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With the vision to transform the current wireless network into a cyber-physical intelligent
platform capable of supporting bandwidth-hungry and latency-constrained applications,
both academia and industry turned their attention to the development of artificial
intelligence (AI) enabled terahertz (THz) wireless networks. In this article, we list the
applications of THz wireless systems in the beyond fifth generation era and discuss
their enabling technologies and fundamental challenges that can be formulated as AI
problems. These problems are related to physical, medium/multiple access control, radio
resource management, network and transport layer. For each of them, we report the AI
approaches, which have been recognized as possible solutions in the technical literature,
emphasizing their principles and limitations. Finally, we provide an insightful discussion
concerning research gaps and possible future directions.
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1 INTRODUCTION

As a response to the spectrum scarcity problem that was created due to the aggressive proliferation of
wireless devices and quality-of-service (QoS) and quality-of-experience (QoE) hungry services,
which are expected to support a broad range of diverse multi-scale and multi-environment
applications, sixth-generation (6G) wireless networks adopt higher frequency bands, such as
terahertz (THz) that ranges from 0.1 to 10 THz) (Boulogeorgos et al., 2018b; Boulogeorgos and
Alexiou, 2020c; Boulogeorgos and Alexiou, 2020d; Boulogeorgos et al., 2018a). In more detail and
according to the IEEE 802.15.3 days standard (IEEE Standard for Information technology, 2009;
IEEE Standard for High Data Rate Wireless Multi-Media Networks, 2017), THz wireless
communications are recognized as the pillar technological enabler of a varied set of use cases
stretching from in-body nano-scale, to indoor and outdoor wireless personal/local area and
fronthaul/backhaul networks. Nano-scale applications require compact transceiver designs and
self-organized ad-hoc network topologies. On the other hand, macro-scale applications demand
flexibility, sustainability, adaptability in an ever changing heterogeneous environment, and security.
Moreover, supporting high data-rate that may reach 1 Tb/s, and energy-efficient massive
connectivity are only some of the key demands. To address the aforementioned requirements,
artificial intelligence (AI), in combination with novel structures capable of altering the wireless
environment, have been regarded as complementary pillars to 6G wireless THz systems.

AI is expected to enable a series of new features in next-generation networks, including, but not
limited to, self-aggregation, context awareness, self-configuration as well as opportunistic
deployment (Dang et al., 2020). In addition, integrating AI in wireless networks is envisioned to
bring a revolutionary transformation of conventional cognitive radio systems into intelligent
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platforms by unlocking the full potential of radio signals and
exploiting new degrees-of-freedom (DoF) (Letaief et al., 2019;
Saad et al., 2020). Identifying this opportunity, a significant
amount of researchers turned their eyes on AI-empowered
wireless systems and specifically in machine learning (ML)
algorithms (see e.g., (Wang J. et al., 2020; Liu Y. et al., 2020;
Jiang, 2020; Boulogeorgos et al., 2021a) and references therein). In
more detail, in (Wang J. et al., 2020), the authors reviewed the 30-
year history of ML highlighting its application in heterogeneous
networks, cognitive radios, device-to-device communications and
Internet-of-Things (IoT). Likewise, in (Liu Y. et al., 2020), big
data analysis is combined with ML in order to predict the
requirements of mobile users and enhance the performance of
“social network-aware wireless.” Moreover, in (Jiang, 2020), a
brief survey was conducted that summarizes the basic physical
layer (PHY) authentication schemes that employ ML in fifth
generation (5G)-based IoT. Finally, in (Boulogeorgos et al.,
2021a), the authors provided a systematic and comprehensive
review of the ML approaches that was employed to address a
number of nano-scale biomedical challenges, including once that
refer to molecular and nano-scale THz communications.

The methodologies, which are presented in the aforementioned
contributions, are tightly connected to the communication
technology characteristics and building blocks of radio and
microwave communication systems and networks, which are
inherently different from higher frequency bands that can
support higher data rates, and propagation environments with
conventional and unconventional structures, like RIS. Additionally,
in order to quantify the AI-approaches efficiency, new key
performance indicators (KPIs) need to be defined. Motivated by
this, this article focuses on reporting the role of AI in THz wireless
networks. In particular, we first identify the THz wireless systems
particularities that require the adoption of AI. Building upon this,
we present a brief survey that summarizes the contributions in this
area and focus on indicative AI approaches that are expected to
play an important role in different layers of the THz wireless
networks. Finally, possible future research directions are provided.

The structure of the rest of the paper is as follows. Section 2
discusses the role of ML in THz wireless systems and networks. In
particular, a systematic review is conducted concerning the ML
algorithms that are used to solve PHY, medium access control
(MAC), radio resource management (RRM), network and
transport layer related problems. Moreover, in Section 2, the
ML techniques that was employed or have the potential to be
adopted to THz wireless systems and networks are documented.
In Section 3, the aforementioned ML algorithms are reviewed
and a methodology to select a suitable ML algorithm is presented.
Likewise, in Section 4, ML deployment strategies are discussed,
while, in Section 5, future research directions are reported.

Notations
In this paper, matrices are denoted in bold, capital letters, while
vectors in bold, lower case letters. The base-10 logarithm of x is
given by log(x). Additionally, zf (x1 ,...,xN)

zxi
stands for the partial

derivative of zf (x1, . . ., xN) with respect to xi, with i ∈ [1, N]. The
operator max(x1, x2, . . . , xN ) yields the numerically largest of the
xi, while min(x1, x2, . . . , xN ) returns the numerically smallest of

the xi. Moreover,
�
x

√
represents the square root of x. The index of

the value of x that maximizes and minimizes f (x) are respectively
given by argmax f (x) and arg minf (x). The expected value of
f(x) is represented as E[·]. Finally, for the sake of convenience and
brevity, Table 1 summarizes the abbreviations that are used in
this paper.

TABLE 1 | Nomenclature.

3D Three dimensional
6G Sixth-generation
A3C Asynchronous actor critic algorithm
ADC Analog-to-digital converter
AI Artificial intelligence
AMR Automatic modulation recognition
AoA Angle-of-arrival
AP Access point
B5G Beyond fifth generation
BER Bit error rate
BS Basestation
CNN Convolutional neural network
DCA Direct conversion architectures
DDRL Distributed deep reinforcement learning
DLCS Deep learning compressed sensing
DoF Degrees-of-freedom
DNN Deep neural network
DSP Digital signal processing
EM Expectation maximization
ETF Extract, Transform, Load
FG-AN Focus Group on Autonomous Networks
GAN Generative adversarial network
GPML Gaussian process based machine learning
IEEE Institute of electrical and electronic engineering
IoT Internet-of-Things
IoV Internet-of-vehicles
kNN k-nearest neighbor
KPI Key performance indicator
LOS Line-of-sight
LSTM Long short term memory
MAC Medium access control
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
ML Machine learning
mmW Millimeter wave
MU Multi-user
NN Neural network
NOMA Non-orthogonal multiple access
OSI Open system interconnection
PHY Physical layer
PSO Particle swarm optimization
RIS Reconfigurable intelligent surface
RNN Recurrent neural networks
RRB Radio resource block
RRM Radio resource management
RX Receiver
SGD Stochastic gradient descent
SOMP Simultaneous orthogonal match pursuit
SVM Support vector machine
THz Terahertz
TX Transmitter
UAV Unmanned areal vehicle
UE User equipment
Q-CNN Convolutional neural network with quantized weights
QoE Quality-of-experience
QoS Quality-of-service
V2I Vehicle-to-infrastructure
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2 THE ROLE OF ML IN THZ WIRELESS
SYSTEMS AND NETWORKS

Together with the promise of supporting high data-rate massive
connectivity, THz wireless systems and networks come with
several challenges. In particular, these challenges can be
summarized as:

• Due to the high transmission frequency, i.e. the small
wavelength, in the THz band, we can design high-
directional antennas (with gains that may surpass 30 dBi)
with unprecedented low beamwidths, which may be less
than 4°1. These antennas are used to counterbalance the high
channel attenuation by establishing high-directional links.
On the one hand, high directionality creates additional
DoFs, which, if they are appropriately exploited, they can
enhance both dynamic spectrum access and network
densification; thus, boost its connectivity capabilities. In
this direction, new approaches to support intelligent
interference monitoring and cognitive access are
required. On the other hand, high directionality comes
with the requirement of extremely accurate beam
alignment between the fixed and moving communication
nodes. To address this beam tracking and channel
estimation approaches of high latency needs to be
developed, which account for the latency requirement.

• Molecular absorption causes frequency- and distance-
dependent path loss, which creates frequency windows
that are unsuitable for establishing communication links
(Boulogeorgos et al., 2018d). As a consequence, despite the
high bandwidth availability in the THz band, windowed
transmission with time varying loss and per-window
adaptive bandwidth as well as power usage is expected to
be employed. This characteristic is expected to influence
both beamforming design as well as resource allocation and
user association.

• The large penetration loss in the THz band, which may
surpass 40 or even 50 dB (Kokkoniemi et al., 2016;
Stratidakis et al., 2019; Petrov et al., 2020; Stratidakis
et al., 2020a; Stratidakis et al., 2020b), renders
questionable the establishment of the non-LoS links. As a
result, blockage avoidance schemes are needed. Note that in
lower frequency bands, such as mmW, the penetration loss
is in the range of 20–30 dB (Mahapatra et al., 2015; Zhu
et al., 2018; Zhang et al., 2020a).

• To exploit the spatial dimension of THz radio resources,
support MU-connectivity as well as increase the link
capacity in heterogeneous environments of moving
nodes, suitable beamforming and mobility management
designs that predict the number and motion of UEs need
to be designed. Moreover, in mobile scenarios, accurate
channel state information (CSI) is needed. In lower-
frequency systems, this is achieved by performing

frequent channel estimation. However, in THz wireless
systems, due to the small transmission wavelength, the
channel can be affected by slight variations in the
micrometer scale (Sarieddeen et al., 2021). As a result,
the frequency of channel estimation is expected to be
extremely high and the corresponding overhead
unaffortable. This motivates the design of prediction-
based channel estimation and beam tracking approaches.

• From the hardware point of view, high-frequency
transceivers suffer from a number of hardware
imperfections. In particular, the EVM of THz transceiver
may even reach 0.4 (Koenig et al., 2013). It is questionable
that conventional mitigation approaches would be able to
limit the impact of hardware imperfections. As a result,
smarter signal detection approaches need to be developed.
Of note, as stated in (Schenk, 2008; Boulogeorgos, 2016;
Boulogeorgos and Alexiou, 2020b), in lower-frequency
communication systems including mmW, the EVM does
not exceed 0.17.

• THz wireless systems are expected to support a large variety
of applications with diverse set of requirements as well as
UEs equipped with antennas of different gains. To
guarantee high availability and association rate that tends
to 100%, association schemes that take into account both the
nature of THz resource block, the UEs’ transceivers
capabilities, as well as the applications requirements,
need to be presented. Moreover, to ensure uninterrupted
connectivity, these approaches should be highly adaptable
to network topology changes. In other words, they should be
able to predict network topologies changes and pre-actively
perform hand-overs.

• Conventional routing strategies account neither the
communication nodes distance nor their memory
limitations. However, in THz mobile scenarios, where both
the transmission range is limited to some decades of meter
and the device memory is comparable to the packet length,
routing may become a complex optimization problem.

FIGURE 1 | ML-based applications to different layers of THz wireless
systems and networks.

1It is worth noting that in mmW wireless systems, antennas with beamwidths that
are in the range of 10° are employed.
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• Finally, for several realistic scenarios, the aggregated data-
rate of the fronthaul is expected to reach 1 Tb/s, which is
comparable with the backhaul’s achievable data-rate. This
may cause service latency due to data congestion in network
nodes. To avoid this intelligent traffic prediction and
caching strategies need to created to pre-actively bring
the future-requested content near the end-user.

The rest of this section is focused on explaining the role of ML
in THz wireless systems and networks by presenting the current
state-of-the-art. As illustrated in Figure 1 and in order to provide
a comprehensive understanding of the need to formulate ML
problems and devise such solutions, we classify the ML problems
into four categories, namely 1) PHY, 2) MAC and RRM, 3)
Network, and 4) transport. Of note, this classification is in line
with the open system interconnection (OSI) model. For each
category, we identify the communications and networks
problems for which ML solutions have been proposed as well
as the needs of utilizing them. Finally, this section provides a
review on the ML problems and solutions that have been
employed. Apparently, some of the aforementioned challenges
have been also discussed in lower-frequency systems and
networks. For the sake of completeness, in our literature
review, we have also included contributions that although refer
to lower frequency, can find application to THz wireless systems
and networks.

2.1 PHY Layer
The additional DoFs, which have been brought by the ultra-wide
band THz channels as well as their spatial nature, allow us to
establish high data-rate links with limited transmission power.
Moreover, advances in the fields of communication-components
designs, fueled by new artificial materials, such as reconfigurable
intelligent surfaces (RISs), created a controllable wireless
propagation environment; thus, offered new opportunities in
simplifying the PHY layer processes and further increased the
systems DoFs (Boulogeorgos et al., 2021b). Finally, the use of
direct conversion architectures (DCAs) in both transceivers
created the need to utilize digital signal processing (DSP)
algorithms in order to “decouple” the system’s reliability from
the hardware imperfection related degradation. The
computational complexity of these algorithms increases as the
modulation order of the transmission signal increases. The
aforementioned factors create a rather dynamic high-
dimensional complex environment with processes that are
hard or even impossible to be analytically expressed.
Motivated by this, the objectives of employing ML in the PHY
layer is to provide adaptability to an ever changing wireless
environment consisted of heterogeneous components
(transceivers, RIS, active and passive relays, etc.) and to
countermeasure the impact of transceivers hardware
imperfections with increasing neither the communication and
computation overheads.

In this direction, several researcher have focused on presenting
ML-related solutions for automatic modulation recognition
(AMR) (Khan et al., 2016; Li et al., 2018; Wu et al., 2018;
Iqbal et al., 2019; Shah et al., 2019; Yang et al., 2019; Bu et al.,

2020), channel estimation (Satyanarayana et al., 2019; Zhu et al.,
2019; Liu S. et al., 2020; Ma et al., 2020a; Ma et al., 2020b; Moon
et al., 2020; Mai et al., 2021; Wang et al., 2021), and signal
detection (Jeon et al., 2018; Aoudia and Hoydis, 2019; Samuel
et al., 2019; Katla et al., 2020; Satyanarayana et al., 2020). In more
detail, AMR has been identified as an important task for several
wireless systems, since it enables dynamic spectrum access,
interference monitoring, radio fault self-detection as well as
other civil, government, and military applications. Moreover, it
is considered as a key enabler of intelligent/cognitive nano- and
macro-scale receivers (RXs). Fast AMR can significantly improve
the spectrum utilization efficiency (Mao et al., 2018). However, it
is a very challenges tasks, since it depends to the variation of the
wireless channel. This aspires the introduction of intelligence in
this task. In this sense, in (Yang et al., 2019), the authors
employed convolutional NNs (CNNs) and recurrent NNs
(RNNs) in order to perform AMR. As inputs, the algorithms
used the in-phase and quadrature (I/Q) components of the
unknown received signal and classified it to one of the
following modulation schemes: binary frequency shift keying
(BFSK), differential quadrature phase shift keying (DQPSK),
16 quadrature amplitude modulation (16-QAM), quaternary
pulse amplitude modulation (4PAM), minimum shift keying
(MSK), Gaussian minimum shift keying (GMSK). Moreover,
in (Khan et al., 2016), a deep NN (DNN) approach was
discussed for identifying the received signal modulation in
coherent RXs. The DNN is comprised of two auto-encoders
and an output perceptron layer. To train and verify the ML
network, two datasets of numerous amplitude histograms are
used. After training, the network is capable of accurately
extracting the modulation format of the signal after receiving
a number of symbols.

Similarly, in (Wu et al., 2018), the authors presented a DNN
approach that is based on RNNs with short memory and is
capable of to exploit the temporal and spatial correlation of the
received samples in order to accurately extract the their
modulation type. In this contribution, as an input, the ML
algorithm requires a predetermined number of samples.
Meanwhile, in (Shah et al., 2019), the authors reported a
extreme supervised-learning ML algorithm capable of
accurately and time-efficiently estimating the modulation type
of the received samples. The disadvantage of the aforementioned
approaches is that the training period is large and if the
characteristics of channel changes, for example due to a RIS
reconfiguration, a partial blockage phenomenon or the user
equipment movement, the algorithm need to be re-trained.

Additionally, in (Li et al., 2018), a semi-supervised deep
convolutional generative adversarial network (GAN) was
presented that consists of a pair of GANs that collaboratively
create a powerful modulator discriminator. The ML network
receives as inputs the I/Q components of a number of received
signal samples and matches them to a set of modulation formats.
The main disadvantage of this approach is its high-computational
resource demands as well as its sensitivity to received signal
distribution variations. To deal with the data distribution
variation, Bu et al. (Bu et al., 2020) introduced an adversarial
transfer learning architecture that exploits transfer learning and is
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capable of achieving accuracy comparable to the ones of
supervised learning approaches. However, this approach
demands careful handling of former knowledge since there
may exist differences between wireless environments. In (Bu
et al., 2020), the ML algorithm uses as an input the (I/Q)
components of the received signal. Finally, in (Iqbal et al.,
2019), an expectation maximization (EM) algorithm was
employed in order to perform modulation mode detection and
systematically differentiate between pulse- and carrier-based
modulations. The presented results revealed the existence of a
unique Pareto-optimal point for both the SNR and the
classification threshold, where the error probability is minimized.

Another important task in PHY layer is channel estimation
and tracking. In particular, in order to employ high directional
beaforming in THz wireless systems, it is necessary to acquire
channel information for all the transmitter (TX) and RX antenna
pairs. The conventional approach that is supported by several
standards, including IEEE 802.11ad and IEEE 802.11ay
(Ghasempour et al., 2017; Silva et al., 2018; Boulogeorgos and
Alexiou, 2019), depends on creating a set of transmission and
reception beamforming vector pairs and scanning between them
in order to identify the optimal one. During this process, the
access point (AP) sends synchronization signals using all its
possible beamforming vectors, while the user equipment (UE)
performs energy detection in all possible reception directions. In
the end of this process, the UE determines the optimal AP
beamforming vector and feed it back to the AP. Next, the
roles of the AP and UE interchange in order to allow the AP
to identity the optimal UE beamforming vector and feed it back to
it. Notice that in the second phase, the AP locks its RX to its
optimal beamforming vector. Then, channel estimation is
performed using the optimal beamforming pair and a classical
DSP technique (e.g., minimum least square error, minimum
mean square error, etc.). Let us assume that the AP and the
UE respectively have LA and LU available beamforming vectors
and that Na and Ne received signal samples are needed for energy
detection and channel estimation. As a consequence, the latency
and power consumption due to channel estimation is
proportionally to LALUNa + LUNa + Ne + 2. This indicates
that as the number of the antennas at TX and RX increases,
the number of beamforming pairs also increases; thus, the
training overhead significantly increase and the conventional
channel estimation approach becomes more complex as well
as time and power inefficient.

To better understand the importance of this challenge in THz
wireless systems, let us refer to an indicative example. Assume
that we would like to support a virtual reality (VR) application for
which the transmission distance between the AP and the UE is
20 m, a data-rate of 20 Gb/s is required with an uncoded bit error
rate (BER) in the order of 10–6. Furthermore, a false-alarm
probability that is lower than 1% is required. This indicates
that Na ≥ 100. Let us assume that the transmission bandwidth
is 10 GHz, the transmission power is set to 10 dBm, while the
receives mixer convention and miscellaneous losses are
respectively 8 and 5 dB. Additionally, the RX’s low noise
amplifier (LNA) gain is 25 dB, whereas the RX’s mixer and
LNA noise figures are respectively 6 and 1 dB. If the

transmission frequency is 287.28 GHz, both the TX and RX
need to be equipped with antennas of 35 dBi gain. Such
antennas have a beamwidth of 3.6°; hence, LA � LU � 100.
Also, by assuming that Ne � 100, the channel estimation
latency becomes equal to approximately 1 ms. Of note, VR
requires a latency that is lower than 1 µs

To address the aforementioned problem, researchers turned
their attention to regression and clustering ML-based methods.
Specifically, in (Moon et al., 2020), the authors employed a DNN-
based algorithm to predict the user’s channel in a sub-THz
multiple-input multiple-output (MIMO) vehicular
communications system. he ML algorithm of (Moon et al.,
2020) takes as input the signals received by a predetermined
number of APs and outputs a vector containing the estimated
channel coefficients. Similarly, in (Ma et al., 2020b), the authors
reported a deep learning compressed sensing (DLCS) algorithm
for channel estimation scheme in multi-user (MU) massive
MIMO sub-THz systems. The DLCS is a supervised learning
algorithm that takes as input a simulation-based generated
received signal vector as well as real measurements and
performs two functionalities, i.e. beamspace channel amplitude
estimation; and 2) channel reconstruction. The results indicate
that this approach can achieve a minimum mean square error
that is comparable with the one of the orthogonal matching
pursuit scheme. Likewise, in (Mai et al., 2021), a manifold
learning-extreme learning machine was presented for
estimating high-directional channels. In more detail, manifold
learning was employed for dimentionality reduction, whereas the
extreme learning algorithm with one-shot training was employed
for channel state information estimation. Moreover, in (Wang
et al., 2021), the authors presented a Gaussian process based ML
(GPML) algorithm to predict the channel in an unmanned aerial
vehicle (UAV) aided coordinated multiple point (CoMP)
communication system. The main idea was to provide real-
time predictions of the location of the UAV and reconstruct
the line-of-sight (LOS) channel between the AP and the UAV.
Similarly, in (Zhu et al., 2019), a sparse Bayesian learning
algorithm was introduced to estimate the propagation
parameters of the wireless system. Meanwhile, in
(Satyanarayana et al., 2019), the authors presented a neural
network (NN)-based algorithm for channel prediction and
showed that, after sufficient training, it can faithfully
reproduce the channel state.

Likewise, in (Ma et al., 2020a), a NN-based algorithm, which
consists of three hidden layers and one fully-connected layer, was
reported to obtain the beam distribution vector and reproduce the
channel state. The algorithm uses as inputs the (I/Q) components
of the received signal. It is trained offline using simulations and is
able to achieve similar performance in terms of total training time
slots and the spectral efficiency with previously proposed
approaches, like adaptive compressed sensing, hierarchical
search, and multi-path decomposition. In order for this
approach to work properly, the simulation and real world data
should follow the same distribution. Also, the propagation
parameters of both types of data should coincide.
Furthermore, in (Liu S. et al., 2020), the authors presented a
deep denoising NN assisted compressive sensing broadband
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channel estimation algorithm that exploits the relation of
angular-delay domain MIMO channels in sub-THz RIS-
assisted wireless systems. In particular, the algorithm takes as
inputs the received signals at a number of active elements of the
RIS and forward them to a compressive sensing block, which
feeds the NN. The proposed approach outperformed the well-
known simultaneous orthogonal match pursuit (SOMP)
algorithm in terms of normalized mean square error (NMSE).
The main disadvantage of deep denoising NN approach is that it
is not adaptable to changes in the propagation environment
characteristics. Furthermore, in (Li et al., 2020d), Li et al.
reported a deep leaning architecture for channel estimation in
RIS-assisted THzMIMO systems. The idea behind this approach
was to convert the channel estimation problem into the sparse
recovery problem by exploiting the space nature of THz
wireless channels. In this direction, the algorithm uses for
training the (I/Q) components of received signals that carry
pilot symbols. In the operation phase, the (I/Q) components of
the received signal are used as inputs. Finally, in (Anton-Haro
and Mestre, 2019), the authors employed k-nearest neighbors
(kNN) and support vector classifiers (SVC) to estimate the
angle-of-arrival (AoA) in hybrid beamforming wireless systems.

Signal detection is another PHY layer task. Conventional
approaches require accurate estimation of both the channel
model and the impact of hardware imperfections in order to
design suitable equalizers and detectors. However, as the wireless
environment becomes more complex and the influence of
hardware imperfections become more severe, due to the high

number of transmission and reception antennas, data detection
becomes more challenging. This fact motivates the study of ML-
based solution for end-to-end signal detection, in which no
channel and hardware imperfections equalization is required.
In this sense, in (Samuel et al., 2019), the authors employed a
DNN architecture for data detection, whereas, in (Aoudia and
Hoydis, 2019), the effectiveness of deep learning for end-to-end
signal detection was reported. Similarly, in (Katla et al., 2020), the
authors presented a deep learning assisted approach for beam
index modulation detection in high-frequency massive MIMO
systems. Additionally, in (Satyanarayana et al., 2020), the authors
demonstrated the use of deep learning assisted soft-demodulator
in multi-set space-time shift keying millimeter wave (mmW)
wireless systems. To cancel the impact of hardware imperfections
without employing equalization units, a supervised ML signal
detection approach was presented in (Jeon et al., 2018).

To sum up, PHY-specific ML algorithms usually employ as
inputs I/Q components of the received signal samples. In case of
modulation recognition, due to the lack of unlabeled data for
training, unsupervised learning approaches are adopted. On the
other hand, in channel estimation and signal detection, pilot
signals can be exploited to train the ML algorithm. As a
consequence, for channel estimation, supervised learning
approaches are the usual choice. In particular, as observed in
Table 2, both supervised and unsupervised learning approaches
were applied that return classification, regression, dimensionality
reduction and density estimation rules. Interestingly, it is
observed that for signal detection only DNN-based algorithms

TABLE 2 | ML algorithm types applied in PHY.

NN CNN RNN DNN GAN DLCS GPML Bayesian learning SOMP kNN EM

AMR

Yang et al. (2019) – ✓ ✓ – – – – – – – –

Khan et al. (2016) – – – ✓ – – – – – – –

Wu et al. (2018) – – – ✓ – – – – – – –

Shah et al. (2019) ✓ – – – – – – – – – –

Li et al. (2018) – – – – ✓ – – – – – –

Bu et al. (2020) – – – – ✓ – – – – – –

Iqbal et al. (2019) – – – – – – – – – – ✓

Channel estimation and beam tracking

Moon et al. (2020) – – – ✓ – – – – – – –

Ma et al. (2020b) – – – – – ✓ – – – – –

Mai et al. (2021) ✓ – – – – – – – – – –

Wang et al. (2021) – – – – – – ✓ – – – –

Zhu et al. (2019) – – – – – – – ✓ – – –

Satyanarayana et al. (2019) ✓ – – – – – – – – – –

Ma et al. (2020a) ✓ – – – – – – – – – –

Liu et al. (2020b) – – – – – – – – ✓ – –

Li et al. (2020d) – – – ✓ – – – – – – –

Anton-Haro and Mestre (2019) – – – ✓ – – – – – ✓ –

Signal detection

Samuel et al. (2019) – – – ✓ – – – – – – –

Aoudia and Hoydis (2019) – – – ✓ – – – – – – –

Katla et al. (2020) – – – ✓ – – – – – – –

Satyanarayana et al. (2020) – – – ✓ – – – – – – –

Jeon et al. (2018) – – – ✓ – – – – – – –
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have been reported. Finally, it is worth noting that the main
requirement for the algorithm selection in most cases was to
provide high adaptation to the THz wireless system. It is worth
mentioning that, for the sake of competence, Table 2 includes
some contributions that although do not refer to THz wireless
systems, they can be straightforwardly applied to them. For
example, (Shah et al., 2019; Yang et al., 2019) and (Li et al.,
2018) can be applied to any system that employ I/Q modulation
and demodulations approaches, whereas (Khan et al., 2016) is
suitable for the ones that use coherent RXs. Of note, according to
(Boulogeorgos et al., 2018b), coherence RXs are a usual choice in
THz wireless fiber extenders. Similarly, since an inherent
characteristic of THz channels is the high temporal
correlation, the ML methodology presented in (Wu et al.,
2018) is expected to find application in THz wireless systems.
Additionally, despite the fact that the ML algorithms in (Zhu
et al., 2019; Ma et al., 2020a; Liu S. et al., 2020; Ma et al., 2020b;
Katla et al., 2020; Moon et al., 2020; Satyanarayana et al., 2020;
Mai et al., 2021; Wang et al., 2021) were applied to mmW systems
and exploit the spatio-temporal and directional characteristics of
the channels in this band, the same approach can be used in THz
systems that have the similar particularities. Finally, the ML
approach presented in Jeon et al. (2018) can be applied in any
MIMO regardless the operating frequency.

2.2 MAC and RRM Layer
MAC and RRM layers are responsible of providing uninterrupted
high quality-of-experience (QoE) to mutliple end users. In
contrast to lower-frequency communications, where omni-
directional or quasi-omni-directional links are established, in
THz wireless systems both the AP/BS and the UE employ
beamforming. As a result, an additional to time and frequency
resource, i.e., space, is created. The optimal exploitation of the
tertiary nature of the channel require the design of beamforming
approaches2 and channel allocation strategies. Moreover, to
satisfy the end user’s data rate demands and to support non-
orthogonal multiple access (NOMA), power management
policies are required. Finally, to address the impact of
blockage, environmental awareness need to be obtained by the
wireless THz network and proactive blockage avoidance
mechanisms are a necessity. Motivated by the above, the rest
of this section discuss ML-based beamforming designs, channel
allocation strategies, power management schemes and blockage
avoidance mechanisms.

Beamforming design is a crucial task for MIMO and MU-
MIMO THz wireless systems. However, conventional
beamforming approaches strongly rely on accurate channel
estimation; as a result, their complexity is relatively high. To
simplify the beamfoming design process, a great amount of
research effort was put on investigating ML-based approaches.

In more detail, in (Kwon et al., 2019), the authors presented a
DNN for determining the optimal beamforming vectors that
maximizes the sum rate in a two-user multiple-input single-
output (MISO) wireless system. The ML algorithm uses as inputs
the real and imaginary part of the complex MISO channel
coefficients as well as the transmitted power. For training the
ML model, the cross-entropy is used as a cost function, which
evaluates the errors by calculating the difference between
probability distributions labeled and model outputted data.
Three DNN architectures to approximate the hybrid
beamformer’s singular value decomposition, with varying
levels of complexity were discussed in (Peken et al., 2020a).
The architectures take as inputs the real and imaginary
components of the MIMO channel coefficients. The first
architecture predicts a predetermined number of the most
important singular values and vectors of a given channel
matrix by employing a single DNN. The second architecture
employs k DNNs. Each one of them returns the largest singular
value and corresponding right and left singular vectors of the
MIMO channel matrix. The third architecture is suitable for
channel matrices of rank-1 and outputs a predetermined number
of singular values and vectors by recursively using the same DNN.
The architectures are trained through comparison of the
extracted channel matrices to the channel matrices extracted
by the ML-models. The proposed ML-based architectures were
shown, by means of Monte Carlo simulations, to improve the
system’s date rate by up to 50−70% compared to conventional
approaches.

The main disadvantage of the ML-architectures presented in
(Peken et al., 2020a) is that they require a large number of
estimations of channel matrices for training, which may
generate an unaffortable latency in a fast changing
environment. To counterbalance this, in (Mo et al., 2019), an
unsupervised K-means algorithm is employed, which exploits the
electric-field response of each antenna element in order to design
beam codebooks that optimize the average received power gain of
UEs that are located within a cluster. Although this approach does
not require large training periods, it is sensitive to drastical
changes of the wireless environment, which may arise due to
users or scatterers/blockers movement. Meanwhile, in (Sun et al.,
2020), the authors formulated an interference managing problem
by means of coordinated beamforming in ultra-dense networks
that aims at “almost real-time” sum rate maximization. To solve
the aforementioned problem, a Q-learning based ML algorithm
was introduced, which only require large scale channel fading
parameters and achieves similar results to the ones of the
corresponding analytical approach that demands full channel
state information. Note that the Q-learning algorithm in (Sun
et al., 2020) takes as input the state of the system, i.e. a logarithmic
transformation of the second-norm of theMIMO channel matrix.
Likewise, in (Alkhateeb et al., 2018a), the authors reported a
centralized deep learning based algorithm for coordinated
beamforming vector design in high-mobility and high-
directional wireless systems. This algorithm uses as inputs the
I/Q components of a virtual omni-directional received signal and
extracts a prediction for the optimal beamforming vectors. To
train the deep-learning algorithm pilot symbols are employed,

2It is worth noting that in lower-frequency systems, beamforming design has been
usually considered to be part of the PHY layer. However, according to IEEE
802.11.3ay (Boulogeorgos et al., 2017), since beamforming manages the spatial
resources of THz systems, although it is conducted at the baseband, part of it
belongs to the PHY, while the other to the MAC layer.
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which are exchanged between the UE and basestations (BSs)
within the coherence time. This approach provided high-
adaptation with the cost of creating important overhead due
to the message exchange need from/to BSs to/from a central/
cloud processing unit. In (Aljumaily and Li, 2019), a supervised
NN was employed, which is based on singular value
decomposition, to design hybrid beamformers in massive
MIMO systems that are capable of mitigating the impact of
limited resolution phase shifters. The proposed approach is
executed in a single BS and achieve a higher spectral efficiency
compared with unsupervised learning ones. However, the
performance enhancement demands a relatively high training
period.

To address this inconvenience, in (Lizarraga et al., 2019), the
authors presented a reinforcement learning algorithm to jointly-
design the analog and digital layer vectors of a hybrid
beamformer in large-antenna wireless systems. The algorithms
take as input the achievable data rate and returns the phase shifts
of each antenna element. The disadvantage of this algorithm is
that it is unable to achieve the same performance as the
corresponding supervised ML one. Moreover, in (Huang S.
et al., 2020), the authors studied the use of extreme learning
machine for jointly optimizing transmit and receive hybrid
beamforming in MU-MIMO wireless systems. The algorithm
requires as inputs the real and imaginary parts of the MIMO
channel coefficients and returns the an optimal beamforming
vectors estimation. As a training cost function the difference
between the targeted and achievable SNR is used. In (Huang et al.,
2020c), the extreme learning and NNs were employed in order to
extract the transmit and receive beamforming vectors in full-
duplex massive MIMO systems.

In (Elbir and Mishra, 2019), a CNN with quantized weights
(Q-CNN) algorithm was utilized as a solution to the problem of
jointly designing transmit and receive hybrid beamforming
vectors. As input, the real and imaginary components of the
MIMO channel matrix is used. Q-CNN has limited memory and
low-overhead demands; hence, it is suitable for deployment in
mobile devices. Furthermore, in (Chen J. et al., 2020), three NN-
based approaches for designing hybrid beamforming schemes
were reported. The first one is based on mapping various hybrid
beamformers to NNs and thus transforming the beamforming
codeword design non-convex optimization problem into a NN
training one. The second approach is an extension of the first one
that aims at optimizing the beam vectors for the case of MU
access. In comparison to the aforementioned approach, the third
one takes into account the hardware limitations, namely low-
resolution phase shifters and analog-to-digital converters
(ADCs). Simulation results revealed that the proposed
approaches outperform analytical ones in terms of BER. All
the aforementioned approaches in (Chen J. et al., 2020)
require as input the MIMO channel matrix. In (Long et al.,
2018), the authors presented a support vector machine (SVM)
algorithm for analog beam selection in hybrid beamforming
MIMO systems that uses as inputs the complex coefficients of
the channel samples. This approach provides near-optimal uplink
sum rates with reduced complexity compared to conventional
strategies. On the other, it requires sufficient training data that

leads to high training periods, when the characteristics of the
wireless channel changes.

To countermeasure the aforementioned problem,
unsupervised learning approaches were employed in several
works (Kao et al., 2018; Peken et al., 2020b; Lin et al., 2020).
In more detail, in (Peken et al., 2020b), an autoencoding-based
SVD methodology was used in order to estimating the optimal
beamforming codes at the TX and RX, while, in (Lin et al., 2020),
Lin et al. introduced a deep NN architecture for beamforming
design that outperforms several previously presented deep
learning approaches. Additionally, in (Kao et al., 2018), a ML-
based clustering strategy with feature selection was employed to
design three dimensional (3D) beamforming. In particular, the
algorithm has three steps. In the first step, it uses pre-collected
data in order to obtain a set of eigenbeams, while, in the second
one, the aforementioned sets are used to estimate the channel
state information, which in the third step is feed to a Rosenbrock
search engine. The two first steps are executed offline, whereas,
the third one is an online process. As the number of antenna
elements increases, the size of the eigenbeam vector set also
increases; thus, the practicality of this approach may be
questionable in massive MIMO systems. All the
aforementioned ML algorithms employ as input the MIMO
channel matrix.

MLwas also employed to optimize the beamforming vectors of
relaying and reflected assisted high-directional THz links. For
example, in (Li L. et al., 2020), Li et al. presented a cross-entropy
hybrid beamforming vector estimation deep reinforcement
learning-based scheme for unmanned aerial vehicle (UAV)-
assisted massive MIMO network. The deep reinforcement
learning method was employed in order to minimize the AP
transmission power by jointly optimizing the AP and RIS active
and passive beamforming vectors. Finally, in (Liu et al., 2020c),
Liu et al. used Q-learning in order to jointly designing the
movement of the UAV, phase shifts of the RIS, power
allocation policy from the UAV to mobile UEs, as well as
determining the dynamic decoding order of a NOMA scheme,
in a RIS-UAV assisted THz wireless system. Both the ML
algorithms utilized in (Li L. et al., 2020) and (Liu et al., 2020c)
use as input the estimated channel coefficient matrix.

Another challenging and important task in THz wireless
networks is channel allocation. Of note, in this band, the radio
resource block (RRB) has three dimensions, i.e., time, frequency,
and space. As a result, the additional DoF, namely space, creates a
more complex resource allocation problem. Aspired by this fact,
several contributions studied the use ML approaches in order to
design suitable resource allocation policies. Indicative examples
are (Ahmed and Khammari, 2018; Peng et al., 2019; Tauqir and
Habib, 2019; Huang H. et al., 2020; Cao et al., 2020; Jang and
Yang, 2020). In particular, in (Cao et al., 2020), a centralized NN
was employed to return the channel allocation strategy that
minimizes the co-channel interference in an ultra-dense
wireless network. The NN takes as input a binary matrix that
contains the user-channel association and estimates the up-link
SINR. In (Peng et al., 2019), a centralized supervised cluster-based
ML interference management channel allocation that takes into
account the time-varying network load was introduced. As inputs
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to the algorithm, the RRB allocation data, the acknowledgement
(ACK) and the negative acknowledgement (NACK) data
collected from the network are used. The algorithm outputs an
estimation of the interference intensity.

To deal with the ever changing topology and time-varying
channel conditions of ultra-dense mobile wireless networks, in
(Jang and Yang, 2020), a deep Q-learning model was presented
that uses quantized local AP and UE channel state information to
cooperatively allocate the channels in a downlink scenario. The
algorithm is self-adaptive and does not require any training.
Additionally, in (Tauqir and Habib, 2019), a DNN was used
that takes as inputs the channel state information and returns the
spatial resource block (i.e. beam) allocation in massive MIMO
wireless systems. Moreover, in (Huang H. et al., 2020), a deep
learning approach was proposed for channel and power
allocation in MIMO-NOMA wireless systems that aims at
maximizing the sum data rate and energy efficiency of the
overall network. The approach uses as inputs the channel
vectors, precoding matrix and the power allocation factors.
Finally, in (Ahmed and Khammari, 2018), a feedforward NN
that takes as inputs the uplink channel state information and
returns a channel allocation strategy in a rank and power
constrained massive MIMO wireless system, was employed.

For multi-antenna THz transceivers, the hardware complexity
and power management become a burden toward practical
implementation (Han et al., 2015). To lighten the power
management process, several researchers turned their eyes on
ML. For instance, in (Zhang et al., 2020a), the K-means algorithm
was employed to cluster the users of a NOMA-THz wireless
network and to maximize the energy efficiency by optimizing the
power allocation. The K-means algorithm in (Zhang et al., 2020a)
requires as inputs the number of clusters and set of users as well as
the channel vectors and outputs the UE-AP association matrix.
Moreover, in (Kwon et al., 2020), Kwon et al. reported a self-
adaptive DRL deterministic policy gradient-based power control
of BS and proactive cache allocation toward BSs in distributed
Internet-of-vehicle (iov) networks. In (Kwon et al., 2020), the
system’s state that is the input of the DRL, takes into account the
available and total buffer capacity of each BS, the average e quality
state of the provisioned video at each UE. Meanwhile, in (Meng
et al., 2019), a transfer learning approach that is based to the
Q-learning algorithm, was used to allocate power in MU cellular
networks, in which each cell has different user densities. Similarly,
Q-learning was employed in (Amiri and Mehrpouyan, 2018) to
develop a self-organized power allocation strategy in mmW
networks. Finally, in (Zhang et al., 2020b), Zhang et al.
presented a semi-supervised learning and DNN for sub-
channel and power allocation in directional NOMA wireless
THz networks. The algorithm requires as inputs the set of
users and their channel vectors as well as a predetermined
number of clusters.

Another burden that THz wireless system face is blockage.
Sudden blockage of the THz LOS path cause communication
interruptions; thus, creates a detrimental impact on the system’s
reliability. Further, re-connections to the same or other BS/AP
demands high beam training overhead, which in turn result to
high latency. To avoid this, some contributions discuss the use of

ML in order to predict dynamic (moving) obstacles position and
their probability to block the LOS between the AP/BS and UE in
order to proactively hand-over users to other AP/BS. Towards
this direction, in (Alkhateeb et al., 2018b), a reinforcement
learning algorithm was used to create a proactive hand-off
blockage avoidance strategy. The state of the system that is
defined by the beam index of each AP/BS at every time step is
used as an input to the reinforcement learning agent. Moreover,
in (Khan and Jacob, 2019), NN and CoMP clustering was
employed to predict the channel state and avoid blockage. In
the scenario under investigation, the authors consider dynamic
blockers (i.e., cars) that perform deterministic motion. The
presented algorithm use as inputs the UE location as well as
the system’s clock time. Similarly, in (Iimori et al., 2020),
stochastic gradient descent (SGD) was employed to design
outage-minimization robust directional CoMP systems by
selecting communication paths that minimize the blockage
probability. In this direction, the algorithm uses as inputs an
initial estimation of the beamforming vector as well as the
channel state information and returns the optimized
beamforming vector. Finally, in (Jia et al., 2020), a DNN was
employed to provide environmental awareness to an RIS-assisted
wireless sub-THz network that performs beam switching between
direct and RIS-assisted connectivity in order to avoid blockage.
The inputs of the algorithm in (Jia et al., 2020) are the network
topology and the links line-of-sight conditions.

To conclude and according to Table 3, supervised,
unsupervised, and reinforcement learning were employed to
solve different problems in MAC layer. In particular, for
beamforming design, where the main requirement is
adaptation to the ever changing propagation environment,
unsupervised learning was used to cluster UEs, supervised
learning was applied to design appropriate codebooks, and
reinforcement learning was employed for beam refinement
and fast adaptation. As a consequence, reinforcement learning
approaches are attractive for mobile and non-deterministic
varying wireless environments. On the other hand, supervised
learning approaches are more suitable for static environments or
environments that change in deterministic way. A key
requirement that supervised learning approaches have is the
need to be training through a set of channel or received signal
vectors that are accompanied by an achievable performance
indicator. The indicator can be the data-rate, outage
probability or any other KPI of interest. Likewise,
unsupervised clustering and supervised learning were used for
channel allocation, which was performed based on the UE
communication demands. Due to lack of extensive training
data sets and need of adaptation, unsupervised and
reinforcement learning approaches were employed for power
management. Finally, supervised and reinforcement learning
were used to provide proactive policies for blockage avoidance
based on statistical or instantaneous information, respectively. Of
note, some of the contributions in Table 3 refer to wireless
systems that employ the same technological enablers as THz
communications without specifying the operating frequency
band. Indicative examples are (Aljumaily and Li, 2019; Elbir
and Mishra, 2019; Kwon et al., 2019; Peken et al., 2020a; Liu et al.,
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2020c; Lin et al., 2020; Sun et al., 2020) that discuss ML
approaches for beamforming design in analog and hybrid
beamforming systems, as well as (Ahmed and Khammari,
2018; Peng et al., 2019; Tauqir and Habib, 2019; Cao et al.,
2020; Jang and Yang, 2020), which present ML-based channel
allocation approaches for ultra-dense networks in which the
communication channels are high directional. Apparently, the
aforementioned approaches are suitable for THz wireless
deployments.

2.3 Network Layer
The ultra-wideband extremely directional nature of the sub-THz and
THz links in combination with the non-uniform UE spatial
distribution may lead to inefficient user association, when the
classical minimum-distance criterion is employed. Networks
operating in such frequencies can be considered noise- and
blockage-limited, due to the fact that high path and penetration

losses attenuate the interference (Boulogeorgos et al., 2018b;
Papasotiriou et al., 2018). Hence, user association metrics designed
for interference limited homogenous systems are not well suited to
sub-THz and THz networks (Boulogeorgos A.-A. A. A. et al., 2018).
As a result, user association should be designed to meet the dominant
requirements of throughput and guarantee low blockage probability.
Another challenge that user association schemes need to face is the
user orientation, which is observed to have a detrimental effect on the
performance of THz wireless systems (Boulogeorgos et al., 2019;
Boulogeorgos and Alexiou, 2020a).

Scanning the technical literature, we can identify several
contributions that employ ML for user association in sub-THz
and THz wireless networks (Zhang H. et al., 2019; Khan et al.,
2019; Liu R. et al., 2020; Khan L. U. et al., 2020; Chou et al., 2020;
Li et al., 2020c; Elsayed et al., 2020; Ghadikolaei et al., 2020;
Hassan et al., 2020). In more detail, in (Liu R. et al., 2020), the
authors employedmulti-label classificationML that takes as input

TABLE 3 | ML algorithm types applied in MAC.

NN DNN k-Means Q-learning DRL Q-CNN Autoencoder SGD

Beamforming design

Kwon et al. (2019) – ✓ – – – – – –

Peken et al. (2020a) – ✓ – – – – – –

Mo et al. (2019) – – ✓ – – – – –

Sun et al. (2020) – – – ✓ – – – –

Alkhateeb et al. (2018a) – ✓ – – – – – –

Aljumaily and Li (2019) ✓ – – – – – – –

Lizarraga et al. (2019) – – – – ✓ – – –

Huang et al. (2020b) ✓ – – – – – – –

Huang et al. (2020c) ✓ – – – – – – –

Elbir and Mishra (2019) – – – – ✓ – –

Chen et al. (2020a) ✓ – – – – – – –

Long et al., (2018) ✓ – – – – – – –

Peken et al. (2020b) – – – – – – ✓ –

Lin et al. (2020) – ✓ – – – – – –

Kao et al. (2018) – – ✓ – – – – –

Li et al. (2020a) – – – – ✓ – – –

Liu et al. (2020c) – – – ✓ – – – –

Channel allocation

Cao et al. (2020) ✓ – – – – – – –

Peng et al. (2019) – – ✓ – – – – –

Jang and Yang (2020) – – – ✓ – – – –

Tauqir and Habib (2019) – ✓ – – – – – –

Huang et al. (2020a) – ✓ – – – – – –

Ahmed and Khammari (2018) ✓ – – – – – – –

Power management

Zhang et al. (2020a) – – ✓ – – – – –

Kwon et al. (2020) – – – – ✓ – – –

Meng et al. (2019) – – – ✓ – – – –

Amiri and Mehrpouyan (2018) – – – ✓ – – – –

Zhang et al. (2020a) – ✓ – – – – – –

Blockage avoidance

Zhang et al. (2020a) – ✓ – – – – – –

Alkhateeb et al. (2018b) – – – ✓ – – – –

Khan and Jacob (2019) ✓ – – – – – – –

Iimori et al. (2020) – – – – – – – ✓
Jia et al. (2020) – ✓ – – – – – –
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both topological as well as network characteristics and returns a
user association policy that satisfy users’ latency demands.
Meanwhile, in (Li et al., 2020c), the authors presented an
online deep reinforcement learning (DRL) based algorithm for
heterogeneous networks, where multiple parallel DNNs generate
user association solutions and shared memory is used to tore the
best association scheme. Moreover, in (Khan L. U. et al., 2020),
Khan et al. introduces a federate learning approach to jointly
minimize the latency and the effect of model accuracy losses due
to channel uncertainties.The inputs of the ML algorithm
presented in (Khan L. U. et al., 2020) are the device
association and the resource block matrices, while the output
is the resource alocation matrix. Likewise, in (Chou et al., 2020), a
deep gradient reinforcement learning based policy was presented
as a solution to the joint user association and resource allocation
problem in mobile edge computing. The reinforcement learning
agent of (Chou et al., 2020) takes as input the system state that is
described by the current backhaul and resource block usage.

In (Hassan et al., 2020), two clustering approaches, namely
least standard deviation user clustering and redistribution of BSs
load-based clustering were presented that take into account the
characteristics of both radio frequency (RF) and THz as well as
the traffic load across the network in order to provide appropriate
associations in RF and THz heterogeneous networks.
Furthermore, in (Ghadikolaei et al., 2020), a transfer learning
methodology was employed for inter-operator spectrum
sharing in mmW cellular networks. The aforementioned
methodology takes as input the network topology, the
association matrix, the coordination matrix, the effective
channels and outputs approximate the achievable data-rate. In
(Zhang H. et al., 2019), an asynchronous distributed DNN
based scheme, which takes as inputs the channel coefficient
matrix, was reported as a solution to the joint user association
and power minimization problem. In (Elsayed et al., 2020),
Elsayed et al. reported a transfer Q-learning based strategy
for joint user-cell association and selection of number of
beams for the purpose of maximizing the aggregate network
capacity in NOMA-mmW networks. Finally, in (Khan et al.,
2019), the authors exploited distributed deep reinforcement
learning (DDRL) and the asynchronous actor critic algorithm
(A3C) to design a low complexity algorithm that returns a
suboptimal solution for the vehicle-cell association problem
in mmW. The DDRL takes as input the current state of the
network that is described by a set of a predetermined number of
channel observation, the current achievable and required
data rates.

After associating UEs to APs, uninterrupted connectivity
needs to be guaranteed. However, the network is continuously
undergoing change; thus, its management should be adaptive as
well. This is where the conventional heuristic based exploration of
state space needs to be extended to support UE mobility in an
online manner. Aspired by this, several contributions presented
ML-based mobility management solutions that aim at accurately
tracking the UE and proactively steering the AP and UE beams
(Burghal et al., 2019; Guo et al., 2019) as well as performing hand-
overs between beams and APs/BSs (Yan et al., 2019; Ali et al.,
2020). In particular, in (Burghal et al., 2019), a RNN with a

modified cost function that takes as input the observed received
signal as well as the previous AoA estimation, was employed to
track the AoA in a mmW network. The proposed approach was
shown to outperform the corresponding Kalman-based one in
terms of accuracy. Moreover, in (Guo et al., 2019), a long short
term memory (LSTM) structure was designed to prevent the user
position in order to proactively perform beam steering in mmW
vehicular networks. The structure uses as input the estimated by
the BS channel vector. Additionally, in (Yan et al., 2019), the
authors employed kNN to predict handover decisions without
involving time-consuming target selection and beam training
processes in mmW vehicle-to-infrastructure (V2I) wireless
topologies. Finally, in (Yajnanarayana et al., 2020), centralized
Q-learning was employed that takes into account the current
received signal strength in order to provide real-time controlling
capabilities to the hand-over process between neighbor BS in
directional wireless systems.

Another challenging task of THz wireless networks is routing.
The limited transmission range in combination with the
transmission power constraints and memory limitations of
mobile devices render conventional routing strategies that are
employed in lower-frequency networks unsuitable for THz ones.
Motivated by this, in (Wang C.-C. et al., 2020), the authors
presented a reinforcement learning routing algorithm and
compared it with NN and decision tree-based solutions. The
results showed that the reinforcing learning approach not only
provides on-line routing optimization suggestions but also
outperforms the NN and decision tree ones. To the best of the
authors knowledge, the aforementioned contribution is the only
published one that discuss ML-based routing policies in high-
frequency wireless networks.

To create a fully automated THz wireless network or even
integrate THz technologies into current cellular networks, one of
the essential problems that a network manager need to solve is
traffic clustering. An accurate traffic clustering allows the
detection of suspicious data and can aid in the identification
of security gaps. However, as the diversity of the data increases,
due to their generation for different type of sources, e.g., sensors,
artificial/virtual reality devices, robotics, etc, traffic clusteringmay
become a difficult task. Additionally, labeled samples are usually
scarce and difficult to obtain.

To address the aforementioned challenges, several
researchers turned their eye to ML. In particular, in
(Noorbehbahani and Mansoori, 2018), Noorbehbahani et al.
presented a semi-supervised method for traffic classification,
which is based on x-means clustering algorithm and a label
propagation technique. This approach takes as input network
traffic flow data. It was tested in real-data and achieved 95%
accuracy using a limited labeled data. Similarly, in (Bin and Hao,
2010), the authors reported a semi-supervised classification
method that exploits both labeled and unlabeled samples.
This method combines offline particle swarm optimization
(PSO) to cluster the labeled and unlabeled samples of the
dataset with a mapping approach that enables matching
clusters to applications.

In (Wang et al., 2011), Wang et al. applied K-means algorithm
that takes into account the correlations of network domain
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background information and transforms them into pair-wise
must-link constraints that are incorporated in the process of
clustering. Experimental results highlighted that incorporating
constraints in the clustering process can significantly improve the
overall accuracy. Furthermore, in (Liu et al., 2007), Liu et al.
employed feature selection to identify optimal feature sets and log
transformation to improve the accuracy of K-means based

network traffic classification. Another use of K-means was
presented in (Kumari et al., 2016), where the authors used it
to detect networks cyber-attacks. In particular, the K-means in
(Kumari et al., 2016) takes as input network traffic-related data
and identifies irregularities. Moreover, a network traffic feature
selection scheme that provides accurate suspicious flow detection
was reported in (Su et al., 2018), whereas, in (Wang et al., 2013),

TABLE 4 | ML algorithm types applied in network layer.

NN DNN kNN Decision
trees

Random
forest

Naive
bayes

Bayesian
network

k-Means x-Means Feature
selection

EM Multi-layer
perception

DRL Q-learning A3C

User association

Li et al. (2020c) – – – – – – – – – – – – ✓ – –

Khan et al.
(2020b)

✓ – – – – – – – – – – – – – –

Chou et al.
(2020)

– – – – – – – – – – – – ✓ – –

Hassan et al.
(2020)

– – – – – – – ✓ – – – – – – –

Ghadikolaei
et al. (2020)

– – – – – – – – – – – – – ✓ –

Zhang et al.
(2019b)

– ✓ – – – – – – – – – – – – –

Elsayed et al.
(2020)

– – – – – – – – – – – – – ✓ –

Khan et al.
(2019)

– – – – – – – – – – – – ✓ – ✓

Mobility management

Burghal et al.
(2019)

✓ – – – – – – – – – – – – – –

Guo et al. (2019) ✓ – – – – – – – – – – – – – –

Yan et al. (2019) – – ✓ – – – – – – – – – – – –

Yajnanarayana
et al. (2020)

– – – – – – – – – – – – – ✓ –

Routing

Wang et al.
(2020a)

✓ – – ✓ – – – – – – – – – – –

Traffic clustering

Noorbehbahani
and Mansoori
(2018)

– – – – – – – – ✓ – – – – – –

Bin and Hao
(2010)

✓ – – – – – – – – – – – – – –

Wang et al.
(2011)

– – – – – – – ✓ – – – – – – –

Liu et al. (2007) – – – – – – – ✓ – – – – – – –

Kumari et al.
(2016)

– – – – – – – ✓ – – – – – – –

Su et al. (2018) – – – – – – – – – ✓ – – – – –

Wang et al.
(2013)

– – – – ✓ – – – – – – – – – –

Auld et al.
(2007)

– – – – – – ✓ – – – – – – – –

Kruber et al.
(2018)

– – – – ✓ – – – – – – – – – –

Singh (2015) – – – – – – – ✓ – – ✓ – – – –

Wang and Yu
(2008)

– – – ✓ – ✓ ✓ ✓ – – – ✓ – – –

Zhang et al.
(2019a)

✓ – – – – – – – – – – – – – –

Frontiers in Communications and Networks | www.frontiersin.org September 2021 | Volume 2 | Article 70454612

Boulogeorgos et al. ML: A THz Networks Catalyst

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


random forest was employed to perform the same task. Also,
Bayesian ML was used to (Auld et al., 2007), which take as input
transport control protocol traffic flaws in order to identify
internet traffic. Although, this approach does not require
access to packet content, it demands a significant set of
training data. To deal with the lack of training data, in
(Kruber et al., 2018), the authors presented an unsupervised
random forest clustering methodology for automatic network
traffic categorization. Meanwhile, in (Singh, 2015), the
performance of EM and K-means based algorithms for
network traffic clustering were compared and it was shown
that K-means outperforms EM in terms of accuracy. In
addition, in (Wang and Yu, 2008), the authors evaluated and
compared the effectiveness of a number of supervised,
unsupervised and feature selection algorithms in real-time
traffic classification problem, which takes as input network’s
statistical characteristics. Naive Bayes, Bayesian networks,
multilayer perception, decision trees, K-means, and best-first
search were among the algorithms that their performance were
quantified. The results revealed that in terms of accuracy decision
trees outperforms all the aforementioned algorithms. Finally, in
(Zhang C. et al., 2019), the authors combined LSTMwith CNN in
order to develop a two-layer convolution LSTM mechanism
capable of accurately clustering traffic generated by different
application types.

Table 4 connects the published contributions to the ML
algorithms that was applied in the network layer. Note that
some of the contributions in these table does not explicitly
refer to THz networks, however, the presented algorithms can
find applications to THz wireless systems, due to system and
network topologies commonalities. For example in (Li et al.,
2020c), the ML approach can be used in any heterogeneous
network that consists of macro-, pico- and femto-cells. Notice
that femto cells can be established in the THz band. Similarly, the
contributions in (Liu et al., 2007; Bin and Hao, 2010;
Noorbehbahani and Mansoori, 2018; Zhang H. et al., 2019;
Khan L. U. et al., 2020; Chou et al., 2020) and (Kumari et al.,
2016) can be applied in any femto-cell network that support
high data traffic demands, such as the THz wireless networks,
independently from the operation frequency. Moreover, (Auld
et al., 2007; Wang et al., 2013; Kruber et al., 2018; Su et al., 2018;
Burghal et al., 2019; Guo et al., 2019; Khan et al., 2019; Yan et al.,
2019; Elsayed et al., 2020; Ghadikolaei et al., 2020) and (Wang
and Yu, 2008) refer to mmW networks that support data-rates
in the order of 100 Gb/s in 60 GHz. In such networks, both the
AP and UEs employ high-gain antennas. Notice that THz
wireless network are also designed to support data-rates in
the order of 100 Gb/s and establish high directional links in
order to ensure an acceptable transmission range. Thus, the
aforementioned contributions can be adopted to THz wireless
networks.

From Table 4, we observe that based on the network nature,
i.e. fixed or mobile topology, supervised and reinforcement
learning approaches are respectively employed for user
association. Additionally, when the network had prior
knowledge of the UE possible direction supervised learning
approaches were employed for mobility management. On the

other hand, in problems in which the UE motion is stochastic,
reinforcement learning mechanisms were adopted. For routing,
where accuracy plays an important role and no instantaneous
adaptation is required, supervised learning was used. Finally, for
traffic clustering both supervised and unsupervised learning were
employed. In more detail, unsupervised learning seems an
attractive approach when searching for data irregularities.

2.4 Transport Layer
In order to design self-management wireless network that
embrace efficient automation, accurate traffic prediction is
necessary. However, traffic prediction is a challenging task due
to the nonlinear and complex nature of traffic patterns. In face of
this challenge, ML-based approaches was recently discussed. In
this sense, in (Zhang C. et al., 2019), Zhang et al. presented a deep
transfer learning algorithm that combines spatial-temporal cross-
domain NNs with LSTM in order to extract the relationship
between cross-domain datasets and external factors that influence
the traffic generation. Building upon the extracted relationship,
traffic predictions were conducted. Similarly, in (Zeng et al.,
2020), a cross-service and regional fusion transfer learning
strategy, which was based on spatial-temporal cross-domain
NNs was reported. The modeled reported in (Zeng et al.,
2020) takes as input wireless cellular traffic data of Milan area.
Likewise, in (Qiu et al., 2018), the authors investigated the use of
RNNs that are fed by traffic data for extracting the data spatio-
temporal correlation; thus, improve the data traffic prediction.
Moreover, a CNN was used in (Zhang et al., 2018) to predict the
traffic demands in cellular wireless networks.

In (Azari et al., 2019), a decision tree and random forest based
method was presented for user traffic prediction that enables
proactively resource management. The algorithm inputs are the
number and size of both uplink and downlink packets, the ratio of
number of uplink to downlink packets, as well as the used
communication protocol. Additionally, in (Senevirathna et al.,
2020), a LSTM architecture was designed in order to predict the
traffic variations in a machine-type communication scenario, in
which the devices access the network in a random fashion.
The algorithm takes as input the network traffic flow. In (Li
Y. et al., 2020), SVM was employed to predict video traffic and
improve the video stream quality in beyond the fifth generation
(B5G) networks. Finally, in (Chen M. et al., 2020), a single NN
architecture, in which the weights connected to the output
are adjusted by means of linear regression, whereas other
weights are randomly initialized, was employed. Simulation
results revealed that this approach outperforms LSTM in
terms of execution time.

Wireless content caching in THz wireless networks is an
attractive way to reduce the service latency and alleviate
backhaul pressure. The main idea is to proactively transfer the
content to be requested by a single of a cluster of UEs to the
nearest possible BS/AP. Towards this direction, several
researchers presented ML-based caching policies (Cheng et al.,
2019; Jiang et al., 2019; Saputra et al., 2019; Wang X. et al., 2020;
Kirilin et al., 2020; Ye et al., 2020). Specifically, in (Ye et al., 2020),
the authors reported a device to primary and secondary BS
clustering approach based on the requested content location in
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mmW ultra-dense wireless networks. Moreover, in (Kirilin et al.,
2020),the authors presented a reinforcement learning
architecture, which increases the caching hit rate by deciding
whether or not to admit a requested object into the content
delivery network, and whether to evict contents, when the cache is
full. Moreover, in (Cheng et al., 2019), Bayesian learning method
to predict personal preferences and estimate the individual
content request probability, which reflects preferences in order
to precache the most popular contents at the wireless network
edge, like small-cell BSs. The algorithm takes as input the channel
matrix. Meanwhile, in (Jiang et al., 2019), Wei et al. proposed a
Q-learning based approach to coordinate the caching decision in
a mobile device-to-device network. Additionally, in (Saputra
et al., 2019), a DNN architecture, which takes as inputs each
user and requested content identifier, was introduced that enables
network’s mobile edge nodes to collaborate and exchange
information in order to minimize the content demand
prediction error with ensuring no mobile user privacy leakage.
Finally, in (Wang X. et al., 2020), a federated reinforcement
learning based algorithm was presented that allows BSs to
cooperatively device a common predictive model by
employing, as initial local training inputs, the first-round
training parameters of BSs, and exchange near-optimal local
parameters between the participating BSs.

Despite the paramount importance that latency plays in THz
wireless systems, another challenge that need to be addressed is
the limited computing resource and battery of mobile UEs. To
address this challenge, computation offloading approaches were

proposed. These approaches demand intelligence in order to
decide in which of the networks nodes the tasks should be
offloaded in order to guarantee applications’ latency demands.
Towards this direction, in (Xu et al., 2019), the authors described
a DNN architecture that minimizes the total task transmission
latency and overhead by optimizing the task placement in cloud
and edge computing nodes based on the computation resources
and load of the participating nodes. Likewise, in (Le and Tham,
2018), the authors solved the same problem applying deep
reinforcement learning and assuming that the tasks can be
offloaded either in nearby cloudlets by means of device-to-
device communications. Similarly, in (Khan I. et al., 2020),
Khan et al. used DRL to maximize the energy efficiency of
cloud and mobile edge computing assisted wireless networks
that support a large variety of machine type applications, under
the constraints of computing power resources and delays.
Moreover, in (Qi et al., 2018), Qi et al. presented an
unsupervised K-means clustering algorithm in order to
identify center user group sets that enhance task offloading
and allow load balancing. Additionally, in (Alfakih et al.,
2020), the authors reported a Q-learning based algorithm that
decides whether a UE’s tasks should be offloaded in the nearest
edge server, adjacent edge server, or remote cloud in order to
minimize the total system cost that is quantified in terms of
energy consumption and computing time delay. In this algorithm
the uploading and downloading bandwidths define the state of
the agent. Finally, in (Nduwayezu et al., 2020), the authors
applied DRL in order to decide whether to execute a task

TABLE 5 | ML algorithm types applied in transport layer.

NN DNN Decision tree k-Means Bayesian network DRL Q-learning

Traffic prediction

Zhang et al. (2019a) ✓ – – – – – –

Zeng et al. (2020) ✓ – – – – – –

Qiu et al. (2018) ✓ – – – – – –

Zhang et al. (2018) ✓ – – – – – –

Azari et al. (2019) – – ✓ – – – –

Senevirathna et al. (2020) ✓ – – – – – –

Li et al. (2020b) – ✓ – – – – –

Chen et al. (2020b) ✓ – – – – – –

Caching

Ye et al. (2020) – – – ✓ – – –

Kirilin et al. (2020) – – – – – – –

Cheng et al. (2019) – – – – ✓ – –

Jiang et al. (2019) – – – – – – ✓
Saputra et al. (2019) – ✓ – – – – –

Wang et al. (2020c) – – – – – – –

Computational offloading

Xu et al. (2019) – ✓ – – – – –

Le and Tham (2018) – – – – – ✓ –

Khan et al. (2020a) – – – – – ✓ –

Qi et al. (2018) – – – ✓ – – –

Alfakih et al. (2020) – – – – – – ✓
Nduwayezu et al. (2020) – – – – – ✓ –
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locally or remotely based on the computation rate maximization
criterion in mobile edge computing assisted NOMA system. As
input, the algorithm takes the input data size and workload.

Table 5 documents the different ML algorithms that have been
used in transport layer. From this table, it becomes evident that
supervised learning approaches have been the usual choice for

traffic prediction problems, while unsupervised and
reinforcement learning ones have been usually employed to
solve caching and computational offloading problems. Of note,
most of the contributions in Table 5 refer to networks that have
less backhaul than aggregated communication and
computational fronthaul resources, without specifying their

FIGURE 2 | Types of ML algorithms.

FIGURE 3 | General NN structure.
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operation frequency. This is a common characteristic of stand-
alone THz wireless deployments. As a consequence, they can be
applied in THz wireless networks.

3 A METHODOLOGY TO SELECT A
SUITABLE ML ALGORITHM

As illustrated in Figure 2, ML can be classified into four
categories, namely 1) supervised, 2) unsupervised, 3)
reinforcement, and 4) transfer learning. In what follows, we
report the main features of each category and revisit indicative
ML algorithms emphasizing their operation, training process,
advantages and disadvantages.

3.1 Supervised Learning
Supervised learning focuses on extracting a mapping function
between the input and output values based on a labeled dataset.
As a consequence, it can be applied as a solution to regression and
classification problems. In more detail, in this paper, the
following supervised learning algorithms are discussed.

• NNs: are computing machines inspired by biological NN. In
more detail and as illustrated in Figure 3, they consist of
three types of layers, namely input, hidden, and output.
Each layer has a certain number of nodes that are called
neurons and process their input signal. A neuron in layer k
implements a linear or non-linear manipulation, called
activation function, of the input data and forwards its
output to a number of edges, which connects neurons
that belong to layer k with the ones of layer k + 1. In
more detail, let

xk � xk1, x
k
2, . . . , x

k
l[ ]T (1)

being the input vector of the k−th layer of the NN, and

wk,n � w(k,n)
1 ,w(k,n)

2 , . . . ,w(k,n)
l[ ]T (2)

being the weight vector of the n−th node of the k−th layer, then
the output of this node would be

yk,n � ∑l
i�1

w(k,n)
i f xki( ) + b, (3)

or equivalently

yk,n � wk,n( )Tf xk( ) + b, (4)

where f (·) stands for a mapping function and b is a constant. Of
note, if f (xk) � xk, then the mapping is linear; otherwise, the
mapping is characterized as non-linear and usually returns a
high-dimensional representation of xk.

The learning process aims at finding the optimal parameters
wk,n so that

ŷk,n � f xk;wk,n( ) (5)

to be as close as possible to the target yk,n. To achieve this a cost/
error function J (wk,n) is defined and minimized, i.e.,

zJ wk,n( )
zwk,n

� 0. (6)

The analytical differentiation of Eq. 6 is usually impossible; thus,
numerical optimization methods are applied. The most
commonly used methods are gradient descent as well as single
and batch perceptron training (Graupe, 2013).

• DNNs: are NNs with multiple hidden layers that, as depicted
in Figure 4, commonly employs tanh, sigmoid or rectified
as an activation function. A DNN is segmented into two
phases, i.e. training and execution. Training phase employs
labeled data in order to extract the weights of all the
activation functions of the DNN. Usually, the SGD with
back-propagation algorithm is employed for this task. In
general, as the number of hidden layers increases, the
number of training data that is requires increases;
however, the classification or regression accuracy also
increases. In the execution phase, the DNN returns
proper decisions based on its inputs, even when the
input values have not been within the training data set.
As a result, the main challenge of DNN is to optimally select
its weights (Zhang L. et al., 2019).

The special types of DNNs have been extensively used in THz
wireless systems and networks, namely CNN, and RNN.

RNN can be used for regression and classification. In
contrast to conventional DNNs and as illustrated in
Figure 5, it allows back-propagation by connecting neurons

FIGURE 4 | Three indicative examples of commonly used activation functions.
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of layer k, with the ones of previous layers. In other words, it
creates a memory that enables future inputs to be inherited by
previous layers (Lipton et al., 2015). As a result, fewer tensor
operations in comparison to the corresponding DNN need to
be implemented, which is translated into lower computational
complexity and training latency. Building upon this
advantage, RNNs have been widely used for a large variety
of applications ranging from automation modulation
recognition, where channel correlation was discovered by
exploiting the recurrent property, to traffic prediction, in
which the data spatial-temporal correlation may play an
important role.

Finally, CNNs have been employed as solutions to several THz
wireless networks problems from AMR to traffic prediction.
Their objective is to identify local correlations within the data
and exploit them in order to reduce the number of parameters as
we move from the input to the output through the hidden layers.
In this type of networks, a hidden layer may play the role of a
convolution, a rectifier linear unit (RELU), a pooling, or a
flattening layer (Boulogeorgos et al., 2020). Convolution layers
are used to extract the distinguished feature of each sample, while
RELUs impose decision boundaries. Likewise, pooling layers are
responsible for spatial dimensions down-sampling. Last,
flattening is used to reorganize the values of high-dimensional
matrices into vectors.

• SVM: can be employed as a solution for both high-
dimensional regression and classification problems by
mapping the original feature space into a higher-
dimensional one, in which their discriminability is
increased (Gholami and Fakhari, 2017). In other words,
SVM aims at creating a space in which the minimum
distance between nearest points are maximized. In this
direction, let us describe the new space as a linear
transformation of the original one, which can be
described according to the following kernel function:

bt x̂ + c � 0, (7)

where b and c are SVM optimization parameters, while x̂ are
the labeled sample that belongs to the set of

X � [x1, x2, . . . , xM], with the lowest separation distance.
Note that xm, with m � 1, 2, . . ., M, contains the N features
of the n−th labeled sample. Then, their separation of the
training samples can be expressed as

sm � lm btxm + c( ), (8)

where lm is the label of the m−th class. As a consequence, the
optimization problem that describes SVM can be formulated as

maxb,c minm�1,2,...,M
lmsm
||b||

s. t. C1: sm ≥minm�1,2,...,Msm, m � 1, 2, . . . ,M

C2: ||b|| � 1

(9)

This problem may return a non-linear classification or
regression of the original space. Another weakness is that
training an SVM model is computationally expensive
especially as the training data size increases. In practice, it can
take long time to train an SVM model as the number of
dimensions (features) increase in a dataset and the problem is
exacerbated with increase in datapoints beyond a few hundreds of
thousands. SVM has been extensively used for traffic clustering.
Themain challenge is the optimal selection of the kernel function.
This function may be a linear, a polynomial, a radial, or an NN

FIGURE 5 | RNN structure.

FIGURE 6 | An indicative example of a decision tree.
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one. To device a suitable kernel function, we usually apply inner
product operations between input samples over the Hilbert space
in order to extract feature mappings.

• KNN: A widely-used algorithm for classification is KNN.
KNN consists of three steps, namely 1) distance calculation,
2) neighbor identification, and 3) label voting. To provide a
comprehensive understanding of KNN, let us define a set of
N training samples as T � (x1, l1), (x2, l2), . . . , (xN , lN ),{ },
with xi � [xi,1, xi,2, . . . , xi,M], i � 1, 2, . . ., N, being the
samples of a class with label li, while xi,m, m � 1, 2, . . .,
M are M discrete features. Likewise, let us also define an
unlabeled sample as ~x � [~x1, ~x2, . . . , ~xM], where ~xm withm �
1, 2, . . ., M standing for the m−th feature of the unlabeled
sample ~x. During the first step, the Euclidean of the
Manhattan distance between ~x and xi is evaluated for all
i � 1, 2, . . ., N, according to

di �

�������������∑M
m�1

~xm − xi,m( )2√
,Euclidean distance

∑M
m�1

~xm − xi,m
∣∣∣∣ ∣∣∣∣,Manhattan distance

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (10)

In the second step, the K most similar labeled samples,
i.e., with the lowest distance from ~x, are identified. These
samples are called “K nearest neighbors”. In the final step, a
majority rule is applied which classify ~x to the class in which
the majority of the K nearest neighbors belongs to.

In THz wireless systems, KNN has been employed for
channel estimation and beam tracking as well as mobility
management purposes. Its main challenge is to appropriately
select K. On the one hand, a large K can aim at
counterbalancing the negative impact of noise. On the
other hand, it may fuzzify the boundary of each class.
This calls for heuristic approaches that returns
approximations for K.

• Decision trees: are considered one the most attractive ML
approach for both regression and clustering, due to their
simplicity and intelligibility. They are defined by recursively
segmenting the input space in order to create a local model
for each one of the resulting regions. To provide a
comprehensive understanding of decision trees operation,
we consider an indicative tree that is depicted in Figure 6.
We represent the target values by the tree’s leaves, while
branches stand for observations. In more detail, the first
node checks whether the observation X1 is lower or higher
than the threshold x1. If X1 ≤ x1, then, we check whether the
observation X2 is lower or higher than another threshold x2.
If both X1 ≤ x1 and X2 ≤ x2, the decision tree returns the
target value T1. On the other hand, if X1 ≤ x1 and X2 < x2, the
target value T2 is returned. Similarly, if X1 > x1, the decision
tree checks whether X2 is lower than the threshold x3. If a
positive answer is returned, the target value is set to T3,
otherwise, it checks whether X1 is lower or higher of x4. If it
is lower, the target value T4 is returned; otherwise, T5 is
returned.

In general, the decision tree model can be analytically
expressed as

g(x) � ∑M
m�1

rmδ X ∈ Rm( ), (11)

where δ(·) is an indicator function that is defined as

δ(X ∈ Y) � 1,X ∈ Y
0, otherwise

{ (12)

Moreover, Rm stands for the m−th decision region, and rm
represents the mean response of this region. Finally,M represents
the total number of regions. From Eq. 11, it becomes evident that
training a decision tree network can be translated into finding the
optimal partitioning, i.e., the optimal regions Rm withm ∈ [1,M].

FIGURE 7 | An indicative example of a random forest.
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This is usually an NP hard optimization problem and its solution
require the implementation of greedy algorithms.

Although decision trees are easy to implement, they come with
some fundamental limitations. In particular, they are have lower
accuracy in comparison with NNs and DNNs. This is due to the
greedy nature of the training process. Another disadvantage of
decision trees is that their sensitive to changes to the input data. In
other words, even small changes to the inputs may greatly affect
the structure of the tree. In more detail, due to the hierarchical
nature of the training process, errors that are caused at the top
layers of the decision tree affect the rest of its structure.

• Random forests3: improve the accuracy of decision trees by
averaging several estimations. In more detail and as
illustrated in Figure 7, instead of training a single tree,
random forest methodology is based on training N different
trees using different sets of data, which are randomly
chosen. The outputs of the N trees are averaged; hence,
the random forest model can be described as

g(x) � 1
N

∑N
n�1

gn(x), (13)

with gn(·) standing for the n−th tree model.
The main challenge of random forests is to guarantee that

the trees operate as uncorrelated predictors. To achieve this,
the training data is randomly divided into subsets, where each
subset is used to train a tree. It is very confusing to say “input
variable subsets”. Basically, one of the ideas behind the

random splits of training data into subsets is that it makes
the model resilient to outliers and overfitting. For example, if
there is an outlier in one or more subsets, the model’s
accuracy is not skewed due to it, as this is an ensemble
model and the outcome reflects joint decision of all trees,
and since different trees have “seen” different distributions in
data (due to random subsetting), it is expected to handle
overfitting better. This indicates that there exists a trade-off
between the accuracy and training latency/overhead. In more
detail, as the number of trees increases and thus the accuracy
of the random forest improves, the training set need to be
lengthen. Therefore, both the training latency and the
overhead in the network increases. Another disadvantage
of random forests is the interpretability of the model is
not as simple in comparison with singular or non-
ensemble model such as a decision tree.

• Naive Bayesian classifier: aims at choosing the class that
maximizes the posteriori probability of occurrence. In
particular, let us define the vector x ∈{1,. . .,R}S, where R
stands for the number of values for each feature, while D
represents the number of features. Naive Bayesian
classifier assigns a class conditional probability, p(Ct | x)
for each possible class Ct with t ∈ [1,T]. Of note, T stands
for the number of different classes. By applying the Bayes’
theorem, we can express p(Ct | x) as

p Ct | x( ) � p Ct( )p x Ct|( )
p(x) . (14)

Moreover, by “naively” assuming that, for a given class label Ct,
the features are conditionally independent, p(x |Ct) can be
obtained as

FIGURE 8 | Indicative hidden variable models.

3It is worth-noting that random forest is implementing a technique which is called
bagging.
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p x Ct|( ) � ∏S
s�1

p xs Ct|( ). (15)

Here, conditional independencemeans that the algorithm treats
all features as equally important and statistically independent of
each other. This may apparently seem counter-intuitive as several
features may indeed have some form of correlation. However, this
“naive” assumption can often lead to good predictive accuracy due
to the emphasis on evidence observed in the form of conditional
probability of features, for a given outcome class of the predicted
(target) variable. The independence assumption weakens the
explainability of the predictions made by the Naive Bayes
classifier but at the same time, the algorithm is very efficient to
train because probabilities in 15) can be measured in a single data
scan of the training dataset.

Based on Eqs 14, 15, a class label can be assigned according to

~c � arg max
t∈[1,T]

p Ct( )∏S
s�1

p xs Ct|( ). (16)

Note that based on the type of each feature, Us,t � {xs|Ct}may
follow a Gaussian, Bernoulli, multinoulli well-defined
distribution. Likewise, from Eq. 16, it becomes evident that
the training problem is converted to a maximum likelihood
one, which may generate overfitting issues and compromise
the accuracy of the naive Bayes model.

3.2 Unsupervised Learning
Supervised learning highly depends on the existence of labeled
datasets for training. However, in several practical scenario, no
such datasets are available. In this case, unsupervised learning can
be applied. Unsupervised learning aims at extracting data
unknown features and identify the relationship between them
and the system response. In more detail, unsupervised learning
algorithms search for four types of relationships, namely: 1)
many-to-many; 2) one-to-many; 3) many-to-one; and 4) one-
to-one. This is graphically presented in Figure 8, where ym1,···,
ymL denotes L hidden variables and zm1,···, zmK are K known ones,

with K ≫ L. These types of relationships can be used for
clustering, density estimation, and dimensionality reduction. In
more detail, in THz wireless systems and networks the following
clustering approaches have been employed.

• EM: is a low-complexity iterative algorithm that aims at
identifying maximum likelihood estimates of parameters by
means of iteration between two phases, namely E and M.
During the E phase, it infers the missing values, for a given
set of parameters, while, in the M phase, it optimizes the
parameters for a fixes “filled in” data set. In more detail, in
the i−th iteration, at the E phase, EM computes an auxiliary
function for the expectation of the log-likelihood using the
parameters estimations of the i − 1 iteration, which can be
expressed as

F θi−1 θi|( ) � EZ Y,θi| log p Y,Z θi−1|( )( )[ ], (17)

where Y and Z are respectively the set of known and hidden
variables, whereas, θi is the set of the unknown parameter at the
i−th iteration. In the M phase, the parameters that maximize the
expected log-likelihood are determined based on the following
formula:

FIGURE 9 | K-means algorithm.

FIGURE 10 | The autoencoder’s structure.
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θ̃i � argmaxθiF θi−1 θi|( ). (18)

This process stops when parameters convergence is achieved.
The EM approach can be used to parameter estimation

problems that are based on popular statistics models, like
mixture Gaussian, hidden Markov, etc. However, it has an
important disadvantage. It cannot guarantee convergence to a
global optimum and not to a local one. As a result, it usually
achieves poor performance in high-dimensional problems.

• K-means: The objective of K-means is to partition M
unlabeled samples into K clusters, such as each sample to
belong to exactly one cluster, based on their similarity in
terms of distance. In order to achieve this a two step
approach is followed, according to which, each training
sample is assigned to one of the K clusters based on its
distance from the cluster center4, i.e., as a solution to the
following optimization problem:

Cp � argmin
c

∑K
l�1

∑
x∈ck

x − μk
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2, (19)

whereCp is the optimal cluster segmentation, x is the set of samples
and μk is the mean of the samples that belongs in the cluster ck.
Then, the cluster center is updated, based on the new samples that
are included or the ones that was removed from each cluster. This
process is reaped until convergence is achieved. A graphical
representation of the K-means algorithm is depicted in Figure 9.

From Eq. 19, it becomes evident that the clustering
optimization problem is a NP-hard one. As a result, a
heuristic algorithm needs to be employed in order to solve it.
However, such algorithms cannot guarantee convergence in a
global optimum. Its result is tightly connected to the initial cluster
selections as well as their centers. Despite this disadvantage, it has
been used as a solution to a wide range of problems spanning
from beamfoming design to caching.

Feature selection or dimensionality reduction can be seen as a
preprocessing phase of ML, since it enables the elimination of
correlated features by means of feature transformation. In this
direction, the following feature selection/dimensionality
reduction approaches have been employed in THz wireless
systems and networks:

• Principle component analysis (PCA): implements an
orthogonal transformation in order to convert potential
correlated features of a dataset into uncorrelated ones
that are called principle components. The operation pillar
of PCA is based on the dogma that the first principle
component has larger variance than the second, which in
turn has larger than the third, and so on. As the variance
decreases, the amount of the encaptulated information of
the original features decreases, given that the original feature

has a considerable correlation. Motivated by this, PCA aims
at solving the following maximization problem:

vp � max
v

1
N

∑N
n�1

ytnv( )2, (20)

or equivalently

vp � max
v

vtnGv, (21)

where G stands for the covariance matrix of the training dataset
that can be expressed as

G � 1
N

∑N
n�1

yny
t
n, (22)

while yn represent the n−th training dataset, and v is a unit vector.
Notice that the solution of Eq. 21, is the eigenvectors v1, . . ., vK of

G, with K > M, where M the number of the original features. As a
result, the dimensionality reduction can bemathematically written as

zn � v1, . . . , vK[ ]tyn. (23)

• Auto-encoder: is a feed-forward NN that it is trained to
predict its inputs. As a consequence, the number of inputs is
the same as the one of the outputs. As depicted in Figure 10,
the auto-encoder is a three-layer network that can be
described as (Vincent et al., 2010)

~z � g Wt(Wz + c) + b( ), (24)

where W, b, and c are auto-encoder’s parameters, while g stands
for an activation function vector. Finally, z and ~z are
N−dimensional vectors that contains the auto-encoder’s inputs
and outputs.

The first layer of the auto-encoder is a bottleneck one that is
responsible for preventing the system from learning a trivial

FIGURE 11 | The Boltzmann machine’s structure.

4Note that as the cluster of the center, most K-means implementations use the
mean of the samples that belong in the same cluster.
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identity mapping. The connection weights between the first
and the second as well as the second and the third layer are
shared, i.e., W and Wt. Note that the objective of the training
phase of the auto-encoder is to select a suitable W in order to
minimize the input-output error. This is usually performed by
feeding inputs and outputs in the training algorithm. Finally,
the hidden nodes are used to capture the most relevant dataset
aspects.

In comparison with PCA, auto-encoder is capable of
performing not only linear but also non-linear
transformations. However, since a greedy algorithm is usually
employed for its training, it is also sensitive to fitting errors. As a
result, an important task for using auto-encoders is to
appropriately select the activation function to be employed.

• ISOMAP: also called manifold learning, is a non-linear
dimensionality reduction approach that is build upon the
principle of preserving the geodesic distances5 of the
lower-dimension (Tenenbaum, 2000). In more detail, its
implementation follows four stages. In the first stage, the
neighbors of each points are determined. In particular, for
each pair of points i, j, the input space distance dX(i, j), is
calculated. Points that have an input distance lower than a
predetermined fixed radius, ϵ, are considered neighboring
points. Building upon the first stage, the second one
generates neighborhood graph that connects each point
with its neighbors. Then, in the third stage, the shortest
path between two nodes of the neighborhood graph is
evaluated, according to the Dijkstra’s or Floyd-Warshall
algorithm (Cormen et al., 2009). Towards this direction,
the geodesic distance, dG(i, j, between all pair of point on
the manifold is calculated as

dG(i, j) � min da(i, j), da(i, k) + da(k, i)( ) (25)

for each k ∈ [1, N] were N stands for the total number of points.
Moreover, da(m, n) is an auxiliary variable that can be defined as

da(i, j) � dX(i, j), for(i, j) ∈ A
∞ for(i, j) ∉ A{ , (26)

with A being the set of neighboring points. Finally, in the forth
stage, the lower-dimensional embedding, yi, is extracted by
minimizing the embedding cost function

Jc(j) � ∑N
i�1

yi − yj
���� ���� − dG(i, j)( )2. (27)

This approach finds several applications in identifying non-linear
correlated hidden variables, such as traffic clustering. However, it
comes with an important disadvantage. In general, it is
topologically unstable (Schwartz et al., 1988); thus, it should
only be applied after extensive pre-processing of the data
(Balasubramanian, 2002).

For density estimation the Boltzmannmachine is usually used.
Boltzmann machines: are employed to discover hidden features,
which denote complex regulations in the training dataset. As a
result, they can be used to extract the stochastic dynamics of
datasets. Regarding its structure, as presented in Figure 11, it can
be seen as a network, in which its units are bidirectionally
symmetrically connected to each other with fixed weights and
return stochastic binary decisions, i.e., 0 or 1. A unit can be a
visible or a hidden node of the network. Notice that we can
interact only with visible units. A unit that returns a state 0
indicates that the system rejects a hypothesis, while in state 1, it
accepts it. The weight on a connection stands for a pairwise
constraint between two hypotheses. In particular, positive weights
refers to hypotheses that support each other, i.e., if one is
accepted, the other should also be accepted, while negative
ones indicate that only one of the two hypothesis can be

FIGURE 12 | The GAN’s structure.

5Note that the geodestic distance is the distance between two points following the
available/possible path that connects them.
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accepted. The objective of a Boltzmannmachine is tominimize its
global state, which is defined as (Alla and Adari, 2019)

E � −∑
i<j

wijsisj +∑
i

θisi, (28)

where wij is the i, j connection weight, si and sj respectively stand
for the i−th and j−th units states, and θi represents a threshold. To
achieve this, we usually employ heuristic algorithms. As a
consequence, Boltzmann machines suffer from performance
degradation when the network is scaled up in size.

Finally, a special ML framework that can be used for both
supervised and unsupervised learning is GAN (Goodfellow et al.,
2014). GANs are usually used to generate new data that have the same
statistics as the training ones (Ho and Ermon, 2016). As shown in
Figure 12, they consist of two networks, a generator and a
discriminator. The generator produces new samples after providing
an estimation of the dataset distribution, while the discriminator
compares the generated samples distribution to the one that arises by
the unlabeled data. The generator’s distribution, pZ(z), over data z is
defined by introducing a prior on input samples distortion, which is
distributed according to pN(n), and amapping to the data space, which
is represented byH(n | θ), whereH describes a multi-layer preceptor
(MLP) with parameters θ. The discriminator that follows utilizes
another MLP, which we denote D(z | θD) with parameter θD, that
outputs a scalar that indicates the probability that the training samples
and the data generated byH are labeled correctly. In this direction, the
generator is trained in order to minimize the term

FH � log(1 − D(H(n | θ))), (29)

whereas the discriminator aims at maximizing the term

FG � log(H(z)). (30)

In other words, a two-players min-max game is formulated,
which can be solved by employing iterative numerical methods.

In THz wireless systems, GANs have been applied as the
solution to AMR problems, due to their capability to predict the
different versions of the received signal, when a specific symbol is
transmitted. However, it comes with some disadvantages. First of
all, the training phase may be unstable, if not considerable
amount of time is not spend in this phase. Moreover, to deal
with training instability, visual examination may be needed in
each step; this creates an important workload to the ML designer.
Finally, it has no density estimation capabilities. This indicates
that it cannot be used for anomaly detection.

3.3 Reinforcement and Transfer Learning
This section is devoted to reporting the reinforcement and transfer
learning approaches that have been employed in THz wireless
systems and networks with emphasis to their operation principles,
applications and challenges. In this direction, in Section 3.3.1,
reinforcement learning approaches are documented, while, in
Section 3.3.2, the transfer learning ones are reported.

3.3.1 Reinforcement Learning
As illustrated in Figure 13, the fundamental idea of
reinforcement learning is to resemble the trail and error
process by employing an agent that continuously interacts
with the environment (Kiumarsi et al., 2018). In more detail,
an agent sense the environment state and applies an action that
affect the environment. As a response, the environment returns a
quantified reward. Of note, the environment stage is influenced
by two factors, namely 1) the environment itself; and 2) the
agent’s action. Similarly, the award is evaluated based on its
impact to the environment and the action of the reinforcement
learning method. As a result, reinforcement learning approaches
allows real or almost-real time interactions to environmental
changes. This characteristic is a key requirement in several system
and network operation processes in all the OSI layers. Thus, they
have extensively adopted as solutions to a wide range of problems,

FIGURE 13 | Reinforcement learning structure.
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such as beamforming design, power management, blockage
avoidance, user association, mobility management, caching, and
computational offloading. Likewise, in contrast to conventional
optimization approaches that focuses on immediate reward
maximization, reinforcement learning aims at long-term reward.
This is achieved by taking into account in the optimization process
both the immediate and the future reward; thus, allowing intelligent
prediction of the future system’s state. The following reinforcement
learning algorithms have been applied in THz wireless systems and
networks:

• Q-learning: or as alternatively called temporal-difference
learning, is a commonly adopted model-free reinforcement
learning approach capable of directly acquiring knowledge
from raw experience without requiring either an
environmental model or a delayed reward system. Its
interaction with the environment is based on a state-
action value function that is called Q-function, which is
continuously updated in order to achieve maximization by
means of selecting an appropriate action, i.e.,

Ap � argmax
A∈A

Q(S,A), (31)

where S stands for the system state, A represents the selected
action among the available ones that are included in the set A.
Moreover, Q(·, ·) is the Q-function, which is updated, according
to (Watkins and Dayan, 1992), as

Q̂(S,A) � (1 − c)Q(S,A) + c r + dmax
A∈A

Q S′,A( )( ). (32)

In Eq. 32, c and d respectively denote the updated weight and the
discount factor, while r is a constant.

• Deep reinforcement learning: or deep Q-learning is usually
applied in problems in which the dimensions of the state
and action spaces are quite large. In these scenarios, the use
of a Q-function as a table that contains values for each state
and action is deemed impractical. To address this issue, we
train a NN with parameters θ, which is responsible for the
estimation of the Q values through a Q-function
approximation, i.e., QN(S,A; θ) ≈ Q(S,A). The training
phase aims at minimizing in each step i a loss function
that can be expressed as

Li θi( ) � ES,A,r,S ′ ρs| T S, S ′,A,A′, r; θi, θi−1( )( )2[ ], (33)

where

T S, S ′,A,A′, r; θi, θi−1( ) � r + dmax
A′

QN S ′,A′; θi−1( )
− QN S,A; θi( ) (34)

stands for the temporal difference, while ρs represents the
system’s behavior distribution.

• A3C: is another reinforcement learning approach that, as
presented in Figure 14, is composed by three units, namely
actor, critic, and environment. The actor makes an initial
action selection A from the set of available actions A, based
on a current policy or strategy. Next, the critic computes the
new state value, which was extracted due to the environment
variation, and updates the a time difference error (TDE).
The new TDE is fed to the actor, which create a revised
policy and/or strategy. The policy update is usually based on
a Boltzmann distribution. The A3C is going to converge to
an optimal state, after revisiting each action for each state by
infinite times (Singh et al., 2000).

Reinforcement learning faces an important challenge. In more
detail, the methodology to design the optimal state, action,
reward/cost in different that enables convergence into optimal
system performance depends on the scenario under investigation.
As a consequence, in low-dimension state-action spaces in which
all the space-action pairs can be documented into Q-value tables
and explored by the reinforcement learning algorithm, a near-
optimal solution can be rapidly identified. However, as the state-
action space dimension increase, the reinforcement learning
algorithm performance degrades, since several state-action
pairs may remain unexplored. To counterbalance this, deep
reinforcement learning is adopted. However, this approach
comes with the training latency of NNs.

3.3.2 Transfer Learning
To avoid training latency, the concept of transfer learning was
born, according to which knowledge from a specific domain can
be used to speed up the learning process. In more detail, the
aforementioned knowledge can be represented as Q-values of
Q-learning and A3C algorithms, or NN weights in deep

FIGURE 14 | A3C structure.
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reinforcement learning approaches. The Q values and weights
may have been learned by an agent in a former and similar
environment (Taylor and Stone, 2009).

Transfer layer have enabled several operation in wireless THz
systems that vary from beamforming design to computational
offloading. However, it comes with an important drawback. If the
difference between former and current tasks and environments
are important, the knowledge that is transferred will cause a
negative impact to the system performance (Sun et al., 2019).

3.4 ML Algorithm Selection Guidelines
This section provide a systematic methodology that can be used
to select the appropriate family of algorithms in order to solve a
ML problem. In this direction, the first step is to categorize the
problem under investigation. This can be achieved by examining
the type of the input data and the expected outcomes. In more
details, if labeled input data are provided, a supervised learning
ML strategy can be selected. On the other hand, if the input data
are unlabeled, unsupervised ML algorithms should be employed.
Finally, if no data exists and the model need to interact with the
environment, reinforcement or transfer learning algorithms
should be applied, based on the absence or existence of
simulation data.

Next, the outputs should be examined in order to identify the
category of the problem that we want to solve. In particular, if the
output data of the ML algorithm is a number, the problem is a
regression one. Regression is usually used for AMR, beam
training, signal detection, beam tracking, beamforming design,
blockage avoidance, mobility management, and traffic prediction.
Additionally, if the output of the model is a class and the number
of the expected classes is predefined, then the problem is a
classification one. An indicative example of a classification
problem is user association. In both cases of regression and
classification, NNs, DNN, naive Bayes, decision trees or
random forests will be applied. To choose between the
aforementioned algorithms, we should first examine the
variation of the input data. If they have a small variation and
low-latency or interpretability are key requirements decision trees
will most likely used. This is the reason why decision trees are
attractive approaching fro routing problems. On the other hand,
if they have small variation but the latency and interpretability
existence are not the main requirements, a random forest will be
applied. On the contrary, if the input data have a relatively large
variation, naive Bayes or NNs/DNNs will be employed based on
whether they follow or not a well-known distribution.

On the other hand, if the objective of the problem is to
categorize data into an initially unknown-number of classes,
its a clustering problem. Indicative examples of such problems
are traffic clustering, caching, and computational offloading.
These problems can be solved by employing k-Means,
k-Median, EM and hierarchical clustering. k-Means and
k-Medians are usually selected in high-dimensional problems,
while EM and hierarchical clustering in low-dimensional
problems.

Another objective of ML problem is to improve the system
and/or network performance. Such problems belong to the
optimization category and are usually multi-variate ones. In

THz wireless systems and networks, several researchers have
employed gradient descent and reinforcement/transfer learning
algorithms, either to predict the optimal operation point or to
correct it. Similarly, recommendation problems are the ones that
return options based on the history of actions and are usually
solved by employing reinforcement/transfer learning algorithms.
Reinforcement/transfer learning provides high-adaptability to
environmental changes and requires no training. Therefore,
their suitable for problems that require fast adaptation, like
channel allocation, power management, blockage avoidance
and user association in mobile THz wireless networks, as well
as computational offloading.

Finally, if the goal is to obtain insight from data for pattern
recognition or anomaly detection, then dimensional reduction or
feature selection algorithms can be applied, such as PCA, auto-
encoder or ISOMAP. PCA is usually applied if the data are
linearly correlated. On the other hand, auto-encoder and
ISOMAP achieve acceptable performance in non-linear
correlated datasets. These algorithms can find application in
beamforming design and traffic clustering.

4 DEPLOYMENT STRATEGIES

B5G THz systems are expected to satisfy an ever increasing data
connectivity, data rate and throughput demands. AI methods are
positioned to play a central role to enable the functional and non
functional demands expected in these systems. AI would be
integrated in various layers of the network management stack
as shown in Figure 1 and presented in Section 3. In this section, we
present an overview of deployment time strategies that must be
considered before AI and/or ML based models are operationalized.
Here, operationalization refers to the deployment of a well-trained
and tested AI/ML model in production to help automate decision
making in real time. This stage is usually preceded by staging where
the models are observed in production settings and monitored but
do not drive the decision making process.

In wireless architectures or any complex service architecture
expected to perform complex decision making in real time,
deployment aspects of AI/ML models are considered early on,
during the design and implementation of management functions
that would integrate AI/ML models. This integration must consider
that AI/ML models arguably follow a lifecycle that needs to be
regularly managed. This lifecycle begins firstly with the conceptual
problem formulation phase, which targets a certain question to be
answered with a prediction. Secondly, a physical solution usually in
the form of a training process is devised which consumes training
data, processes it and outputs a model. Within this training process,
essential steps such feature engineering, normalization,
regularization and/or up/down sampling may have been
employed to train a model that best serves a performance criteria
such as accuracy, recall, precision, F1 or quality metrics related to
error margins. The training process requires some craft and good
understanding of the AI/ML fundamentals and how the target
attribute (often termed as label) is shaped. As a standard cross-
validation design pattern is used for training and multiple testing
methods are employed to establish the model’s overfitting,

Frontiers in Communications and Networks | www.frontiersin.org September 2021 | Volume 2 | Article 70454625

Boulogeorgos et al. ML: A THz Networks Catalyst

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


underfitting and generalization capabilities and further
requirements. This activity is at first manual and done in
collaboration with domain experts and data analysts. Once the
training and testing process is completed, the third stage of the
lifecylce is approached namely which is deployment.

Deployment of AI/ML models needs to take into consideration
more than just the application of the model to get predictions. We
especially sketch out two parallel formations have to be put in place for
deployment. First, the performance in terms of accuracy and response
time is to be continually monitored, and secondly, for some kind of
models, it may be necessary to update or retrain the model at regular
intervals, on new training data that may have become available over
time. It should be noted that this data may become available on the
periphery of the network or on edges, and may need to be transmitted
or processed at the edge.

On the one hand, the AI/ML model deployment shares some
commonalities with how the software components in an information
technology (IT) system are updated e.g., following blue green
deployment, but also some major differences, such as the
deployment usually follows a primary-secondary; or sometimes
referred to as “primary-challenger” dual models. The primary
model is the one being used for automated decision making
whereas the challenger is used as a stand by if at any point in time,
the observed functional performance (e.g., accuracy) of the primary
drops significantly lower than the primary model’s performance. This
also helps as a countermeasure to drift or shift of concept phenomenon
that is observed in ML systems when the data gradually exhibits
different distributions unlike what themodels are originally trained on.
Finally, the models may need to be scaled up when the overall
management function faces an increased demand in connectivity,
hand-over or adaptation scenarios. For instance, a large amount of
UEs approach an area which is governed by a fewAPs, or the data-rate
demand increases significantly due to a major event or news. In such
scenarios, horizontal scaling of the model plays an effective role to

continue to deliver QoS levels expected by the users and hence, enough
infrastructure resources should be available for manual or automatic
scaling of the models in production.

4.1 Centralized and Distributed ML
Deployments
Having presented some of the high level deploymentmechanics of AI/
ML models, one can better appreciate the deployment level
requirements when the components of the wireless architecture
start consuming AI/ML models in a distributed setting. Towards
this direction, it becomes important to consider topological and
resource-constrained aspects of various components of the wireless
networks. Some of these are more central and resource-rich such as
the APs - also called BSs, while other elements such as the RIS, passive
elements such as metasurface reflectors, or consumer devices such as
UEs or IoT sensor devices are distributed and may find themselves at
edges of the network while also being resource-constrained. Hence,
future wireless networks present a distributed system which can
benefit from various development and deployment capabilities seen
in the broader field of Distributed ML, where the models may be
developed, updated or deployed at any of the cited entities. In the
following, we present a short summary of popular methods,
frameworks and paradigms that target or enable specific scenarios
how AI/ML models can be trained and deployed for scalable
consumption. Afterwards, in the last sub-section of this section, we
attempt to relate how some of the opportunities presented in section 2
may benefit from these methods.

4.2 Deployment Units and Deployment
Enabling Paradigms
In B5G/6G networks, AI is expected to be utilized all over the
network components from the core down to the terminals (UEs)

FIGURE 15 | A reference pipeline processes illustrating cross layer connectivity and coordination.
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and at all communication layers from the PHY (L1) to the
application layer (L7). Keeping this comprehensive view in
mind, the long term management and sustainability of the AI/
ML functionality requires that a unit of deployment must be
identified. Harnessing certain well-established practices from the
Data Science community, the concept of pipelines emerges as a
modular, configurable and reusable implementation unit for ML
and its affiliated data processing requirements. The ITU-T
standardization body Focus Group FG-ML5G have recognized
this potential of ML and extract, transform, load (ETL) pipelines
and developed a technical specification codenamed Y.3172,
entitled “Architectural framework for ML in future networks
including IMT-2020” (OnMachine Learning for 5G (FG-ML5G),
I.-T. F. G., 2019). This specification provides guidelines on
training, deployment and orchestration aspects centered
around the notion of ML/ETL pipelines, which are bundled as
Cloud Computing containers. Harnessing Cloud Computing
techniques, the pipeline containers may be exposed as REST
web-services, and deployed at the core or edges of the network. In
this way, complex interactions can be realized among distributed
components of the network from whom data can be collected
widely and frequently, while complex data processing tasks such
as model training or updates, can be triggered on infrastructure
nodes that possess better resource capacity. The objective of this
synergy with Cloud Computing is to deliver the expected QoS for
connectivity, adaptation and other low-latency requirements of
THz systems. We try to present this concept diagrammatically in
Figure 15.

As exemplified in Figure 15, a pipeline process is a set of
operations, arranged as nodes, which ingest data, transform or
pre-process it, may trigger training, retraining or update of ML
models locally or remotely (by invoking externally deployed
pipeline’s endpoint). It may also conditionally use predictions
from ML models on new data or in the evolving network
environment, by running or interfacing with ongoing
optimizations. Predictions may be a classification score,
regression value, or a decision artefact e.g., a schedule, resource
allocation plan or an advice, which is returned to the invoking
component to take automated action. Outcomes can also be stored
in a data sink for later reuse. Pipeline processes may be invoked on
demand or scheduled fashion either offline or online scenarios. Such
pipeline-based distributed AI/ML pipelines also integrate disparate
B5G network functions that need to cooperate or coordinate with
each other to achieve cross-layer decision making.

As recognized and advocated in Y.3172 and related specifications
by ITU-T FG-5GML as well the predecessor focus group on
autonomous networks (FG-AN), enabling AI/ML in future
wireless networks would require synergies with Cloud Computing
paradigm to realize effective deployment, adoption and continuous
upgrade of AI/Ml models by utilizing compute and storage
capabilities of the Cloud. The specifications also highlight the
challenges and opportunities by exploiting pipelines for loosely
interfacing data from different upstream and downstream layers
of the network. This fusion of data can be exploited for instance in
UE-to-AP assignment predictions, which usually consume link level
properties of the network including location, topology, resource
requirements of UEs and resource capacity of APs, to assign a UE to

the best AP with whom minimal LoS blockages or interferes are
expected. However, with the overlay of interacting pipelines, such
connectivity may be established by also considering channel level
properties by consuming upstreaming data from lower layers of the
network and vice versa. Such interactive constellations to fuse and
merge data from different network components and layers holds
promising opportunities for AI/ML to tackle many hard problems as
shared in section 3 under more realistic settings.

We now take a brief look at the emerging paradigm of Edge
Computing, which is expected to be adopted by the fast growing
Internet-of-Things (IoT) industry. IoT would arguably be one of the
largest beneficiaries of B5G and THz communications as many
industries today face the challenge how best to utilize the
enormous amounts of data being produced by a large number of
sensors. This data can be used to derive insights from industrial
processes (as seen in assembly lines, supply chain logistics and
manufacturing plants) to optimize these operations for higher
efficiency and cost-effectiveness. Edge computing and its relevance
with ML raises various questions. These include challenges related to
training models on partial data, establishing a holistic, correct and
balanced view of the prediction objectives, deployment of processes at
the core and edge of the network, while also realizing complex
interactions of these processes - all of which remain a topic of
further research and investigations within the field of distributed ML.

4.2.1 Distributed ML
Distributed ML focuses on establishing mechanisms to train ML
models in a collaborative fashion, with the objective to harness
distributed compute infrastructure. Certain parts of this
infrastructure may be composed of small devices that are
restrained in their system level and communication resources,
while other parts may be resource-rich e.g., Cloud based virtual
machines or containers that can be horizontally and vertically scaled.

In (S. Teerapittayanon et al., 2017) some ideas were presented to
train a deep learning model over a hierarchy of distributed compute
nodes. These include end devices, edge nodes and a cloud node. A
DNN is trained and maintained at each layer, whereby the end
devices and edge nodes have fewer NN layers, while the network in
the cloud hasmoreNN layers. Using this architecture, amulti-sensor
multi-camera surveillance application deployed at various end nodes
is able to efficiently perform inference with required accuracy. The
communication latency between the end device (or edge node) and
the cloud is limited by sending aggregate data to the cloud node for
inference when the end devices cannot reach a high degree of
classification confidence. The presented approach is 20 times
faster in comparison to the alternative if all raw data from end
(sensor) devices were to be sent to the central cloud node for the
purpose of inference. While this approach seems to hold good
promise for sensor fusion based applications, its applicability in
other IoT-based systems remains questionable because themodels at
end devices are rather limited NN models and may need to rely on
the central NN model more frequently.

Although not limited to the proposed framework in (S.
Teerapittayanon et al., 2017), distributed ML requires the
adopters to setup and configure additional communication
mechanisms. These mechanisms are being addressed in the
emerging field of federated learning.
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4.2.2 Federated Learning
Federated learning makes use of decentralized infrastructure to
train a shared ML model with the collaboration of potentially
resource constrained end devices distributed at edges of a
network and a centralized node that acts as a core. In
federated learning, end devices or edge nodes train and
maintain local ML models, using the frequently available
batches of data that is available (or produced) by the device.
This model’s complexity and capability is subject to the resource
limitations of the end device. Infrequently, a summary of local
model’s parameters e.g., weights or coefficients are securely
transmitted to the core node which updates a consolidated ML
model. Hence, the consolidated model is a result of joint but
disparate training conducted at potentially millions of end nodes.
This approach retains data and the inference (application of
prediction model) only at the end nodes so the
communication overhead to transfer all raw data to the core is
avoided, while also preserving the privacy and confidentiality of
local data.

In (McMahan and Ramage, 2017), Google researchers
introduced federated learning for a query suggesting
application that is installed on mobile applications. The
work presents proposals to train a miniature version of
Tensorflow based model on mobile devices that consumes
minimum energy and minimally interferes with the user
experience. Additionally, several technical challenges to
achieve federated learning are highlighted. A fundamental
challenge is to update the shared model. In (McMahan
et al., 2017), the same team presented their solution in the
form of a federated averaging algorithm that combines local
SGD based updates of local model with a server that performs
model averaging on the shared model. However, to ensure the
integrity of the consolidated (shared) model, these updates are
governed through a Secure Aggregation protocol that only
performs cryptographically-secured model updates after a
sufficient number (hundreds or thousands) of end devices
share their updates i.e. an aggregate data structure must be
assembled first. This helps 1) to prevent local phenomenon
such as concept drift which happens when distributions of data
start exhibiting gradual or abrupt differences, 2) to tackle
corner cases such as anomalous data collection or existence
of outliers, which can negatively skew the parameters of the
consolidated model and 3) to preserve privacy of the local
model parameters which are shared in cryptographically
secured format (Bonawitz et al., 2017). The updated shared
model is made available to selected end devices, which test the
model on locally available data, after which the shared model is
updated on all end devices.

The cited solutions are applicable in many other domains as
well, e.g., IoT where heterogeneous sensor devices can federate,
autonomous driving where a large fleet of vehicles can federate
or network industries where multiple sensors or devices
communicate e.g., railways, airlines, gas networks and
power grids. Arguably however, the future THz networks
with dense topologies comprising of potentially very large
number of UEs and APs hosted within a short geographical
area, may find many use cases to adopt federated learning. To

conclude, federated learning can be helpful in many industries
and use cases where general purpose privacy-aware pattern
recognition has precedence over personalized pattern
recognition. However, federated learning has yet to mature
in terms of widely available deployment and orchestration
tooling that can be applied in a variety of domains and
applications.

5 RESEARCH DIRECTIONS

Although ML-empowered THz wireless systems and networks
will gradually arrive to our lives and are expected to
commercialize with the dawn of 6G era, researchers should
start looking at the challenges and solutions that the
combination of these technologies would bring. Aspired by
this, the following research directions are identified:

• New KPIs definition: THz wireless systems and networks are
expected to support three new type of services, namely:
computation-oriented communications (COC),
contextual agile enhanced mobile broadband (CAeC),
and event defined ultra-reliable low-latency
communication (EDuRLLC) (Boulogeorgos et al., 2018a;
Letaief et al., 2019). COC refers to collaboration between a
number of smart devices in order to create distributed and
edge intelligence. High data rates, which can be provided
by THz links, as well as lightweight and green AI
approaches are considered the key enablers of COC.
COC is expected to flexibly select the operation point in
the data rate-latency-reliability space. CAeC comes with
the promise of agility and adaptability to the network
context, physical environment, and social network
context. In other words, it is expected to become the
solution to the backhaul congestion due to high-
fronthaul resource demands by pre-caching the
requested content as near the end-user as possible.
Moreover, it is expected to provide mobility
management functionalities that is essential for THz
wireless systems and networks. Finally, EDuRLLC
envisions to be able to support spatially and temporally
changes of device densities that execute data rate hungry
applications, such as virtual reality. A possible solution to
this problem is AI-empowered THz networks that are
capable of supporting high data rates and prefetching
the requesting content.

In contrast to previous generation services, COC, CAeC, and
EDuRLLC come with stricter requirements that should not only
quantify the efficiency of either the core and the access network,
but also from the end-user to the requested information holder.
Additionally, to evaluate and enhance the ML algorithms
efficiency, its learning ability should be measured. In other
words, the performance and feasibility should not only be
quantified by one of the conventional metrics, i.e. latency,
data-rate and error rate, but from new ones that also captures
ML-related metrics, such as computational complexity and
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computational resources needs. This calls for formulating and
solving novel optimization problems that target in optimizing
multiple metrics, for which the relationship is beyond the existing
mathematical models.

• Novel usage scenarios: AI-empowered THz systems will not
only provide ubiquitous connectivity but also enable sensing
solutions with very fine range, Doppler and angular
resolutions, as well as localization with cm-level accuracy
(Bourdoux et al., 2020). This is due to the fact that THz
signal experience high absorption, making them unable to
penetrate objects. As a results, there are usually LoS. This
leads to a relatively direct relation that connects the
propagation paths to the wireless environment.
Moreover, in THz wireless systems, pencil-beamforming
is employed in order to countermeasure the high-pathloss.
Pencil-beamforming requires and enables angle estimation
of high-accuracy. Finally, the high data rates in these
systems allow fast and reliable information sharing
between different sensing devices. Except from THz
technologies, in order to realize high-level sensing and
localisation from low-level raw data, such as the received
signal or the channel coefficient estimation, ML-based
predictive models and pattern recognition techniques are
required. To further boost the sensing and localization
accuracy, while maintaining acceptable levels of
computational complexity and latency, the
aforementioned models should be combined with
physics-based signal propagation models. This
observation opens the door to the design and testing of
new hybrid ML-models that combine physical-models with
data-driven learning approaches for localization and
sensing.

• Cross-layer optimization: In Section 3, a number of different
ML-problems for enhancing the performance of individual
tasks in THz wireless systems were presented. However, for
the wireless network, co-designing and co-optimizing a
variation of tasks that take into account parameters
ranging from PHY to transport layer is expected to bring
unrepresented excellence in terms of overall performance.
For example, optimizing user association by taking into
account not only their position but also the location of the
requested content could provide significant overall latency
and power consumption minimization. This observation
highlights the need of formulating new cross-layer
optimization problems.

• Novel deployment strategies development: Two deployment
strategies were discussed in Section 4, namely distributed

and centralized one. Distributed deployment with
incomplete local information may result to inaccurate
results, which in turn affect the THz system and network
performance. Moreover, distributed ML may cause
competition between neighboring-area agents that
negatively influence the overall network performance. On
the other hand, centralized ML demands information that
are periodically collected. This may result in unaffordable
signaling and computing overhead; hence, an increased
end-to-end delay. These remarks reveal the necessity of
quantifying the trade-off between centralized global
accuracy and high overhead. Moreover, hybrid
deployment strategies, like federated learning, should be
investigates, which enables part of the operations to run
locally in the end or edge units, and feed their results to
centralized units. In such deployments, an open research
question concerns the optimal amount of signaling.

6 CONCLUSION

This article reported the applications of THz wireless systems
and netwotks in the B5G era as well as their enabling
technologies and fundamental challenges that could be
formulated as ML problems. These problems were
categorized into PHY, MAC and RRM, network as well as
transport layer. For each of them, we documented the ML
approaches, which had been so far used, emphasizing their
principles and limitations. Additionally, useful guidelines that
are expected to help the reader to select an appropriate ML
algorithm to solve the problem that they investigate were
reported. Moreover, ML deployment strategies as well as
their enablers were discussed. Finally, we presented research
gaps and possible future directions.
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