AUTHOR=Völk Florian , Schwarz Robert T. , Knopp Andreas
TITLE=Field Trial on 5G New Radio Over Satellite
JOURNAL=Frontiers in Communications and Networks
VOLUME=2
YEAR=2021
URL=https://www.frontiersin.org/journals/communications-and-networks/articles/10.3389/frcmn.2021.673534
DOI=10.3389/frcmn.2021.673534
ISSN=2673-530X
ABSTRACT=
5G New Radio (NR) is the 3rd Generation Partnership Project (3GPP) radio access technology for the next generation mobile communications network. A major evolution of 5G constitutes the integration of non-terrestrial networks including geostationary and low Earth orbit satellites. The seamless integration of satellites in the terrestrial mobile network requires significant adaptations within the radio access network and the development of new features in the core network to cope with the specific satellite channel characteristics. To date, the 5G control and data plane has been standardized to handle only continuous backhaul communication between the network components. However, a mobile satellite enabled next generation Node B (gNB) located in a vehicle or in a moving aerial platform needs to be able to handle frequent backhaul outages of various duration as well as longer signal delays as opposed to short terrestrial connections via fiber. In this paper, we report the results of an over-the-air (OTA) field trial comprising a mobile edge node connected to the 5G standalone core network components over a geostationary satellite. We analyze Transmission Control Protocol (TCP) acceleration and GPRS Tunneling Protocol (GTP)/TCP/Internet Protocol (IP) header compression features through the GTP. Moreover, the influence of short and long interruptions in the communication between the edge node and the central components on the entire system performance is investigated. The header compression and TCP acceleration modules were implemented on the satellite modems and are now part of the protocol stack of these devices. The results show up to 12% higher data rates for the 5G user equipment (UE), on a 1.5 MHz single carrier return link compared to deactivated TCP acceleration and header compression. We increased the data rate by 20% on the 4.5 MHz DVB-S2X forward link between the UE and 5G core. Moreover, our measurements reveal that even satellite-enabled gNB mobility is possible with the current Release 15 standard. After a short outage of the satellite connection due to shadowing, the UE can successfully re-establish the user plane connection to the core network. Our results will facilitate the full integration of satellite components in 5G through open and standard solutions.