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In this article, we demonstrate two transfer learning–based dual-branch multilayer
perceptron post-equalizers (TL-DBMLPs) in carrierless amplitude and phase (CAP)
modulation-based underwater visible light communication (UVLC) system. The transfer
learning algorithm could reduce the dependence of artificial neural networks (ANN)–based
post-equalizer on big data and extended training cycles. Compared with DBMLP, the TL-
DBMLP is more robust to the jitter of the bias current (Ibias) of light-emitting diode (LED),
which indicates that TL-DBMLP does not require further training in Ibias varying UVLC
system. In terms of voltage peak-to-peak (Vpp) varying VLC system, DBMLP requires a
training set with a size of more than 105 and 50 training epochs, which quantitatively prove
the effectiveness of DBMLP in reducing reliance on large amount of training epochs. On the
counterpart, the TL-DBMLP only requires a training set with a size of less than 2 × 104 and
10 training epochs, which quantitatively prove the effectiveness of DBMLP in reducing
reliance on big data. Finally, we experimentally demonstrate that transfer learning can
effectively reduce ANN dependence on extensive size training data and large amount of
training epochs, whether in VLC systems with varying Ibias and varying Vpp.
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INTRODUCTION

The limited bandwidth of traditional communication systems has always been a major problem that
hinders human exploration and marine resources development. With the in-depth research of
scientific research organizations in visible light communication (VLC), many scientists have noticed
the potential of VLC in underwater applications (Chi et al., 2018; Oubei, 2018; Zhao et al., 2020).
VLC system has been widely proved to have GHz level system bandwidth (Wang et al., 2019; Zhao
and Chi, 2020; Zhao et al., 2020). Because of the skin effect of wireless communication in the
underwater environment, long-distance high-speed wireless communication cannot be realized.
Fortunately, green and blue light is just located in the transmission window of seawater, which
indicates the potential of VLC to realize long-distance and high speed UVLC. Therefore, to achieve
Gbps-level wireless communication at a distance greater than 100 m underwater, it is necessary to
introduce UVLC into the field of underwater wireless communication. To improve the efficiency of
spectrum utilization and thus increase the system data rate, we have adopted high-order modulation,
CAP64. High-order modulated signals have higher requirements for signal-to-noise ratio (SNR),
which also poses challenges to the performance of post-equalization algorithms.
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However, the nonlinear response of LED, electronic amplifier,
and PIN introduces severe nonlinear distortion to the VLC
system, which will reduce the SNR of VLC systems.
Furthermore, the complex underwater environment composed
of turbulence, marine life, and scattering will further aggravate
the nonlinear distortion of the UVLC system, which challenged
the digital signal processing algorithms related to signal recovery
(Miramirkhani and Uysal, 2017; Oubei et al., 2017). Underwater
optical turbulence is caused by refractive index fluctuations
caused by changes in temperature, density, and salinity in the
underwater environment. The change of the refractive index on
the propagation path of the optical signal will cause the
fluctuation of the intensity of the optical signal on the
receiver, thereby causing nonlinear distortion of the received
signal. It is necessary to perform post-equalization on such
severely distorted received signals (Oubei et al., 2017).
Conventional post-equalizer algorithms, such as least mean
squares, recursive least squares, and Volterra series–based
post-equalizer, could effectively recover the linear distorted
received signal in UVLC systems. However, these post-
equalization algorithms have a weak ability to recover high-
order nonlinear distorted signal in the UVLC system. The
conventional post-equalization algorithms essentially construct
a mapping between the received signal and the transmitted signal.
According to the universal approximation theorem, MLP can
approximate the mapping between the received signal and the
transmitted signal with arbitrary precision (Hornik et al., 1990;
Barron, 1993). A lot of research work has confirmed that MLP
post-equalizer has better BER performance than conventional
post-equalizer algorithms in VLC systems (Ghassemlooy et al.,
2013; Haigh et al., 2014; Chi et al., 2018). Our previous research
demonstrated a DBMLP post-equalizer, which are experimentally
proved to have dramatically better nonlinear distortion
compensation capability than conventional post-equalizer
algorithms (Zhao and Chi, 2020; Zhao and Chi, 2020). Just
like ANN algorithms in other fields, such as natural language
processing and computer vision, ANN post-equalization
algorithms rely heavily on large-scale training sets and a large
amount of training epochs. According to the previous research,
the ANN post-equalizer training stage requires a training set with
a size of more than 105 and 50 training epochs (Chuang et al.,
2018; Lohani et al., 2018). However, in the practical UVLC
system, a large-size training set will occupy too much signal
bandwidth, which restricts the effective bandwidth of the UVLC
system. Furthermore, the number of training epochs will increase
the system delay. Therefore, proposing an ANNpost-equalization
algorithm that relies on a small size training set and small-epochs
learning is essential for applying the ANN post-equalization
algorithm in the practical UVLC system.

In this article, based on preliminary work, we propose two
transfer learning–based ANN post-equalizers named as TL-
DBMLPs (TL-DBMLP-I and TL-DBMLP-V) (Zhao et al.,
2019a; Zhao et al., 2019b). As TL-DBMLP-I is robust to Ibias
varying UVLC systems, it has no dependence on training data
and training period. When TL-DBMLP-I is used in the practical
UVLC system of Ibias varying, fine-tuning is not required.
Furthermore, only training set with a size of 2 × 104 and 10

training epochs is needed for the TL-DBMLP in the practical Vpp
varying UVLC systems. The training set and the training epochs
required by TL-DBMLP-V is only 5 and 20% of conventional
DBMLP, respectively. Finally, we solved the dependence of the
artificial neural network post-equalizer in the UVLC system on
big data and long-period training through the transfer learning
method, which will be beneficial to the application of the artificial
neural network post-equalizer in the actual UVLC system.

PRINCIPLE OF TL-DBMLP

The essence of transfer learning is to transfer the parameters and
structure of a pretrained model to a new model to help the new
model’s training process (Raghu and Schmidt, 2020; Panigrahi
et al., 2021). Considering that the time-varying UVLC system still
has some time-invariant characteristics, we can share the
parameters of pretrained DBMLP (it can also be understood
as the model learned the time-invariant characteristics of UVLC
system) with the new model to optimize the learning efficiency
and to reduce the requirements for the training data set. In the
pretraining stage, the DBMLP is trained with a data set including
106 samples. The training set is obtained by sampling in UVLC
with different Ibias or Vpp. In this way, we can train DBMLP from
a relatively convergent state instead of starting from a completely
untrained initial state. The structure and parameters of DBMLP is
discussed in detail in our previous research (Zhao and Chi, 2020).
The main purpose of this study was to discuss the application of
transfer learning algorithms. If you are interested in the details
and performance of DBMLP, please refer to Zhao et al., (2020).

According to Figure 1, The DBMLP is pretrained in the
pretraining stage. Two different training sets with varying Ibias
(130–200mA) and Vpp (0.3–0.8 V) are used for training the
DBMLP, which leads to two kinds of pretrained DBMLP named
DBMLP-I and DBMLP-V, respectively. The training set including
more than 106 samples obtained by oscilloscope in a UVLC system.
In order to prevent TF-DBMLP from memorizing the generation
rules of pseudo-random sequences, our training set was generated
based on Mersenne Twister. The period of Mersenne Twister is
219937−1, which is much larger than the length of the training set.
Meanwhile, the test set was also generated based on Mersenne
Twister with different seed (Matsumoto and Nishimura, 1998).
Furthermore, during the training process, we will shuffle the
training set and then train TL-DBMLP in each epoch. In this
way, the TF-DBMLP could not memorize the transmitted signal.
The structure and parameters of DBMLP are described in our
previous research (Zhao and Chi, 2020). In this way, the
DBMLP-I and DBMLP-V could compensate for the time-
invariant distortions of received signals in the Ibias varying and
Vpp varying UVLC systems, respectively. The outputs of the
DBMLP could be express as follows:

y � f (x;W0, b0) � WT
2,2 tanh(W

T
2,1x

(i) + b2,1) +WT
1 x

(i) + b1 + b2,2,

(1)

where W0, b0 are the initialized trainable weights and bias of
ANN, which are uniform random numbers between -0.05 and
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0.05, which includingW1,W2,1,W2,2, b1, b2,1, b2,2. x(i) is the input
feature of DBMLP, which is also the received signal. y is the
outputs of DBMLP. tanh is an active function, which could be
expressed as follows:

tanh(x) � ex − e−x

ex + e− x
. (2)

The mean square error (MSE) is then used as the loss function
to evaluate the distance between the target distribution and the
model distribution.

Wp, bp � argmin
W,b

1
m

∑
m

i�1

����ŷ(i) − y(i)
����2, (3)

where Wp, bp are the pretrained parameters of DBMLP. m is the
number of samples in the training set. ŷ(i) is the transmitted signal
and y(i) is the predicted signal by DBMLP.

The pretrained DBMLP is then transferred to the practical
UVLC system, which corresponds to the red arrow in
Figure 1. Before the pretrained DBMLPs are used in a
specific VLC system with constant Ibias and Vpp, the
pretrained DBMLP is finetuned with a small size training
set and several rounds of training epochs. The training set is
composed of the transmitted signal and the received signal in
a channel of a certain I (range between 130 and 200 mA) and a

certain Vpp (range between 0.3 and 0.8 V). Consequently, the
final output of TL-DBMLPs (including TL-DBMLP-I and TL-
DBMLP-V) could be expressed as follows:

y � f (x;Wfine−tuned , bfine−tuned), (4)

whereWfine−tuned , bfine−tuned are the fine-tuned weights and bias of
TL-DBMLP, respectively.

The function of TL-DBMLPs is to compensate the linear
and nonlinear distortion of received signals to reduce the bit
error rate (BER) of received signals. Since the initialization
parameters of TL-DBMLPs are no longer random numbers
but pretrained values, TL-DBMLP is only needed to be fine-
tuned before the TL-DBMLPs are utilized in practical UVLC
systems. Therefore, the fine-tuning process of TL-DBMLP
only requires a small amount of training data and training
cycles.

EXPERIMENTAL SETUP

Figure 2A describes our experimental setup. At the transmitter
end, we generated a set of QAM64 signal in MATLAB. Then we
get the CAP64 signal through upsampling, I/Q separation, and
pulse shaping. Then an arbitrary waveform generator (AWG) is

FIGURE 1 | Block diagram TL-DBMLP equalized UVLC system.
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used to convert the digital signal into the analog electrical signal.
The amplified electrical signal is added to DC through Bias-Tee
and used to drive the LED. The silicon-based blue LED is the
transmitter to convert the electrical signal to the optical signal.

After propagating through the 1.2-m water tank, the optical
signal is concentrated on the PIN via a convex lens at the receiver
end. The receiver end is composed of a PIN photodetector, an
electric amplifier, and an OSC. The PIN converts the optical
signal to the electrical signal. The electrical signal is captured by
OSC after it is amplified by the electric amplifier. After that, the
captured signal will be processed offline through digital signal
processing. The details of the components in Figure 2 are
provided in Table 1.

To show the nonlinearity in LED and UVLC system more
intuitively, we measured the P–I curve of the silicon-based blue
LED in Figure 3A, respectively. It can be clearly seen that the
response between LED bias current and output power is
nonlinear. Furthermore, we provided the AM/AM response of

the UVLC system in Figure 3B. The units of x-axis and y-axis are
the normalized amplitude of the transmitted signal and received
signal, respectively. It can be seen that as the amplitude of the
transmitted signal increases, the change of the received signal is
not linear.

RESULTS AND ANALYSIS

In order to prove that the TL-DBMLPs training can converge
faster under the new ULVC system, we experimentally compared
the MSE of the two TL-DBMLPs (TL-DBMLP-I and TL-
DBMLP-V) and the conventional DBMLP in the training
process, which is described in Figure 4A. An ANN post-
equalizer completes one training process on a whole set of
training data, which is called one epoch. All the following
experimental results are based on a training set containing 2 ×
106 samples and testing set with 2 × 105 samples obtained from
the transmitted signal with a bit rate of 3.1 Gbps. The percentage
in Figure 4 represents the proportion of the data set used as the
training set and the rest of the data set is used as the validation set.
Compared with conventional DBMLP, we can clearly notice that
both TL-DBMLPs have a relatively low MSE (relatively
convergent state) at the beginning of fine-tuning. For the four
types of pretrained DBMLPs, only 10 epochs of training canmake
the MES less than 0.0026. And further training will no longer
significantly reduce MSE of the pretrained DBMLPs. On the

FIGURE 2 | (A) Experimental setup of the UVLC system.

TABLE 1 | Details of components in Figure 2.

Components Parameters and type

AWG Agilent M9502
LED Silicon-based blue LED
PIN photodetector s10784
Water tank 1.2 m
OSC Agilent MSO9254A

FIGURE 3 | (A) P–I curve of the silicon-based blue LED. (B) Amplitude (AM/AM) response of the UVLC system.
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counterpart, the loss that the two DBMLPs can achieve after 25
epochs of training is 0.0028. Therefore, it can be considered that
TL-DBMLPs can quickly converge in the fine-tuning process.

Furthermore, Figure 4A describes the dependence of three
kinds of ANN post-equalizer algorithms on the training set’s
size. We can find that TL-DBMLP-I and TL-DBMLP-V have
minimal dependence on the size of the training set. Reducing
the size of the training set from 50 to 10% of the total data set
does not significantly increase the MSE of DBMLP-I and
DBMLP-V. Take the state after 10 epochs of fine-tuning as
examples, the MSE of DBMLP-I and DBMLP-V increase from
0.00260 and 0.00266 to 0.00263 and 0.00279, respectively. In
terms of DBMLP, the loss increases from 0.00292 to 0.00916.
Therefore, it can be concluded that the dependence of TL-
DBMLPs on the size of the training set is much lower than
that of conventional DBMLP.

Since MSE can only reflect the convergence state during
the ANN training process, it cannot directly reflect the BER
performance of the ANN post-equalization algorithms.
Therefore, we tested the impact of the size of the training
set on the error performance of DBMLP, TL-BMLP-I, and
TL-DBMLP-V in Figure 4B. The gray curve verifies that
DBMLP has a strong dependence on the size of the
training set. When the training set is reduced from 50 to
10%, the BER of DBMLP equalized UVLC increase from
0.0028 to 0.0164. In terms of TL-DBMLP-V, the BER only
increase from 0.0021 to 0.0032. This is because the rise in Vpp
will significantly aggravate the nonlinear distortion of the
UVLC system. This leads to a decrease in the commonality
between channels in UVLC systems with different Vpp.
Therefore, the commonalities that TL-DBMLP-V can learn
during the pretraining phase will be reduced. In a specific
Vpp UVLC system, a certain amount of training epochs is
required to fine-tune TL-DBMLP-V. According to the
experimental results, 10% of the total data set can reduce
the BER of TL-DBMLP-V equalized UVLC below the 7%
hard-decision forward error correction (HD-FEC) threshold
(BER � 0.0038). The red curve shows that the BER
performance of TL-BMLP-I has a very low dependence on
the size of the training set. Since the change of Ibias has a

relatively small influence on the nonlinear distortion in the
UVLC system, the commonality of signal distortion in UVLC
systems with current changes is greater than that of UVLC
systems with Vpp changes. Therefore, compared with TL-
DBMLP-V, there are more commonalities than TL-DBMLP-I
can learn during the pretraining phase. Consequently, we can
conclude that DBMLP is much more dependent on the size of
the training set than TL-DBMLPs. And TL-DBMLP-I has
almost no dependence on the size of the training set. Because
the pretrained TL-DBMLP has already compensated for the
nonlinearity distortion existing in the UVLC system to a
certain extent. Even at different operating points, TL-DBMLP
has good BER performance before retraining. Therefore, only
a small size of training data is required to achieve the best
BER performance of TL-DBMLP.

Figure 5 intuitively shows the impact of the training epochs on the
BER performance of DBMLP and TL-DBMLPs. Since our target is to
obtain a high BER performance ANN post-equalization algorithm
trained on a small number of epochs and training data, we set the size
of the training set to 10% of the length of the whole data set.When the
size of training set is not large enough (10%), the BER performance of
DBMLP after different epochs of training is very unstable. In fact, we
found that even with training with the same epochs, the BER
performance of the obtained DBMLP will be very different.
Because, before each training process start, the trainable
parameters of the DBMLP must be initialized. The initialization is
based on uniform random numbers between −0.05 and 0.05.
Therefore, the initialization state of the trainable parameters will be
different in each training process. However, when the size of training
set and the number of epochs is not large enough, the BER
performance of DBMLP will be significantly affected by the
initialization state. As a result, the BER performance of DBMLP is
unstable. The instability of BER performance also hinders the
application of DBMLP in practical UVLC systems. According to
the green curve in Figure 5, the increase of the training epochs can
slightly improve the BER performance of TL-DBMLP-V. The reason
is consistent with the analysis in Figure 4B. Similarly, we could notice
that the red curve hardly changes with the increase of epochs. So far,
we have experimentally proved that TL-DBMLP-I has good
generalization in the UVLC system with varying Ibias. Even

FIGURE 4 | (A) Training process of DBMLP and two kinds of DBMLPs pretrained under Ibias varying and Vpp varying UVLC systems. (B) The effects of the size of
the training set on the BER performance of TL-DBMLP.
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without fine-tuning, TL-DBMLP-I still has good BER performance.
Meanwhile, 10 epochs of trainingwith 10%of thewhole data set could
effectively fine-tune the trainable parameters of TL-DBMLP-V.

In order to compare the signals equalized by the three kinds of
ANN equalizers intuitively, we visualized the equalized signals.

According to Figure 5 (ia) (iia) and (iiia), the signals near the
outer constellation points are not gathered together well. These
show that there is a certain degree of nonlinear distortion in the
UVLC system. Compared with DBMLP, the two fine-tuned TL-
DBMLPs can recover the received signal better. Meanwhile, as the

FIGURE 5 | Relationship between DBMLP and TL-DBMLP training period and BER performance. Constellation diagram, eye diagram, and frequency spectrum of
the equalized signal are provided in (i), (ii), (iii).

FIGURE 6 | In 3.1 Gbps UVLC systems (A)with different Ibias, 10 epochs fine-tuned TL-DBMLP-I is compared with other nonlinear post-equalization algorithms. (B)
With different Vpp, 10 epochs fine-tuned TL-DBMLP-V is compared with other nonlinear post-equalization algorithms.
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eye diagrams of signal equalized by two fine-tuned TL-DBMLPs
(Figure 5 (iib) (iiib)) is clearer than DBMLP equalized signal in
Figure 5 (ib), the SNR of TL-DBMLPs equalized signal is also
better than DBMLP equalized signal. According to the frequency
spectrum in Figure 5 (ic) (iic) and (iiic), all three kinds of ANN
equalizers could effectively recover the distorted signal at receiver
end. However, in the high-frequency range, the capability of TL-
DBMLPs to compensate for high frequency fading is significantly
better than DBMLP.

To test the generalization of TL-DBMLPs, we tested the BER
performance of TL-DBMLP-I in UVLC systems with different Ibias.
According to Figure 6A, after 10 epochs of training with 50% data as
the training set, the BER performance of DBMLP is only comparable
to Volterra-based equalizer. The BER of TL-DBMLP-V equalized
UVLC systems are much lower than two DBMLPs equalized UVLC
systems. Furthermore, the BER performance of TL-DBMLP-Iwithout
fine-tuning is comparable to fine-tuned TL-DBMLP-I. This
phenomenon further illustrates that the UVLC system with
TLDBMLP-I varying Ibias does not require fine-tuning. In other
words, in the UVLC system with varying Ibias, TLDBMLP-I no
longer needs to be fine-tuned. Therefore, it no longer occupies
system bandwidth and causes system delays.

Correspondingly, we tested the BER performance of TL-
DBMLP-V in UVLC systems with different Vpp. In order to
make the BER performance of DBMLP comparable to TL-
DBMLP-V, the training data need to be increased from 10 to
50%. In Figure 6B, the BER performance of the TL-DBMLP-V
without fine-tuning is slightly inferior to Volterra-based post-
equalizer. Compared with TL-DBMLP-V without fine-tuning,
the performance of the fine-tuned TL-DBMLP-V has been
significantly improved, which shows that TL-DBMLP-V needs
to be fine-tuned. Simultaneously, when the training set is
increased from 10 to 50%, the error performance of TL-
DBMLP-V is improved. Figure 6B shows that TL-DBMLP-V
still needs a certain amount of training data for fine-tuning. But
the amount of data required is much smaller than that of DBMLP.

According to the results and analysis above, TL-DBMLP-I
does not need to be fine-tuned when it is utilized in the actual
UVLC system with varying Ibias. In the fine-tuning process of TL-
DBMLP-V, the required training data and epochs are 2 × 104, and

10 epochs, respectively. On the counterpart, the training process
of DBMLP requires more than 105 training data and more than
50 training epochs.

CONCLUSION

This study proposed two kinds of TL-DBMLPs, including TL-
DBMLP-V and TL-DBMLP-I. For Vpp varying CAP64 UVLC
system, the training process of TL-DBMLP-V required 2 × 104

training data and 10 epochs, which was only 20% of conventional
DBMLP. More importantly, our proposed TL-DBMLP-I had good
generalization in the UVLC system with varying Ibias changes.
Therefore, TL-DBMLP-I did not require fine-tuning when it was
utilized in a practical CAP64 UVLC system. Compared with
conventional ANN post-equalizer, the demonstrated TL-DBMLPs
only occupied a small system bandwidth, and the system delay caused
by the training process was also greatly reduced, which was very
important for the application of the ANN post-equalization
algorithms in the practical UVLC system.
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