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Modern communication devices are often equipped with multiple wireless communication
interfaces with diverse characteristics. This enables exploiting a form of multi-connectivity
known as interface diversity to provide path diversity with multiple communication
interfaces. Interface diversity helps to combat the problems suffered by single-interface
systems due to error bursts in the link, which are a consequence of temporal correlation in
the wireless channel. The length of an error burst is an essential performance indicator for
cyber–physical control applications with periodic traffic, as this defines the period in which
the control link is unavailable. However, the available interfaces must be correctly
orchestrated to achieve an adequate trade-off between latency, reliability, and energy
consumption. This work investigates how the packet error statistics from different
interfaces impact the overall latency–reliability characteristics and explores mechanisms
to derive adequate interface diversity policies. For this, we model the optimization problem
as a partially observable Markov decision process (POMDP), where the state of each
interface is determined by a Gilbert–Elliott model whose parameters are estimated based
on experimental measurement traces from LTE and Wi-Fi. Our results show that the
POMDP approach provides an all-round adaptable solution, whose performance is only
0.1% below the absolute upper bound, dictated by the optimal policy under the impractical
assumption of full observability.

Keywords: partially observable Markov decision process (POMDP), interface diversity, multi-connectivity,
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1 INTRODUCTION

In the rise of Industry 4.0, the fourth industrial revolution, there is an amassing interest for reliable
wireless remote control operations. Moreover, the application of connected robotics, such as in
cyber–physical control, is one of the main drivers for technological innovation toward the sixth
generation of mobile networks (Saad et al., 2020). In accord, one of the main use cases for the fifth
generation of mobile networks (5G) is ultra-reliable and low-latency communication (URLLC)
(Popovski et al., 2019). Reliability and latency requirements for this use case are in the order of
1–10−5 and of a few milliseconds, respectively. The combination of these two conflicting
requirements makes URLLC challenging. For instance, hybrid automatic repeat request (HARQ)
retransmission mechanisms provide high reliability but cannot guarantee the stringent latency
requirements of URLLC. To solve this, recent 3GPP releases have supported dual- and multi-
connectivity, in which data packet duplicates are transmitted simultaneously via two or more paths
between a user and a number of eNBs. Hereby, reliability can be improved without sacrificing latency
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by utilizing several links pertaining to the same wireless
technology—4G or 5G—but at the cost of wasted
time–frequency resources (Wolf et al., 2019; Suer et al.,
2020b). However, modern wireless communication devices,
such as smart phones, usually possess numerous wireless
interfaces that can be used to establish an equal number of
communication paths. Recent work has proposed interface
diversity (Nielsen et al., 2018), which expands the concept of
dual- and multi-connectivity to the case where a different
technology per interface can be used. Thereby, lower cost
connectivity options can help to increase communication
reliability. Since constant packet duplication leads to a large
waste of resources, the transmission policies in multi-
connectivity and interface diversity systems must be carefully
designed to meet the performance requirements while avoiding
resource wastage and over-provisioning. Furthermore, as we will
observe in Results, acquiring sufficient knowledge on the channel
statistics is essential to attain adequate trade-offs between
resource efficiency and reliability in interface diversity systems.

From its definition, the URLLC use case treats each packet
individually and, hence, does not capture the performance
requirements of numerous applications. For instance, the
operation of cyber–physical control applications, which
transmit updates of an ongoing process, is usually not affected
by individual packets that violate the latency requirements
(i.e., untimely packets). Instead, these applications define a
survival time: the time that the system is able to operate
without a required message (3GPP, 2021). Hence, the
reliability of communication in such cyber–physical systems is
defined by the statistics of consecutive untimely packets, that is,
the length of error bursts. Hence, in cyber–physical systems,
having multiple interfaces with diverse characteristics is greatly
valuable, as it allows to select the appropriate interface based on
the requirements of the task at hand. For example, while an LTE-
based system with multi-connectivity capabilities and selective
packet duplication could satisfy the requirements of the
application, it seems likely that a combination of unlicensed
(e.g., Wi-Fi) and licensed (e.g., LTE) technologies could lead
to similar performance guarantees while achieving a lower usage
of scarce licensed spectrum and reduce overall costs.

In this paper, we therefore study the performance of interface
diversity in terms of burst error distribution in a

source–destination system, where we consider two
fundamentally different technologies: 1) LTE, which is based
on orthogonal frequency division multiple access (OFDMA),
which operates in licensed spectrum, and where the base
station (BS) schedules the uplink resources for
communication, and 2) Wi-Fi, which is based on carrier sense
multiple access (CSMA) and operates in unlicensed spectrum.
The goal of the proposed interface diversity system, as illustrated
in Figure 1, is addressing the survival time in cyber–physical
control applications (3GPP, 2021). In particular, we investigate
the trade-offs between system lifetime (the time until the system
reaches the end of the survival time and operation is interrupted)
and energy consumption. Given the nature of periodic traffic, the
survival time can be expressed as the maximum tolerable number
of consecutively lost or untimely information packets. To
consider the effect of channel correlation in consecutive errors,
we use the Gilbert–Elliott (Haslinger and Hohlfeld, 2008) model
that is well suited for representing time-correlated transmissions
(Willig et al., 2002). Using this approach, we formulate the
problem as a partially observable Markov decision process
(POMDP) that takes into account the limited observability of
the inactive interfaces. Hence, based on the observations and the
belief states, we can calculate the optimal transmission policy
even for devices with extremely limited computational power.We
observed that the performance trade-offs achieved with the
POMDP approach are greatly similar when compared with the
ones achieved with an idealized fully observable MDP. The key
contributions of this work are as follows:

• An interface diversity problem is formulated for energy-
constrained devices as a POMDP. Hence, our approach
considers the limited observability of the inactive interfaces:
those that do not transmit and thus do not receive feedback.
While our results are presented for a device using an LTE
and a Wi-Fi interface, our model is sufficiently general and,
hence, can be applied to cases with more than two interfaces
and to different technologies.

• Interface diversity policies are analyzed for cyber–physical
control applications, where a certain number of untimely
packets are tolerated and those with error burst due to the
temporal correlation in the wireless channel are considered
by means of a Gilbert–Elliott model.

FIGURE 1 | An illustration of the scenario investigating interface diversity where the sender duplicates each packet. The sender would sometimes skip transmission
windows in favor of conserving energy. Here, only packet 4 was lost, packets 2, 3, 5, 6 were saved, and packets 1, 7 arrived with a redundant copy.
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• A computationally simple solution, the Q-MDP value
method, can be used for solving the POMDP. Using this
method, we obtain results that closely follow the
performance of the fully observable MDP. Specifically,
the expected loss in the reward is only around 0.1%.

The rest of this paper is organized as follows. We initially
present an elaborate explanation of multi-connectivity and
interface diversity’s role in timeliness in Section 2. Next, we
present the systemmodel in Section 3, followed by the analysis of
the scenario and our proposed method to solve the POMDP in
Section 4. Then, we present the numerical results in Section 5.
Finally, we conclude this paper with a summary of the work in
Section 6.

2 LITERATURE REVIEW

Multi-connectivity has been studied from different perspectives.
For instance, Wolf et al. (2019) studied a scenario with one user
equipment (UE) connected to multiple BSs and with multiple
simultaneous connections to the same BS. The benefits of this
approach are assessed in terms of transmit power reduction,
achieved by increasing the signal-to-noise ratio (SNR). Following
a similar multi-connectivity approach, a matching problem is
formulated by Simsek et al. (2019), where the number of UE in
the network and the limited wireless resources are considered.
The objective is to provide the desired reliability to numerous
users by assigning only the necessary amount of resources to each
of them. Mahmood et al. (2018) investigated a similar problem in
a heterogeneous network scenario with a small cell and a
macrocell. Their results show that multi-connectivity is
particularly useful for cell-edge UE connected to the small cell
and provides even greater benefits when URLLC and enhanced
mobile broadband (eMBB) traffic coexist. She et al. (2018)
considered multi-connectivity for URLLC as a combination of
device-to-device and cellular links, where correlated shadowing is
considered. They achieved remarkable increases in the availability
ranges for both interfaces. In our previous work (Nielsen et al.,
2018), we studied the benefits of interface diversity in terms of
reliability for a given error probability. Finally, Suer et al. (2020a)
assessed the performance scheduling schemes such as packet
duplication and load balancing in order to achieve latency and
reliability improvements. The authors exploited a combination of
a local Wi-Fi and a private LTE network, which was tested under
traffic patterns that are expected to appear in an industrial
communication setting.

In the studies mentioned above, only stationary error
probabilities are considered. Moreover, Dzung et al. (2015)
provided a thorough investigation of switching off a singular
interface that has an unreliable channel, based on channel
feedback. The goal of the authors is thus aligned with ours
since they aim for an energy-efficient transmission policy
given bursty channels, for reliable connectivity of synchronous
services. However, the use of different interfaces provides unique
benefits for URLLC, especially in the case of bursty wireless
errors. For instance, different interfaces are likely to present

different burst error distributions, and the correlation of errors
between different interfaces is expected to be much lower
compared to the correlation between multiple links using the
same wireless interface. Despite these evident benefits, and the
thorough investigation of burst errors in past research (Yajnik
et al., 1999), little research has been conducted on interface
diversity with error bursts. Specifically, our previous work
presents one of the few analyses of this kind (Nielsen et al.,
2019). However, it was limited to the benefits of interface diversity
in the length of error and success bursts without considering the
impact on resource efficiency.

Cyber–physical control applications can belong to one of two
major categories depending on the traffic direction requirements: in
downlink or uplink only (open-loop control) or the combined uplink
and downlink (closed-loop control) requirements (3GPP, 2021).
Moreover, a closed-loop control application needs to process
incoming events and thus give appropriate instruction commands
to those events (Ploplys et al., 2004). In such scenarios, timeliness is
critical to avoid violating the system’s imposed latency requirements,
which leads to executing outdated actions. Therefore, being untimely
is the equivalent of a failure in communication service availability.

Open-loop control applications with periodic commands appear
frequently in industrial applications and are considered representative
of cyber–physical control systems. In these applications, failing a
specific number of consecutive updates directly corresponds to
exceeding the survival time and, hence, to an error in the system.
For example, it has been observed that the number of consecutive
errors impacts the stability of the system and leads to a considerable
decrease in safety of autonomous guided vehicles (de Sant Ana et al.,
2020). As in the present model and in our previous work (Nielsen
et al., 2019), a Gilbert–Elliott model was considered by de Sant Ana
et al. (2020) to introduce correlation in the wireless channel. Finally,
the novelty of this work comes from investigating the problem of
interface diversity for timely packet arrivals for cyber–physical control
applications in a burst error channel, where the reliability of the system
comes as a trade-off of energy.

3 SYSTEM MODEL

We consider a point-to-point communication between a user and a
BS in an industrial scenario. The user samples a given set of physical
phenomena and generates data periodically, where Ts is the sampling
period. The sampled data are immediately transmitted to the BS,
where they are used for control purposes, so that theymust be received
within a pre-defined latency constraint θ ≤ Ts. Hence, it is now
convenient to introduce the definition of the latency–reliability
function, which stands for the probability of being able to transmit
a data packet from a source to a destination with a given latency
deadline (Nielsen et al., 2018).

Let L be the RV that defines the packet latency. Then, for a
given interface i and latency deadline θ, the latency–reliability
function is defined as

Fi(θ) � Pr(L≤ θ | i). (1)

As such, the latency–reliability function is a CDF of the
interface’s latency, where lost packets have the equivalent of
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infinite latency. Thus, the error probability becomes a specific
value (of deadline) Θ in the latency–reliability function, and we
define the probability of error for an interface i as

P(i)
e � 1 − Fi(θ). (2)

It should be noted that the traditional definition of the
probability of error is obtained for the case θ → ∞ and that
the distribution of L can be updated continuously to reflect the
changes in the wireless channel.

We consider the case where the interface diversity system uses
packet cloning, where a full packet is transmitted via each of the N
interfaces. Next, by assuming that errors across themultiple available
interfaces occur independently, the end-to-end error probability can
be calculated as (Billinton and Allan, 1992; Nielsen et al., 2018)

PE2E
e � ∏N

i�1
1 − Fi(θ)( ) � ∏N

i�1
P(i)
e . (3)

Note that the correlation of the large-scale fading across the
interfaces is captured by the model described above through the
distribution of the RV L. The assumption of errors occurring
independently across interfaces holds since correlation in the fast
fading may only occur if the antenna elements within an array have
insufficient spacing and/or if the concurrent transmissions occur in
frequencies that are separated by less than one coherence bandwidth
(Chen et al., 2021). In our case, the use of two different technologies
and frequency bands for Wi-Fi (unlicensed ISM bands) and LTE
(licensed spectrum) ensures that the transmissions are sufficiently
separated in frequency to avoid correlation.

The BS sends individual feedback per interface to the user after
each transmission attempt. If the data are not received within θ, they
are declared as missing and the user receives an NACK. The system
tolerates a maximum number of missed transmissions. Specifically, if
the number of missed transmissions isN, the system declares a failure
and operation is interrupted. Otherwise, the system is able to continue
normal operation whenever the number of missed transmissions is
n ≤ N (smaller than the survival time).

In the following, we define our interface diversity problem as a
POMDPdenoted as the tuple (S,A,T ,R,Ω,O). Here,S is the set of
states,A is the set of actions, T is the transition probability to the next
state of the environment given a state–action pair,R ⊂ R is the set of

immediate rewards,Ω is the set of possible observations, andO is the
observation probability when transitioning.

3.1 The Environment
The user, i.e., the agent, interacts with the environment at
discrete time steps t ∈ N by sampling and transmitting data
to the BS. It is equipped with two distinct communication
interfaces, i ∈ {1, 2}, where the generated data can be
transmitted. Throughout this paper, we assume that these
interfaces are completely independent from each other and
that each interface is accurately modeled by a two-state
Gilbert–Elliott (GE) model (Haßlinger and Hohlfeld, 2008).
The GE model was selected due to its simplicity and to the
ability to capture temporal correlation.

In our GE model, the details of the implemented protocol and
the wireless conditions—interference, noise, and fading—are
simplified and related to two possible states in a discrete-time
Markov chain (DTMC). These are the good state G and the bad
state B. Hence, we model the state space for the GE model for an
interface i as Si � {G,B}. At any given point in time, an interface
is in the G state if the protocol and the wireless channel
conditions are such that allowing for a transmission to be
received within the latency constraint θ. Otherwise, the
interface is in the B state.

This simple GE model has two parameters, namely, pi and ri,
which determine the transition probabilities and, hence, the
steady-state error probability and burst lengths (Haßlinger and
Hohlfeld, 2008). Hence, these are system- and environment-
specific and can only be learned after deployment by collecting
statistics of the packet transmissions. An additional benefit of
using the GE model is that, through continuous tuning of the
statistical parameters, it allows to capture cross-interface
correlation due to large-scale fading or traffic surges.

We denote the state of interface i at time step t − 1 as si and as si′
at time step t. The parameter pi represents a transition from state
G to B and ri from B to G (i.e., a recovery from the bad state).
Hence, the transition probabilities are defined as

Pr si′ � G | si � G( )� 1 − pi, (4)

Pr si′ � G | si � B( )� ri, (5)

Pr si′ � B | si � G( )� pi, (6)

FIGURE 2 | (A) Two-state GE model for an interface i and (B) four-state GE model for a user with two interfaces.
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Pr si′ � B | si � B( )� 1 − ri. (7)

Figure 2A illustrates the GE model with one interface, whose
transition probability in a matrix form is

Pi � 1 − pi pi
ri 1 − ri

[ ]. (8)

Building on this, the state of a system with two interfaces is
defined by the four-state GE model illustrated in Figure 2B,
where transition labels are omitted for brevity. To elaborate,
transition probabilities are calculated under the assumption of the
two interfaces being independent, for example, the transition
from state G,G to state B,B has probability p1p2.

Besides the status of each interface, knowing the number of
consecutive missed data n is essential for the operation of the
system. Therefore, to build a respective Markov decision process
(MDP), we define the state space as S � {(s1, s2, n)}, where n ∈ {0,
1, 2, . . . , N}. Note that the true state of the interface is observable
only after concluding the transmission at time step t − 1, and before
the following transmission attempt at time t. Thus, the state of the
environment at time t denoted as S ∈ S is defined by the outcome
of the transmission in the last attempt at t − 1. Hence, all states
S ∈ S: n � 0 indicate that a transmission at time t − 1 was received
successfully. Furthermore, all states S ∈ S: n � N are absorbing
states, and consequently, this is a finite MDP with episodic tasks.

Ultimately, the goal of the system is to navigate the MDP in a
way that decreases the amount of errors and altogether reduces
the likelihood of having N consecutive errors. Thus, the system
should be incentivized to maximize its expected lifetime while
optimizing the costs associated with each transmission. This is
done through proper allocation of rewards for each action in the
MDP. However, the main challenge for solving the issue comes as
a product of the limited observability of the defined MDP system

when an interface is switched off. The details for this are
encompassed in the following subsection.

3.2 Actions, Rewards, and Uncertainty
At each time step t (i.e., data transmission instant), the user takes an
action A ∈ A � {(a1, a2)}, where ai ∈ {0, 1}; ai � 1 indicates
transmission and ai � 0 indicates no transmission for an interface i.
Hereafter, we denote that the interface i is on when ai � 1 or off
otherwise. Note that, in our case,A(S) � A for all S ∈ S; that is, the set
of actions is the same in every possible state. This totals to three different
actions—leaving out the option to turn off all interfaces altogether A �
(0, 0), having either interface off, or having both interfaces turned on.

Having taken actionAwhen in state S, there is a probability T(S,
A, S′) to end up in state S′; therefore, it must apply that ∑S′T(S, A,
S′) � 1. Note that S′ represents the true state of both interfaces at
time t, which is revealed only after taking action A. A missed
transmission can thus occur when both interfaces are transmitting
A � (1, 1) but are in the bad state S′ � (B, B, n), or a single interface
is transmitting that is in its corresponding bad state—A � (0, 1)
when S′ � (G, B, n) or A � (1, 0) when S′ � (B, G, n).

Therefore, following a transmission action A, the user receives
a reward R that also depends on the feedback by the BS given
before time t + 1. Having arrived at state S′ by taking action A
when in state S yields a reward R(S, A, S′) that is a function r(n),
where r(n � 0) � 1 is a successful transmission and r(n > 0) � −1 is
a missed transmission. In the overall reward allocation, we also
account for the cost of using the interface i, specifically,

R S,A, S′( ) � r(n) − c(A) � r(n) − a1c1 − a2c2, (9)

where c(A) is the cost of taking action A.
In an MDP, a policy π is a function that maps each state S ∈ S

to an action A ∈ A(s). Therefore, given a policy π(S), the agent
will choose action A, once it finds itself in state S. Our objective is
to find an optimal policy π* that selects the best action given some

FIGURE 3 | One-step transitions from an arbitrary non-absorbing state (i.e., n < N) for the partially observable Markov decision process (POMDP) with two
interfaces.
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state S. Let K denote the total number of time steps until the
system transitions to an absorbing state. The best action at time t
is the one that maximizes the discounted return.

Gt � ∑K−t−1
k�0

ckRt+k+1, (10)

where 0 < c < 1 is the discount factor, and the system lifetime
is K < ∞ as there is always a non-zero probability of
transitioning to the absorbing states in a finite number of
steps. Thus, the value of the MDP, when starting from initial
state Sinit under a policy π, is

Vπ(s) � Eπ G S � Sinit|[ ]. (11)

Next, we define the set of observations as Ω � {(o1, o2, n)},
where oi ∈ Si∪{0} is the set of observations for an interface i, and
the number of consecutive missed deadlines n is always observable.
The transition from S to S′ following action A provides a
deterministic observation O � (o1, o2, n) ∈ Ω in the following
manner: (Since all observations are deterministic with each action,
the set O is irrelevant to the analysis.) I) Having an interface on,
namely, ai � 1, allows for fully observing the state of that interface oi
� si. II) On the contrary, having an interface off, namely, ai � 0,
provides no observation of the state of that interface, i.e., oi � 0,
unless additional mechanisms are available to correctly estimate
the state, for example, based on the exchange of control messages.
Building on this, we define the following function:

oi � si if ai � 1 or α � 1,
0 otherwise,

{ (12)

where α � 1 indicates that the BS has additional mechanisms to
perform the observation. Figure 3 illustrates the action space
along with the associated transitions to state S′ and observations
from an arbitrary non-absorbing state S.

4 ANALYSIS

As a first step, we derive the steady-state probabilities of the good
and bad states from the transition matrix Pi as (Haßlinger and
Hohlfeld, 2008)

πi G, � ri
pi + ri

, (13)

πi, � pi
ri + pi

, (14)

where πi,G + πi,B � 1.
Assuming that the system has both interfaces turned on during

initialization, the initial state of the MDP Sinit is chosen randomly
among the set of states {(G, G, 0), (G, B, 0), (B, G, 0), (B, B, 1)}
based on the steady-state probabilities πi,G and πi,B.

4.1 Policy Utility Through the Value and
Q-Functions
Let Vπ(S) be the expected utility received by following policy π
from state S:

Vπ(S) � Qπ(S,A) if S ∉ s1, s2,N( ){ },
0 otherwise,

{ (15)

where Qπ(S, A) is the expected utility of taking action A from
state S and then following policy π (Puterman, 2014). Starting
from state Sinit, our goal is to find the optimal policy π* that
results in the maximum value that can be obtained through any
policy Vπ *(Sinit). As illustrated in Figure 4, when not following
the optimal policy π*, but sampling the value of the Q-functions
for each action A in the space of values Vπ *(S′), we get

Qπ *(S,A) � ∑
S′

T S,A, S′( ) R S,A, S′( ) + cVπ * S′( )[ ], (16)

where c is the discount factor that controls the importance of
short-term rewards (c values close to 0), or long-term rewards (c
values close to 1), where the anticipated rewards are represented
through the value of the state as

Vπ*(S) �
max
A∈A

Qπ*(S,A) if S ∉ s1, s2,N( ){ },
0 otherwise.

{ (17)

Unless the user is in an N state that is absorbing, the values
Vπ *(S) are recurring and can be approximated through the
iterative process of (Puterman, 2014)

Vk
π *(S)←maxA∈A ∑

S′

T S,A, S′( ) R S,A, S′( ) + cVk−1
π * S′( )[ ], (18)

which continues until it converges to some predefined precision ϵ
of the past and current values:

maxS∈S |Vπ(S)k − Vπ(S)k−1|≤ ϵ. (19)

Thus, the method of value iteration guarantees finding the
optimal value for an MDP that is a function of the optimal policy.
Given a κ number of iterations to converge to a solution, the
complexity of this algorithm is O(κSAS′), which given our small
MDP is insignificant. Unfortunately, this method does not
directly produce an optimal policy for a POMDP; however,
this can be addressed by the QMDP value method.

4.2 Belief Averaged QMDP Value Method
Due to the limited information on the channel properties for each
interface, our Markov process is a POMDP where we cannot fully

FIGURE 4 | An illustration of a single step of the value iteration process
for state S that tests the Q-function for all state–action pairs, where future
states follow the optimal policy π*.
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observe the true state space for time t. Therefore, the agent
maintains a belief b on the state of the system S ∈ S based on
the observation O ∈ Ω. By observing that there is no uncertainty
on the value of n and that the state of the interfaces Si is
independent, we can define the belief as

b(S,O) � Pr S � s1, s2, n( ) | O � o1, o2, n( )( ) � b1 s1, o1( )b2 s2, o2( ),
(20)

where bi is the belief for an interface i to be in state si, given its
observation oi. The bi values are updated recursively with each
following observation as

bi si, oi( )←Pr si | oi( ) �
1 if si � oi and oi ≠ 0,
fsi bi( ) if oi � 0,
0 otherwise,

⎧⎪⎨⎪⎩ (21)

where fsi(bi) is a function for calculating the probability of being
in state si as a function of the previously held beliefs:

fG bi( ) � 1 − pi( )bi(G, 0) + ribi(B, 0), (22)

fB bi( ) � pibi(G, 0) + 1 − ri( )bi(B, 0). (23)

Therefore, knowing the belief b(S,O)∀S ∈ S, we can proceed
with finding an optimal policy for the underlying POMDP
through the following two steps:

Step 1: Ignore the observation model and compute the
Q-values Qπ *(S,A) given directly from the state–action pairs.
These are denoted as QMDP(S,A) and are obtained through
calculating the Bellman operator in the value iteration
method.

Step 2: Calculate the belief averaged Q-values for each action
and belief b(S, O) as

QA(b) � ∑
S∈S

b(S,O)QMDP(S,A). (24)

The optimal policy now becomes a function of the belief,
instead of the current state, and is

π*(b) � maxA∈AQA(b). (25)

Note that this is a method that does not incentivize updating
the belief state but optimizes with the assumption that we will
have full observability following the transmission at time t
(Littman et al., 1995).

4.3 Parameter Tuning
For the MDP to optimize the operation of the underlying
communication system, we require a proper assignment of the
rewards and costs for the MDP. Therefore, the reward and
punishment for a successful or a missed transmission were
fixed to 1 and − 1, respectively. Conversely, the value of ci, the
cost of using the interface i, greatly depends on the specific
characteristics of the system and on the individual notion of
resource efficiency. Moreover, the cost of using an interface is
directly related to the consumption of resources that would
otherwise be available to other services. Throughout the rest of
this paper, we consider that the cost of using an interface is given
by the energy consumption. However, other parameters can be

used to define the cost of each interface when adapting our
methods to a specific system.

Given a transmission power ELTE and EWi-Fi for the LTE and
the Wi-Fi interface, respectively, we calculate the cost for an
interface i as

ci � η
Ei∑iEi

, (26)

where η is a cost scaling factor that serves to reduce/increase the
importance of the energy transmission costs with regard to the
initial rewards. The scaling factor η was sampled across several
values in the range 0 ≤ η ≤ 1, which resulted in five different
optimal policies, one for each different η ∈ {0, 0.03, 0.07, 0.2, 1}.

4.4 Latency Measurements for Modeling
Wi-Fi and LTE
Traces of latency measurements for different communication
technologies were obtained by sending small (128 bytes) UDP
packets every 100ms between a pair of GPS time-synchronized
devices through the considered interface (LTE or Wi-Fi) during the
course of a fewwork days at Aalborg University campus. A statistical
perspective of these data is given by the latency CDFs in Figure 5,
which clearly outlines some key differences between the
performance of the LTE and Wi-Fi interfaces. While Wi-Fi can
achieve down to 5ms one-way uplink latency for 90% of packets, it
needs approx. 80 ms to guarantee delivery of 99% of packets. For
LTE, on the contrary, there is hardly any difference between the
latency of 90 and 99% delivery rates, approx. 36 and 40ms,
respectively. Since the measurements for both LTE and Wi-Fi
were recorded in good high-SNR radio conditions, we expect that
the differences between LTE and Wi-Fi can, to a large extent, be
attributed to the inherent differences in the protocol operation and
the fact that LTE operates in the licensed spectrum, whereas Wi-Fi
has to contend for spectrum access in the unlicensed spectrum.

FIGURE 5 | Empirical latency CDFs of considered interfaces.
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4.5 Performance Evaluation
To conduct the performance evaluation of the policies obtained
with the POMDP, we define the following benchmarks:

• A fully observable system assumes an inherent ability of the
BS to inform the user about the interface that is turned off,
for example, by using pilots that precede the transmissions.
In this case, α � 1, making the POMDP collapse to an MDP.
We denote the policy with full observability as π*

α�1.
• The forgetful POMDP (F-POMDP) maintains a single state
of partial belief and, afterward, assumes the steady-state
probabilities πi,G and πi,B for the inactive interface. This
forgetful approach collapses to a small MDP where belief
does not need to be continuously computed.

• The hidden MDP (H-MDP) is the fully reduced MDP of the
forgetful approach, where the belief averages in F-POMDP
are joint in a single state. Here, the transition probabilities
for the inactive interface directly become the steady-state
probabilities πi,G and πi,B.

The obtained policies are evaluated based on the following
performance indicators: i) the distribution of the number of
consecutive errors n; ii) the utilization of the LTE interface,
defined as the ratio of time slots when the LTE interface is
turned on uLTE(π) � Pr(a1 � 1 | π); iii) the expected system
lifetime, defined as the number of time steps from
initialization until the system transitions into an absorbing
state. For the latter, let K

̄
(π) be the expected system lifetime

with policy π; and iv) the expected total reward of the system
with policy π, from initialization until absorption, defined as
R̄ (π).

Building on this, we assess the policies derived with partial
observability w.r.t. the policy with full observability based on the
following:

• System lifetime delta denotes the relative increase of
the expected system lifetime w.r.t. the MDPwith α � 1
(i.e., full observability), defined as

ΔK � K ̄(π) − K ̄ π*
α�1( )( )

K ̄ π*
α�1( ) . (27)

Hence, positive values of ΔK indicate an increase in the system
lifetime w.r.t. the optimal policy with full observability.

• Policy deviationmeasures the relative change in the expected
system lifetime K and expected transmission cost as

Δπ � |ΔK| + |uLTE(π) − uLTE π*
α�1( )| · cLTE. (28)

Note that this measures the difference in behavior w.r.t. the
optimal policy but does not necessarily reflect a proportional
decrease in performance. Instead, this is a measure of the
normalized collective error, as in common estimators that try
to project the optimal LTE usage and system lifetime.

• Relative reward loss defines the relative loss in the expected
total reward R̄ (π) with policy π w.r.t. π*

α�1 as

L(π) � R̄ π*
α�1( ) − R(̄π)∣∣∣∣ ∣∣∣∣
R̄ π*

α�1( ) . (29)

The results with the fully observable MDP were obtained
analytically. In order to evaluate the performance of the
POMDP and forgetful methods, analytical results were
obtained for extreme values of parameter η. For all other
cases, we performed Monte Carlo simulations of 20,000
episodes. The duration of each episode depends on the system
lifetime which could last up to several million time steps.

5 RESULTS

In this section, we investigate the performance of the modeled
system. The investigation in this section is guided by the use of
interface diversity in the case of a combination of Wi-Fi and LTE.
The performance of the aforementioned system where i � 1 is
LTE and i � 2 is Wi-Fi was evaluated by a Monte Carlo Matlab
simulation (when necessary) where the calculation of the
statistical properties for the GE model is derived from
experimental latency measurements.

We tested the system for all five different values η � 0, 0.03,
0.07, 0.2, 1 where the fully observable MDP system had different
transmission policies. Given the measurements and the
characteristics of our measurement setup, we tuned the
simulation parameters to the values in Table 1.

5.1 Extreme Policies
As a starting point, we describe and evaluate the policies
obtained in the cases where the value of parameter
η ∈ (−∞,∞) is set to an extremely low or high value
(i.e., at either of the extremes of its range). When
adjusting the scaling factor to its lowest possible value η →
−∞, the cost of using each interface is omitted and the MDP
optimizes in favor of not losing any transmissions. Thus, we
observe an extreme behavior that is not affected by the belief,
or the POMDP behavior. Specifically, the optimal policy
maintains both interfaces turned on no matter the current
state π*(S) � A(1, 1) ∀S ∈ S. Since the utilization of both
interfaces is 100%, this gives the upper bound on burst

TABLE 1 | Parameters for evaluation.

Label Definition Value

θ Latency constraint 38.25 ms
pLTE LTE’s p-transition probability 0.0178
pWi-Fi Wi-Fi’s p-transition probability 0.0515
rLTE LTE’s r-transition probability 0.2577
rWi-Fi Wi-Fi’s r-transition probability 0.9468
EWi-Fi Power consumption of the Wi-Fi interface 15.85 mW
ELTE Power consumption of the LTE interface 200 mW
N Maximum number of consecutive missed transmissions 4
ϵ Value iteration convergence criteria 10–11

kmax Value iteration maximum number of iterations 105

c Discount factor 0.99999
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error performance for the whole system. Even in this case,
there is a non-zero probability to end up in the absorbing
state which happens with an expectation of 5.0738 · 106
transitions. This is the defined lifetime of the system, and
before turning off due to failure, the system maintains
successful transmissions for 99.67% of the time, 0.32% of
transmissions have a single error, 0.0127% have two
consecutive errors, and 4.9971 · 10–4% of all burst errors
have three consecutive errors.

On the contrary, setting η → ∞ creates a lower bound on
the system performance that aims to minimize the cost of
operation at the expense of decreasing the system lifetime.
This is the result of scaling the cost of performing a
transmission to be higher than the reward of maintaining
successful transmissions. Since the action space is restricted
to use at least one interface for transmission at all times, in
such a cost-restraint system, it is reasonable to only allow for
the utilization of the Wi-Fi interface π*(S) � A(0, 1)∀S ∈ S,
due to the high cost of using LTE. Since we have 100%
utilization of Wi-Fi and 0% utilization of LTE, the system
lifetime of the system decreases drastically to 1.3633 · 105.
During operation, the system maintains successful
transmissions for 94.84% of the time, 4.89% of

transmissions have a single error, 0.26% have two
consecutive errors, and 0.0138% of all burst errors have
three consecutive errors. All the implementations with
other values of η result in policies that exploit mixtures of
actions and could not be analytically extracted—for the
POMDP and H-MDP implementations—and are thus
extracted through Monte Carlo simulations, as detailed in
the previous section.

5.2 Optimal Policies With Scaled Costs
The portion of time spent in states with n consecutive
untimely packets, obtained from the simulations, is shown
in Figure 6 as a function of η, from which we can extract
several conclusions. Initially, we notice a sharp decay for the
portion of time spent in good states when comparing the
values with η � 0.07 and η � 0.2. In accord, we notice a sharp
increase in all bad states, which is most significant for single
errors. This manifests in the optimal policy, as a reluctance of
mitigating single burst errors (n � 1). Notwithstanding this
increase in single errors, all approaches still mitigate higher
orders of error bursts (n > 1) when η � 0.2. This is not true for
η � 1, where all approaches focus solely on mitigating the last
error that may lead to exceeding the survival time N.

FIGURE 6 | Portion of time spent in the state with n consecutive untimely packets for all simulated and analytically extracted data.
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It is important to notice that due to the fact that the
H-MDP treats the GE model as hidden when a portion of
it is unobservable, turning off an interface results in fully
losing the state for that interface. This leads to a behavior
where the H-MDP would intentionally turn off the interface
that observes a bad state, even when there is no negative
incentive to keeping that interface on, in favor of the more
likely transition to the steady state of the good state for that
interface. Due to this, the optimal policy for the H-MDP is
never π*(S) � A(1, 1)∀S ∈ S, even when η � 0. Interestingly,
the H-MDP uses the same policy for all three η � 0, 0.03, 0.07
but is best fit for η � 0.07. This makes the H-MDP the only
suboptimal approach—out of all four—for η � 0.

Due to the low cost of using the Wi-Fi interface, and generally
the superior r probability, all policies keep the Wi-Fi interface at
100% utilization. On the contrary, LTE utilization is the only one
that varies for each approach and is shown in Figure 7.

However, we are interested in investigating the lifetime of the
system given burst error tolerance of N. The system lifetime for the
different scaling factors η is given in Figure 8 as a difference from the
optimal system lifetime. Therefore, the goal of each approach with
limited observability is to follow the performance of the optimal,
fully observable approach as closely as possible. Thus, when a policy
improves the system lifetime, it is a sign of energy inefficiency that
comes in the form of extra LTE-interface utilization.

Accordingly, the goal of all three approaches that have to work
with limited information is to achieve ΔK ≈ 0. Looking at Figure 8,

we can also notice that, aside from the case of η � 0.07, the POMDP
approach gives the least deviations with regard to the other two
approaches. Moreover, the good performance of the H-MDP
approach in the case of η � 0.07 is a simple coincidence since
this approach applies exactly the same policy for 0 ≤ η ≤ 0.07,
where both the POMDP and the F-POMDP tend to vary and
adapt. Additionally, we notice that the F-POMDP approach is
highly focused toward increasing the system lifetime which, as
shown in Figure 7, comes at the cost of using LTEmore often than
with the optimal approach. Since this behavior is quite consistent,
we can safely say that the F-POMDP is a system-lifetime
conservative approach. The POMDP approach is however more
adaptable and consistently outperforms the F-POMDP by
obtaining a system lifetime that is closely similar to that of the
fully observable MDP.

Finally, in Figure 9, we show the aggregate deviation, in terms of
system lifetime and energy, as calculated as in (28). Here, we can see
that the POMDP approach provides the most adaptable behavior,
which best resembles the policy when having full observability.
Treating the system as a hidden MDP does yield some
adaptability; however, the approach can lead to large deviations
from the optimal behavior, as it can be seen for η � 0, 0.03. In these
cases, since the stochastic process was treated as hidden to theMDP,
the H-MDP optimal solution would intentionally turn off the LTE
interface when it is in the bad state.With this, the H-MDP fully loses
the information of the LTE interface, in favor of the better stationary-
state probabilities. Due to this, we consider the H-MDP approach as

FIGURE 7 | Portion of time spent using the LTE interface i � 1.
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FIGURE 9 | Deviation from the optimal MDP policy of full observability.

FIGURE 8 | Relative increase in the system lifetime ΔK (i.e., the time to reach one of the absorbing states with N consecutive errors) w.r.t. the fully observable,
optimal policy of MDP.
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unsuitable. On the contrary, the F-POMDP was always conservative
with regard to the system lifetime. Thus, the F-POMDP approach is
ideal for implementation in devices with extreme power limitations,
as it does not require re-computation of the belief states
continuously. Finally, the POMDP approach provides the best
solutions that most closely follow the optimal policy. Hence, it
presents the best solution given that an accurate model of the
environment is available and should be adopted if the energy
consumption of the computational circuit, which is dedicated for
updating the belief states, is not an issue. In the following, we present
a sensitivity analysis of the considered methods under an imperfect
model of the environment.

5.3 Sensitivity Analysis
We conclude this section by evaluating the impact of the
estimation error regarding the p and r values for η � 0.07.
We do this by adding a percentage of error to the p value, while
the r value is calculated to maintain the same steady-state
probabilities πi,B and πi,G for each interface i as derived from
the values in Table 1. In this way, the true probabilities of the
Markov system are hidden from the decision processes. As
shown in Figure 10, in the case of a negative percentage
change for the system, the F-POMDP approach greatly
deviates from the optimal policy for η � 0.07. Additionally,

the POMDP approach deviates considerably when an error of
2% is introduced. Moreover, the H-MDP is the most robust as it
is more reluctant to change policies in the presence of different
parameters, which shows best in the case of positive errors. We
can conclude that while belief mechanics help adapt to the
optimal policy in the case where the model of the environment is
perfectly known, however, such implementations can lead to
bad results in particular scenarios where the true probabilities of
the system are hidden from the agent. On the contrary, the
H-MDP system does not show a big disadvantage in those cases
since it already treats the Markov process as hidden. To
conclude, we show the relative reward loss L(π) for the same
cases of estimation error, as relative to the optimal MDP policy,
in Figure 11. Here, we observe that even though the F-POMDP
method deviates considerably from the optimal MDP policy in
the negative estimations of -1-2% (see Figure 10), its rewards
are close to those with the optimal policy. The reward loss with
the H-MDP is relatively stable and does not exceed 0.6%.
Finally, we see that the POMDP implementation generally
achieves a small reward loss, which is around 0.1% for no
error and around 0.4% for −2%. Nevertheless, a high loss is
achieved with 2% error. In this case, the adaptability of the
POMDP has a negative effect since it scales the policy in accord
with the erroneous p and r values.

FIGURE 10 | Deviation from the optimal MDP policy of full observability when having an error in estimating the p and r values, for the case of η � 0.07.
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6 CONCLUSION

Motivated by the recent requirements for cyber–physical
systems, we analyzed the problem of addressing error bursts
by using two different wireless interfaces. We model the
problem as a Gilbert–Elliott model with good and bad states
for each interface. Given limited energy resources in our
device, we derived and evaluated transmission policies to
achieve an adequate trade-off between system lifetime and
energy consumption with limited channel information. For
this reason, we modeled the system as a POMDP that
memorizes and calculates its belief for the observable states.
Using value iteration to extract the Q-values from the MDP, we
update the policy for the POMDP through the QMDP

technique. Our results show that the POMDP approach
indeed produces near-optimal policies when the
environment is accurately characterized. As such, this is a
computationally inexpensive solution that closely follows the
performance of the optimal policy, even in cases with various
and mixed state–action pairs. We also propose a forgetful
POMDP approach with only two finite belief states. This
approach performs worse than the classic POMDP, with
affinity to increase system lifetime, but is well suited for
approaches that are under extreme energy limitations.
Finally, in future works, we would like to practically

validate the usefulness of the system in several application
scenarios and address dynamic systems in non-stationary or
non-characterized environments.
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