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With the rapid development of optical network and edge computing, the operation
efficiency of the edge optical network has become more and more important, requiring
an intelligent approach to enhance the network performance. To enhance the intelligence
of the edge optical network, this article firstly provides the demand for the development of
edge optical networks. Then, a cross-scene, cross-spectrum, and cross-service (3-CS)
architecture for edge optical networks is presented. Finally, a federated transfer learning
(FTL) framework, realizing a distributed intelligence edge optical network, is proposed. The
usability of the proposed framework is verified by simulation.
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INTRODUCTION

From the communication forecast by Gartner, there are no fewer than 50 billion devices and
terminals in 2020 that can access the Internet. Furthermore, over 70% of data in networks need to be
captured, analyzed, stored, and managed at the edge of the network by 2025 (Shi et al., 2019).
Moreover, the demands for online remote telecommuting and online video conferencing have
become one of the main reasons for the surge of network bandwidth requirement due to emergencies
(Favale et al., 2020; Yu et al., 2021; Zhu et al., 2021), such as the worldwide COVID-19 epidemic. In
line with the data statistics from theMinistry of Industry and Information Technology of the People’s
Republic of China, during the COVID-19 epidemic period, the amount of Internet traffic in China
has grown to approximately 50% more than that of the last year. At the same time, with the rapid
development of optical communication techniques, the optical network gradually replaces the
traditional electric network as themain networking infrastructure (Yang et al., 2015; Zhu et al., 2021).
This constitutes the main body of the edge network, i.e., the edge optical network. Due to the above-
mentioned phenomenon, we need to assess lots of network metrics, e.g., bandwidth, cost, and delay
in terms of whether they satisfy the development of networking techniques.

Artificial intelligence (AI) technology, which is designed to achieve learning and decision-making,
has been implemented in various scenarios of optical networks (Mata et al., 2018; Yao et al., 2019;
Yang et al., 2019a). Zhu et al. (2019) argued that the demands for higher capacity and lower latency
can be satisfied by future edge optical networks and further presented an AI-based control plane in
the SDN-based optical network. Typically, it is an effective approach for remote clouds and edge
clouds to support intelligent services by deploying AI technology (Yang et al., 2020a). To achieve
that, Rahman et al. (2020) presented a privacy-preserving edge network framework that includes the
common integrating MapReduce model. Nevertheless, due to the diversity of network scenarios, the
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dynamics of resource situation, and the variety of service
connections, the edge optical network requires a resource-
efficient and secure AI-based control framework for adapting
to rapid networking development.

To overcome these challenges, this article expands on the
previous work of Yang et al. (2020b) and focuses on three cases in
edge networks including cross-scene, cross-spectrum, and cross-
service, denoted 3-CS. Then, we put forward a 3-CS distributed
FTL framework that is suitable for intelligent edge optical
networks. In this case, a novel edge 3-CS architecture is
presented. Meanwhile, to protect the privacy of all accessed
terminals and devices in this network architecture, federated
transfer learning is adopted as the main AI technology in the
proposed distributed framework, which enhances the intelligence
of the edge optical network.

RELATED WORKS

With the rapid development of AI technology, many related
machine learning algorithms are applied for optical network
optimization (Yang et al., 2020c; Yang et al. 2021). There are
several main categories of AI applications in edge cloud optical
networks, including traffic prediction, resource assignment, and
failure recovery.

Specifically, Zhu et al. (2019) studied the lifecycle of optical
channel provisioning operations for ROADM systems for use in
edge cloud optical networks. For traffic prediction which is
actually the time-series analysis (e.g., LSTM, DCRNN), the
time-series traffic data are captured by the telemetry system,
which forms the input of the prediction system. As the traffic
volume varies and new requests arrive, this information can be
used to set up the optical channels before the capacity is required.
For failure recovery, the network status is monitored in telemetry
and any exceptions will be sent to the SDN orchestrator for
processing, and the adaptive control logic can be directly
implemented. Network recovery procedures are then executed,
and the network can be reconfigured by a physical layer
controller. Aiming at the faulty nodes with huge traffic in the
edge network, Lian et al. (2020) proposed a fault recovery
algorithm. By running the dual migration and reinforcement
learning-based recovery scheme, the time for failure recovery is
proved to be independent of the number of failed services.

For resource allocation, Li X. et al. (2020) proposed a self-
optimizing optical network (SOON) architecture by involving
cloud and edge collaboration while introducing two kinds of AI,
including control layer AI and on-board AI. The resource
optimization process in this architecture exploits
reinforcement learning (RL) to make resource assignment
decisions to maximize network resource utilization. Also, Li Z.
et al. (2020) presented a resource assignment algorithm based on
deep RL embedded in the optical unit, which can achieve higher
throughput in edge computing scenarios.

Other works have also studied the AI technology used in edge
optical networks. Zhao et al. (2019) introduced on-board artificial
intelligence into the edge optical networks, designed an architecture
based on edge computing, and explored its potential applications.

Under the proposed architecture, an alarm prediction algorithm
based on on-board AI is proposed. On-board AI can assist in
filtering out the operating parameters corresponding to each
specific fault, and the controller can predict up to 99%.

Although the above work has improved the intelligence of the
edge optical network, the efficiency issues in the intelligent
process have hardly been considered, such as the training
efficiency of the model. From this point, we proposed the FTL
framework to carry out joint training of the model on the premise
of protecting user data privacy. The challenge is how to select
users with similar training needs and determine if there is a
related training model that can be used directly for federated
transfer.

PROBLEM STATEMENT

With the gradual diversification of service connection types of smart
terminals and devices, bandwidth and latency demands of these
connections are the main requirements of Internet traffic, especially
with the increase in new emerging applications in networks (Yang
et al., 2019b; Yang et al., 2020d). As for the bandwidth demand of
service connection, virtual reality (VR) and augmented reality (AR)
need to be serviced by 4K or Blu-ray bandwidth transmission,
requiring more network resources. As for the latency demand of
service connection, the low delay communication is the most
needed for all live video broadcasting services (Yang et al.,
2020e). To satisfy the above demands, edge computing becomes
themost promising approach to support a huge bandwidth capacity
and a low delay interaction via deploying a small data center in the
edge network. In this case, terminals and devices in the edge
network are unnecessary to share the data with the remote
cloud data center of the core network for computing service,
decreasing the resource consumption in the core network.
Furthermore, considering the shorter communication distance
with the shorter optical fiber length, which is shorter than that
visiting the remote cloud data center, a lower delay may be obtained
for each terminal and device at the edge of the network (Yang et al.,
2019c). Thus, based on the increasing requirements of bandwidth
and latency, the optical network needs to focus on the edge side of
the network for better service provisioning.

Another case is that, in the edge optical network scenario, due
to data privacy restrictions, the data generated by the terminals
often need to be intelligently processed and analyzed locally.
When the amount of local data is very small, it is easy to form data
islands, burying the data value. From this aspect, the edge optical
network also urgently needs to solve this problem. Furthermore,
since the training time of some models is too long, it will lead to
extremely low training efficiency, which is also the problem
solved in this article.

3-CS EDGE OPTICAL NETWORK
ARCHITECTURE DESIGN

This section firstly presents a 3-CS architecture in the edge optical
network, as shown in Figure 1. In the 3-CS architecture, cross-
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scene is set for new network implement scenarios in the real
world, cross-spectrum is set for the available position range of the
spectrum resource in the optical fiber, and cross-service is set for
the emerging service connections in the edge optical network.

For the sake of an intelligent edge optical network with huge
bandwidth capacity, AI technology becomes the key point in
networking design. With the emergency of new network
applications, e.g., smart city, Industry 4.0, and remote online
surgery, there are lots of different obvious features among these
applications, reducing the response of the ordinary AI algorithm
in the service area. With the continuous increase in new
application scenarios, it is increasingly difficult for edge optical
networks to support acceptable interconnection capabilities. Due
to the well-known limited usable resources in networks, it is
unwise to construct multiple AI models for different application
scenarios, as this causes wastage of resources for additional
computing and storing. Thus, an artificial intelligent
architecture with security and also strong generalization
capabilities is required.

FEDERATED TRANSFER LEARNING
FRAMEWORK

Due to the coexistence of diverse services, scenarios, and
heterogeneous resources, based on the 3-CS optical network
architecture, an efficient network control plane is the main
factor to enhance the bandwidth capacity of edge optical
networks (Yang et al., 2016). Driven by intelligent operation,
artificial intelligence technology provides a promising way for
edge optical networks to achieve the functions of learning and
decision-making. Besides, since the risk of data leakage exists
anywhere, under the diversity of network scenarios, spectrum
resources, and service connection types, the privacy protection
for each accessed terminal and device has attracted more
attention in the research studies of edge optical networks. In

this case, it is important to implant an artificial intelligence
algorithm into edge optical networks considering the security
of networks when transferring the data between each terminal or
device pair.

Recently, FTL is considered to be a very promising intelligent
technology, which has been applied in medical health and secure
image steganalysis (Chen et al. 2020; Yang et al., 2020f). To cover
the above concerns, this article proposes an FTL framework,
which works under the presented 3-CS architecture and is shown
in Figure 2. In this framework, federated learning is used to
encrypt sample training without data interaction, and transfer
learning is utilized to improve the efficiency of the trainingmodel;
and data transmission in the network can thus be protected by
avoiding the risk of privacy leakage. Three layers are contained in
the proposed FTL framework, including the data layer, the local
learning (LL) layer, and the FTL layer. Specifically, the data layer
works for data generation and storage among all terminals and
devices in the network, where there is a situation that lots of small
data exist with high application value. Note that the solution for
this issue via the proposed FTL framework is one of the
contributions of this article to enhance the utilization of small
data. For the LL layer, each terminal or device in the network may
adopt an adaptive AI algorithm that is suitable to itself,
constructing the data training models for different training
tasks by utilizing various types of local data. After that, all
parameters of the model are encrypted and delivered to the
federated transfer learning layer with the support of the
federated transfer learning algorithm. It is worth noting that a
service request is sent to the local learning layer from the FTL
layer if transfer learning requirements between each terminal or
device pair exist. If a transfer learning requirement occurs, the
communication between this pair will be started after all related
parameters have been already encrypted yet.

Here, we present a simple example to demonstrate the entire
process in the FTL framework, as shown in Figure 2. We suppose
that data owner (terminal or device) 3 requires small data

FIGURE 1 | 3-CS edge optical network architecture.
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training. Firstly, data owner 3 may check whether the relevant
model exists locally. If it exists, the local task model will be utilized
to directly execute transfer learning locally; otherwise, a training

demand will be delivered to the FTL layer. Then, if a related
model is matched in the database of the FTL layer, the federated
transfer learning process will be executed in the FTL layer;

FIGURE 2 | The proposed FTL framework.

FIGURE 3 | Results of model transfer: (A) NF � 10; (B) NF � 20; (C) NF � 30.
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otherwise, the training demand will be recorded in the FTL layer,
and a query request will be delivered to the local learning layer
periodically until a related model is matched. We suppose that a
suitable model for DO 3 is found in the database of the FTL layer,
and then this model will be transmitted to DO 3 after finishing
encryption.

PERFORMANCE EVALUATION AND
RESULT ANALYSIS

In this section, we have carried out a simulation for the
feasibility of the proposed framework and mainly test the
efficiency of federated transfer learning. A multi-core server
is set up for simulation, including 16 physical 2.20 GHz CPU
cores, two GTX TITAN GPU cores, and 80 GB RAM running
Ubuntu 18.04.2. Federated learning is implemented on five
virtual edge nodes implemented by Docker, and Docker is used
to build a simulation environment involving Tensor Flow and
Python.

We assume that there is an image recognition task under the
proposed 3-CS architecture. Two datasets are involved in the
simulation process, including MNIST and CIFAR, and the CNN
model is used (Kandel et al., 2020). We exploit federated learning
first to jointly train the CNNmodel on the MNIST dataset. Then,
we transfer the model to the CIFAR dataset for transfer learning.
Note that, in order to improve the degree of protection of users’
local data, the MNIST dataset is divided into several parts and
deployed to different users. Whenmatching tasks, we set different
values for different tasks and set the value of the image
recognition task to 1. Since we divide the MNIST data into
several parts and deployed it to different users, we will select
the users whose task attribute is 1 as the federated users. In this
process, the CNN model includes two convolutional layers and
two fully connected layers. In transfer learning, the weight
connection of the fully connected layer is removed to fine-
tune the model. The learning rate is 0.01. The epoch of joint
training is 150, and the epoch of transfer learning is 75.

We assume that number of federated users is indicated as NF

and simulate the training performance of the model under
different numbers of federated users. The simulation results in

Figure 3 show that, for the federated learning process, the
training accuracy can reach 92, 94, and 93% when NF is 10,
20, and 30, while the epoch is 150. After transfer learning, the
training accuracy on the new dataset can reach 93, 94, and 94%,
respectively. The simulation results further verify the feasibility of
the proposed framework in edge optical networks.

CONCLUSION

This article firstly provided the demand under the development
of edge optical networks, presented a 3-CS architecture for
optical networks, and finally designed an FTL framework to
realize a distributed intelligence edge optical network. Note
that federal transfer learning is utilized to guarantee the data
privacy protection for each accessed terminal or device in edge
optical networks, and the proposed framework provides basic
support to fully mine the small data value. The simulation
results prove the feasibility and effectiveness of the proposed
framework.
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