ultra-reliable low-latency communications (URLLC) (Renfors
et al., 2017). Conventional orthogonal frequency-division multiplexing (OFDM) is not suitable
to efficiently support these diverse use-cases with the same resources. In fact, OFDM exhibits poor
spectral properties because it generates a high out-of-band (OOB) radiation. In addition, the use of a
cyclic prefix (CP) between OFDM blocks lowers the spectral efficiency. To cope with these weak
points, some processing improvements, such as windowing and filtering, were made on the CP-
OFDM scheme. In spite of these improvements, offset quadrature amplitude modulation-based filter
bank multicarrier (FBMC/OQAM) provides better spectral properties than CP-OFDM and its
variants (Mattera and Tanda, 2019).

The idea of FBMC/OQAM is to transform a complex-valued symbol stream, chosen from QAM
constellation, into a real valued stream before transmitting it over a set of subcarriers. Each subcarrier
is individually shaped with a prototype filter that has a good localization in time and frequency so as
to lower the OOB emission. Besides, compared to OFDM, data symbols are transmitted with an
improved spectral efficiency since FBMC/OQAM doesn’t require any CP insertion.

In spite of its numerous advantages, FBMC/OQAM is an interference-limited system
(RezazadehReyhani and Farhang-Boroujeny, 2017). In fact, due to OQAM constellation pattern,
FBMC/OQAM signals are not orthogonal in the imaginary field. This causes intrinsic interference
that makes it difficult to utilize multiple input multiple output (MIMO) technology for FBMC/
OQAM transmissions. Many research studies have been recently carried out on the combination of
MIMO techniques and FBMC/OQAM. In (Caus and Pérez-Neira, 2014), Caus et al. have dealt with
the design of the precoding and decoding matrices for MIMO-FBMC/OQAM systems over highly
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frequency selective channels. Although the proposed solution
performs closer to the optimal one, it exhibits a bit error rate
(BER) floor with an increased complexity. A multistage parallel
architecture of MIMO-FBMC/OQAM has been proposed in
(Mestre and Gregoratti, 2016) exploiting the filterbank
structure. The authors have shown that the system
performance depends on the number of parallel stages used at
the transmitter and the receiver. In addition, the system
computational complexity increases with the number of
implemented stages. An overview of signal processing
challenges for MIMO-FBMC/OQAM has been presented in
(Pérez-Neira et al., 2016).

In the last years, several approaches have been proposed to
deal with the intrinsic interference in MIMO-FBMC/OQAM
systems. In (Jintae et al., 2018), a linearly processed FBMC
system has been suggested to support MIMO technologies.
The authors employed a fast than Nyquist signaling with
single value decomposition to remove the intrinsic
interference. They also considered that data is only
transmitted on even-numbered subcarriers to cancel the
interference caused by odd-numbered subcarriers. Even if the
proposed FBMC system can be combined with conventional
MIMO technologies, it has a noticeable BER floor, especially
for high order modulations. An interference-free method has
been proposed in (Xu et al., 2021) to enable the combination of
MIMO techniques and FBMC/OQAM.

Although the previously cited works provide better
performance, they suffer from serious performance
degradation along with an increased computational
complexity, particularly in interference-limited environments.
In this paper, we propose a deep neural network-based
approach to interference mitigation to enable MIMO
techniques for FBMC/OQAM systems. Our approach
combines an adaptive neuro fuzzy inference system (ANFIS)
and a deep neural network (DNN), which are mounted in cascade
to detect the transmitted data symbols in the presence of the
intrinsic interference. This latter is caused by the overlapping
pattern of FBMC/OQAM signals. In addition, these signals are
generally transmitted through a channel whose parameters are
uncertain. Consequently, data detection, in this environment, is a
challenging task for the receiver, especially when the channel state
information is not available.

Our idea is to conceive a non linear receiver that takes benefit
from the reasoning and learning capabilities of the ANFIS and the
DNN to blindly and efficiently detect data symbols in an
uncertain environment. In this receiver, the ANFIS observes
the AFB output and mitigates the effects of intrinsic
interference and noise. Afterwards, the DNN performs blind
channel equalization while cancelling the eventual residual
interference.

The remainder of this paper is structured as follows.
MIMO-FBMC/OQAM System Model presents the FBMC/
OQAM system model considering MIMO configuration.
Adaptive Neuro Fuzzy Inference Systems and Deep Neural
Networks gives a concise description of adaptive neuro
fuzzy systems and deep neural networks. The proposed
approach is presented in Proposed Deep Learning-Based

Interference Cancellation Simulation results are given and
analyzed in Simulation Results. Finally, the paper
conclusion is provided in Conclusion.

2 MIMO-FBMC/OQAM SYSTEM MODEL

To derive the MIMO-FBMC/OQAM system model, we use the
vertical Bell labs layered space-time (V-BLAST) approach, where
the transmitter and the receiver are equipped with NT and NR

antennas respectively, as depicted in Figure 1. We consider that a
set of data symbols is transmitted over M subcarriers using
FBMC/OQAM waveform. These symbols, whose duration is
denoted by T, are chosen from a QAM constellation, and are
not directly mapped to the subcarriers as in the OFDM scheme
(Fa-Long and Charlie, 2016; Renfors et al., 2017). In fact, the real
and the imaginary parts of eachmodulation symbol xm,n, wherem
and n denote the frequency and time index respectively, are time
staggered by an offset of T/2. This results in offset QAM that
generates real-valued symbols. Let d(p)m,n designates the transmitted
real symbol by the pth antenna on the mth subcarrier at n T

2 time
instant. According to the filter bank theory, the discrete-time
FBMC/OQAM signal transmitted from the pth transmit antenna
is written as

s(p)[k] � ∑M−1

m�0
∑+∞
−∞

d(p)
m,ngm,n[k] (1)

Where gm,n[k] is the synthesis filter corresponding to the mth

subcarrier at the nth time instant. It is given by

gm,n[k] � g[k − nM/2]ej 2πmM k−Lg−12( )e jϕm,n (2)

Where g [k] is a well localized prototype filter of length Lg, and
ϕm,n represents a phase term such that e jϕm,n � e j π2 (m+n) (Renfors
et al., 2017).

If we denote by H(p,q)
m the frequency response of the channel

linking the pth transmit and the qth receive antennas, the received
signal at the qth antenna is written as

r(q)[k] � ∑NT

p�1
∑M−1

m�0
∑+∞

n�−∞
H(p,q)

m d(p)m,ngm,n[k]⎛⎝ ⎞⎠ + η(q)[k] (3)

Where η(q)[k] is the Gaussian noise received at the qth receive
antenna. The demodulated real symbol corresponding to the mth

subcarrier and the nth instance is obtained by evaluating the inner
product of r(q)[k] and gm,n [k]. This is expressed as

y(q)m,n � < r(q)[k], gm,n[k]>
� ∑NT

p�1
H(p,q)

m d(p)
m,n + ju(p)m,n( ) + η(q)m,n

(4)

Where u(p)m,n represents the imaginary intrinsic interference
coming from the pth transmit antenna. If we denote the vector
containing NR demodulated real symbols by
ym,n � [y(1)m,n, y

(2)
m,n, . . . , y

(NR)
m,n ]T , and the vector composed of NT

transmitted real symbols by dm,n � [d(1)m,n, d
(2)
m,n, . . . , d

(NT)
m,n ]T , the

matrix form of the demodulation operation is expressed as
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ym,n � Hm dm,n + jum,n( ) + ηm,n (5)

Where um,n � [u(1)m,n, u
(2)
m,n, . . . , u

(NT)
m,n ]T is the interference vector,

ηm,n � [η(1)m,n, η
(2)
m,n, . . . , η

(NR)
m,n ]T is the AWGN vector, and Hm is

the channel frequency response matrix, which is given by

Hm �
H(1,1)

m H(1,2)
m / H(1,NT )

m

H(2,1)
m H(2,2)

m / H(2,NT )
m

« « 1 «
H(NR ,1)

m H(NR ,2)
m / H(NR ,NT )

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Clearly, in order to faithfully detect the transmitted data symbols,
one has to deal with the uncertain channel behavior, the
interference, and the noise. In this context, we are inspired by
the idea of adaptive neuro-fuzzy inference systems (ANFIS), and
propose a deep learning approach to cancel the intrinsic
interference. Hereafter, we give an overview of adaptive neuro-
fuzzy inference systems and deep neural networks. Then, we
present the proposed approach for interference cancellation in
MIMO-FBMC/OQAM systems.

3 ADAPTIVE NEURO FUZZY INFERENCE
SYSTEMS AND DEEP NEURAL NETWORKS

An ANFIS combines neuro-fuzzy and neural networks to
conceive a system that has the abilities of learning, thinking,
and reasoning in uncertain environments (Raveendranathan,
2014). In other words, it is suitable for situations where
quantitative analysis is difficult. For example, ANFIS can be
used to make appropriate decisions in a noisy and
interference-limited environment. To do so, ANFIS models the
human knowledge using fuzzy If-Then rules with membership
functions to provide the expected input-output mapping. A fuzzy
inference system is composed of (Raveendranathan, 2014; Bedoui
and Et-tolba, 2020):

• a rule base, which contains fuzzy If-Then rules
• a database that defines the membership functions used in
the fuzzy rules

• an interface that performs the rules inference operations
• a fuzzification unit, which performs the transformation of
the crisp input into the linguistic values

• a defuzzification unit, which transforms the fuzzy results of
the inference into a crisp output

Consider that the system has two inputs denoted by x1 and x2,
and one output y. In the case of two fuzzy conditional statements,
the fuzzy If-Then rules are expressed as

Rule1 : If x1 is A1 and x2 is B1 Then f1 � p1x1 + q1x2
Rule2 : If x1 is A2 and x2 is B2 Then f1 � p2x1 + q2x2

(7)

Where p1, p2, q1, and q2 are the consequent parameters. The
quantities A1, A2, B1, and B2 represent the linguistic variables,
which are individually characterized by a membership function.
Note that these linguistic variables take values from the set {low,
medium, high, . . .}.

In addition to a fuzzy inference system, an ANFIS incorporates
an artificial neural network whose nodes are partly or entirely
adaptive meaning that their involved parameters should be
changed according to learning rules in order to generate the
adequate output (Jang, 1993). When the neural network is
composed of multiple hidden layers, it is considered as a deep
learning network (DNN), which is suitable for blind detection in
wireless communication systems. Indeed, a DNN is capable of
providing accurate measurements since it employs deep learning
algorithms and a large amount of data. Generally, a DNN consists
of input, hidden, and output layers (Nikolaus and Tal, 2019). It is
worth noting that all the computation and processing tasks, in a
DNN, are performed by the hidden layers. In practical scenarios,
which are non linear, a given node at the nth layer observes a
vector v(n−1) ∈ RD, containing D outputs from the (n − 1)th layer,

FIGURE 1 | Multiple input multiple output FBMC/OQAM system model.
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to compute its output using an activation function. This is
expressed as

y(n) � f ∑D
i�1

wiv
(n−1)
i + bn( )

� f wTv + bn( ) (8)

Where f (.) represents the activation function, w is the vector of the
weights connecting the nodes of the (n − 1)th and those of the nth
layer. The scalar quantity bn in Eq. 8 is the bias at the nth layer. The
activation function is selected depending on the range of the values
it works with. The commonly used activation functions are
sigmoid, hyperbolic tangent, and rectified linear unit (ReLU)
functions. Note that ReLu function is widely adopted recently.

The weights of the DNN are first randomly initialized and then
updated during the training phase using a considerable training
data set composed of the inputs and the outputs (target values). In
this manner, the system becomes autonomously adjustable to be
adapted to the optimal status offline. During the training process,
the relation between the input and the output can be established
in a supervised way such that the error is smaller after every
training iteration.

The error can be optimized by the use of several deep learning
objective functions (loss functions). Mean square error (MSE)
that represents the sum of the squared difference between the
predicted values and the target variable is the most popular loss
function used for regression. In addition, the Adam optimization
algorithm has been recently adopted in deep learning
applications, as an extension to stochastic gradient descent, for
signal prediction (Diederik and Jimmy, 2017).

4 PROPOSED DEEP LEARNING-BASED
INTERFERENCE CANCELLATION

Due to uncertainties in the channel behavior together with strong
interference, conventional channel equalization techniques are

not suitable for MIMO-FBMC/OQAM in future wireless
communication systems. As mentioned previously, several
approaches to interference cancellation have been suggested to
enable MIMO with FBMC/OQAM. For instance, the
interference-free method, proposed for MIMO-FBMC/OQAM
in (Xu et al., 2021), provides better performance. However, this is
done at the expense of the computational complexity. The
MIMO-FBMC/OQAM receiver we propose implements a
nonlinear approach that combines an ANFIS and a DNN.
Hereafter, we present and describe its structure.

4.1 Structure of the Proposed Approach
Figure 2 depicts the structure of the proposed approach, where an
ANFIS and a DNN cooperate in cascade to perform a blind
detection of FBMC/OQAM transmitted symbols in a MIMO
configuration. The idea is to firstly offline train the ANFIS using
the received OQAM symbols, without interference and noise [i,e.
the first term on the right side of (5)], as a target, and the analysis
filter bank outputs as input. Besides, the DNN is trained using the
transmitted OQAM data symbols and the received OQAM
symbols without interference as target and input values
respectively. Afterwards, the ANFIS performs intrinsic
interference mitigation, and outputs OQAM symbols with
remaining channel effect and residual interference. The ANFIS
output is delivered to the DNN that blindly detects the
transmitted OQAM symbols. It is worth noting that the
ANFIS and the DNN employ two neural networks that
operate differently from each other. In the following, we
describe the architecture of the two used neural networks
including the training procedure and the development of the
learning rules.

4.2 Data Set Building
The main part of the deep learning proposed approach is to learn
the system using an associated data set, which is used to train the
ANFIS and the DNN. It is a matrix containing the target and the
input sequences. The ANFIS takes the AFB output, i.e. ym,n, as the

FIGURE 2 | Structure of the proposed approach to interference cancellation for MIMO-FBMC/OQAM.
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input sequence and zm,n � dm,nHm,n as the target sequence.
Accordingly, the ANFIS training set associated to the nth

FBMC/OQAM symbol on the mth subcarrier is expressed as

y(tr)m,n, z
(tr)
m,n[ ] (9)

Where the subscript (tr) refers to training. The ANFIS output is
delivered to the DNN module as the input sequence for training.
In addition, the target sequence for the DNN training set is
composed of the transmitted OQAM data symbols, i.e. dm,n.
Then, the DNN training set, corresponding to the mth subcarrier
and nth symbol, is written as

z(tr)m,n, d
(tr)
m,n[ ] (10)

The sequences are concatenated until sufficient input and target
arrays, for both ANFIS and DNN, are reached.

4.3 Neural Network 1: ANFIS
Due to the nonlinearity and the uncertainty of the channel
impulse response, linear receivers can not be generally applied
since the detection become a nonlinear problem.
Providentially, an ANFIS, which combines an artificial
neural network and a fuzzy logic system is capable of
mapping the transmitter and the receiver signals in the
presence of interference and noise. The structure of the
ANFIS used in the proposed approach is presented in
Figure 3. It uses a fuzzy modeling process to learn the
training data set composed of the input and the output
sequences. The aim is to provide the membership function
parameters and build a suitable inference system to fit well the
given data set. The ANFIS antecedent parameters are
represented by the three vectors σz, σI, and ση

corresponding to the standard deviations of the quantities
zm,n � Hm,ndm,n, Im,n � Hm,ndm,n, and the noise ηn,m,
respectively, and the consequent parameters are represented
by the vector ρm,n. It is worth noting that the antecedent and the
consequent parameters are identified during the learning
process (Alizadeh e al., 2012). For ease of exposition,
consider that the ANFIS observes the element y(q)m,n
corresponding to the qth receive antenna in the observation
vector ym,n. The overall output of ANFIS ẑ(q)m,n, at the q

th receive
antenna, is expressed as,

ẑ(q)m,n � ∑R
i

w(q)
i ẑ(q)m,ni

(11)

Where w(q)i is referred to as the firing strength calculated at the

second layer of ANFIS (Rule layer), ẑ(q)m,ni represents the outputs
of the ANFIS fourth layer (deffuzification layer). Let ρ(q)m,ni

with
i � {1, 2, . . .R} be the ANFIS consequent parameters, and let the

triplet (σ(q)z , σ(q)I , σ(q)η ) be its corresponding standard deviations.

Then, the ANFIS rules, used to estimate the elements z(q)m,ni , are
expressed as

IF σ(q)z is High and σ(q)I is Low and σ(q)
η is Medium;

THEN ẑ(q)m,n1
� ρm,n1

(q)y(q)m,n

IF σ(q)z Low and σ(q)I is Low and σ(q)
η is High

THEN ẑ(q)m,n2
� ρm,n2

(q)y(q)m,n«

(12)

IF σ(q)z is Low and σ(q)
I is High and σ(q)

η is Medium

THEN ẑ(q)m,nR
� ρ(q)m,nR

y(q)m,n

(13)

FIGURE 3 | Adaptive neuro fuzzy system structure.
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As mentioned above, the antecedent and consequent parameters
of the adaptive network depend mainly on the formulation of a
learning rule. The typical learning rule for the ANFIS is
performed using forward least square error and back-
propagation gradient descent, which aims to recursively
calculate the error signals (Raveendranathan, 2014). During
the learning phase, ANFIS minimizes the least square error,
between the actual output and the corresponding target value.
At the qth receive antenna, this error is written as

E(q)
j � ∑P

i�1
(z(q)m,ni

− ẑ(q)m,ni
)2 (14)

z(q)m,ni corresponds to the target value of the ith component of the
jth data pair, ẑ(q)m,ni is the estimated value at the output of the Lth

(last) layer of ANFIS, where the number of layers is L, and P is the
size of the training dataset.

4.4 Neural Network 2: Deep Neural Network
The ANFIS estimates the OQAM symbols with a remaining
channel effect and an eventual residual interference. This is a
nonlinear problem which can be dealt with using a deep learning
regression. DNN represents a good choice to address this
problem thanks to its high learning capabilities. In this work,
we consider a multiple output DNN that is composed of three
parts as shown in Figure 4:

• Long short-termmemory (LSTM) input layer, whose input is
the received OQAM symbols ẑm,n delivered by the ANFIS.
This layer aims to extract the temporal features from these
symbols.

• L fully-connected layers that use a ReLU objective function
to extract high-level features of the received OQAM
symbols.

• Regression output layer that provides the final estimation of
the OQAM transmitted symbols.

In order to estimate the transmitted OQAM symbols in the
most accurate way, the update of the weights W of the DNN is

realized so as to minimize the difference between the predicted
values and the corresponding targeted ones during the learning
process. This can be done by the adaptive moment estimation
known as Adam algorithm (Diederik and Jimmy, 2017). This
method aims to compute individual adaptive learning rates from
the estimates of the different parameters: The first moment
(mean) and the second moment (uncentered variance) of the
gradient. To obtain the final learning rule of the employed DNN,
we first derive the gradient descent as the derivative of the loss,
which can be expressed in terms of the objective functions of the
different layers stated above. The loss associated to the data
symbols coming from the pth transmit antenna is given by

Loss(p) � ∑
i

d̂
(p)
m,ni

− d(p)
m,ni( ) (15)

Where d̂
(p)
m,ni is the estimate, at the Lth layer, of the OQAM symbol

transmitted by the pth antenna. It is expressed as

d̂
(p)
m,ni

� f (L) ∑
s

WL
l,s . . . f (2) ∑

j

W2
k,j f (1) ∑

i

W1
j,i ẑ

(q)
m,ni

+ b1j⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + b2k⎛⎝ ⎞⎠ . . .⎛⎝ ⎞⎠ + bLs⎞⎠⎛⎝
(16)

Where i, s, l, k, j, represent the DNN nodes indices, and ẑ(q)m,ni is the
ANFIS output corresponding to the qth receive antenna.

Applying the derivative of the loss function, we obtain the
gradient descent expression at the tth iteration as,

Gt � ΔW Losst(Wt−1)( ) (17)

Where ΔW(.) � δ
δW (.). Afterwards, we get the update formula of

the first and second moments respectively,

mt � θ1mt−1 + (1 − θ1)Gt (18)

vt � θ2vt−1 + (1 − θ2)G2
t (19)

Where θ1 and θ2 represent the decay rates. Finally, the learning
rule of our DNN can be expressed as,

Wt+1 � Wt + μ

v̂t
m̂t (20)

Where μ is the learning rate.

FIGURE 4 | Deep neural network structure.
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5 SIMULATION RESULTS

To show the power of the proposed approach to interference
mitigation in MIMO-FBMC/OQAM, we have evaluated its
performance using computer simulations. In this section, we
present and analyze the obtained results for 2 × 2 and 2 × 4
MIMO-FBMC/OQAM configurations. The simulation
parameters are summarized in Table 1. We have
implemented MIMO-FBMC/OQAM with the proposed
method using deep learning and the fuzzy logic toolboxes
of the MATLAB platform. Before its real-time execution, the
receiver is trained with two predefined data set, composed of
2 × 105 training samples, to ensure a good mapping between
the received and the transmitted signals. The first data set is
used to train the ANFIS. It comprises 131 nodes and up to 4
Gaussian membership functions. The second data set serves
to train the DNN with NR inputs and NT targets. The initial
learning rate is fixed at 3 × 10−3.

In the real-time phase, the trained ANFIS is employed to
mitigate the intrinsic interference for each receive antenna. Then,
the ANFIS output is delivered to the trained DNN to blindly
complete the detection while eliminating the eventual residual
interference. We measured the BER and the root mean square

error (RMSE), as functions of SNR, using the Monte Carlo
simulation method.

5.1 RMSE and BER Performance Analysis
In order to determine how well the ANFIS regression algorithm
fits the data samples, we evaluated the ANFIS performance in
terms of RMSE versus SNR. Figure 5 shows the obtained results
for different numbers of membership functions.We clearly notice
that the RMSE decreases as the number of membership functions

TABLE 1 | Simulation parameters.

Parameter Value

Subcarriers 64
Subcarrier spacing 15 kHz
Overlapping factor OF 8
NR 2 or 4
NT 2
Nmf 4, 6 or 7
L 3, 7 or 10

FIGURE 5 |RMSE performance of the proposedmethod versus SNR for
different numbers of membership functions.

FIGURE 6 | BER results of the proposed method in the case of 2 × 2
MIMO-FBMC/OQAM configuration using different numbers of membership
functions. The performance is compared with that provided by 2 × 2 MIMO-
FBMC/OQAM, with and without CIC.

FIGURE 7 | BER results of the proposed method in the case of 2 × 4
MIMO-FBMC/OQAM configuration using different numbers of membership
functions. The performance is compared with that obtained with 2 × 4 MIMO-
FBMC/OQAM, with and without CIC.
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increases. This is due to the fact that the rise in this number
improves the reasoning ability of the ANFIS.

To analyze the impact of the number of the membership
functions on the BER results, we ran computer simulations for 2 ×
2 and 2 × 4 MIMO-FBMC/OQAM configurations. We also
compared the performance of the proposed method with
respect to that provided by MIMO-FBMC/OQAM using
conventional interference cancellation (CIC). Figure 6 depicts
the obtained BER results for different numbers of the
membership functions. Obviously, the proposed method
outperforms the conventional one in terms of BER. In
addition, the provided gain grows with the number of the
membership functions. One can also observe that our method
almost attains the same performance as MIMO-FBMC/OQAM
using CIC and perfect channel knowledge.

Figure 7 presents the BER results, versus SNR, for 2 × 4
configuration using different numbers of the membership
functions. Clearly, as the number of the membership functions
increases, the performance of the proposed method approaches
that obtained by MIMO-FBMC/OQAM with CIC assuming a
perfect channel knowledge.

In order to improve the performance of the proposed approach,
we increased the number of the convolutional layers in the DNN.
Figure 8 depicts the BER evolution of the proposed approach
versus SNR for 2 × 4 MIMO configuration with different numbers
of convolutional layers. As we can see, the accuracy of the DNN
increases as the value of L rises. Consequently, BER values decrease
and get closer to those provided by MIMO-FBMC/OQAM with
interference cancellation in the case of perfect channel knowledge.
Note that the performance of the proposed deep learning-based
interference cancellation method attains its maximum when
L � 10. In addition, Figure 9 presents the BER results of the
proposed method for different values of L in the case of 2 × 2

MIMO configuration. It is observed that the proposed method
provides approximately the same BER values as those obtained in
the case of MIMO-FBMC/OQAM with interference cancellation,
considering perfect channel knowledge, when the SNR values are
above 7dB.

To analyze the performance of the proposed approach using
higher order modulations, we conducted computer simulations
considering 2 × 2 MIMO-FBMC/OQAM configuration.
Figure 10 shows BER results for 16-QAM, 64-QAM, and 256-
QAMconstellations. It is seen that the proposed deep learning-based
interferencemitigation keeps its efficiency in terms of BER for higher

FIGURE 8 | BER results of the proposed method in the case of 2 × 2
MIMO-FBMC/OQAM configuration using different numbers of hidden layers.
Performance comparison is made with 2 × 2 MIMO-FBMC/OQAM
configuration, with and without CIC.

FIGURE 9 | BER results of the proposed method in the case of 2 × 4
MIMO-FBMC/OQAM configuration using different numbers of hidden layers.
Performance comparison is made with 2 × 4 MIMO-FBMC/OQAM, with and
without CIC.

FIGURE 10 | BER results of the proposed method in the case of 2 × 2
MIMO-FBMC/OQAM configuration using different QAM modulation orders.

Frontiers in Communications and Networks | www.frontiersin.org September 2021 | Volume 2 | Article 7289828

Bedoui and Et-tolba Deep Learning-based Interference Mitigation for MIMO-FBMC/OQAM Systems

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


order modulations. Indeed, the obtained performance is close to that
provided by CIC, assuming perfect channel knowledge, for 16-QAM
and 64-QAM.However, a considerable gap is observed between 256-
QAM curves. This is due to the fact that higher order modulation
schemes are sensitive to noise and interference.

5.2 Computational Complexity Analysis
In this paragraph, we analyze the computational complexity of
the proposed method. For the ANFIS, the fact of increasing the
number of rules produces better accuracy. At the same time, it
also increases the computational cost since the rules contain most
of the parameters. Hence, the reduction of the number of rules
may lower the computational complexity. In this work, we have
three input variables that can assume any one of the five possible
membership functions from the set very low, low, medium, high,
very high, leaving us with 125 possible combinations of rules. On
the other hand, the DNN, used in this work, has few layers, and
proves its effectiveness with only five layers, which means less
computations and training time. However, fuzzy rule reduction
techniques limit the total number of rules to 49. This decreases
significantly the computational complexity of the ANFIS.
Moreover, if we neglect the training computations since we
are mainly interested in the real time implementation of the
proposed approach, the trained ANFIS and the DNN require only
few tens of multiplications as compared to the proposed scheme
in Xu et al. (2021), which is higher due to the repeated blocks.

6 CONCLUSION

In this paper, we have proposed a nonlinear approach to
interference mitigation for MIMO-FBMC/OQAM systems.
Our technique exploits the reasoning and the learning
capabilities of ANFIS and DNN to blindly detect the
transmitted data symbols in an interference-limited
environment. Simulation results show that the proposed
method provides good performance in terms of the BER
for several MIMO-FBMC/OQAM configurations. Moreover,
the obtained SNR gain depends on the quality of the training,
and the number of the hidden layers in the deep neural
network.
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