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semantic maps from
cross-linguistic synchronic
polysemy data
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Germany

Semantic maps are used in lexical typology to summarize cross-linguistic

implicational universals of co-expression betweenmeanings in a domain. They are

defined as networks which, using as few links as possible, connect the meanings

so that every isolectic set (i.e., set of meanings that can be expressed by the

same word in some language) forms a connected component. Due to the close

connection between synchronic polysemies and semantic change, semanticmaps

are often interpreted diachronically as encoding potential pathways of semantic

extension. While semantic maps are traditionally generated by hand, there have

been attempts to automate this complex and non-deterministic process. I explore

the problem from a new algorithmic angle by casting it in the framework of

causal discovery, a field which explores the possibility of automatically inferring

causal structures from observational data. I show that a standard causal inference

algorithm can be used to reduce cross-linguistic polysemy data into minimal

network structures which explain the observed polysemies. If the algorithmmakes

its link deletion decisions on the basis of the connected component criterion, the

skeleton of the resulting causal structure is a synchronic semanticmap. The arrows

which are added to some links in the second stage can be interpreted as expressing

the main tendencies of semantic extension. Much of the existing literature on

semantic maps implicitly assumes that the data from the languages under analysis

is correct and complete, whereas in reality, semantic map research is riddled by

data quality and sparseness problems. To quantify the uncertainty inherent in the

inferred diachronic semanticmaps, I rely on bootstrapping on the language level to

model the uncertainty caused by the given language sample, as well as on random

link processing orders to explore the space of possible semantic maps for a given

input. The maps inferred from the samples are then summarized into a consensus

networkwhere every link and arrow receives a confidence value. In experiments on

cross-linguistic polysemy data of varying shapes, the resulting confidence values

are found to mostly agree with previously published results, though challenges in

directionality inference remain.
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1 Introduction

Much of lexical typology, the discipline which tries to derive
generalizations about the ways in which languages carve up
semantic space into lexemes, rests on the notion of colexification
(François, 2008). A polysemous word is said to colexify its
meanings, providing evidence that its meanings can be co-
expressed by the same form. The set of meanings of a polysemous
word is called an isolectic set, or an isolectic area if we want the
emphasize the assumption that each word picks out a contiguous
subregion of an underlying semantic space. Isolectic sets provide us
with evidence of the structure of this underlying space, which we
assume to be constituted by a set of cross-linguistic meanings.

A semantic map, as first explored by Anderson (1982) and
systematized by Haspelmath (2003) for the analysis of grammatical
meanings, summarizes evidence of the structure of this space
in the shape of a graph structure which consists of undirected
links between pairs of meanings. Informed by the connectivity
hypothesis (Croft, 2002, p. 134), meanings are connected in such
a way that each isolectic set corresponds to a connected region in
the graph, i.e., each pair of colexified concepts is connected by a
path which consists only of additional meanings of the same word.
This criterion implies that semantic maps express cross-linguistic
universals of colexification. If the only connection between two
meanings A and C in a semantic map is a path A — B — C, the
map predicts that any word which has the meanings A and C will
also have the meaning B. A semantic map additionally follows the
economy principle (Georgakopoulos and Polis, 2018), i.e., it must
be minimal in the sense that no link in it can be deleted without
violating the criterion.

Semantic maps are far from unique for any given dataset, as
many different sequences of link deletions or additions can lead to
different locally minimal graph structures which meet the criterion.
When linguists manually infer a semantic map from a dataset, the
linking decisions are typically guided by intuition or additional
knowledge, yet the result will not necessarily be globally optimal
because the number of possible maps will often be intractably large.
An automated inference algorithm for synchronic semantic maps
was developed by Regier et al. (2013), which tries to make near-
optimal decisions through a heuristic which always gives priority
to the link which leads toward connecting the meanings for the
highest number of isolectic sets for which the criterion is not
yet met.

A recent trend in semantic map research tries to enrich
the structures by diachronic information, detecting tendencies
in changes of lexification patterns to derive a theory of “lexical
tectonics” (François, 2022). The basic idea of a diachronic semantic
map is that some of the edges in a semantic map receive a
directionality, with the intention to represent common pathways
or universal tendencies of semantic extension and change within
the domain. This addition of directed links has so far very much
been a manual process based on philological insight, as exemplified
by Georgakopoulos and Polis (2021). The potential of determining
cross-linguistically valid directionalities is severely limited by the
very small number of language families for which historical texts
are available in sufficient quantities, which is why no inference
algorithm for diachronic semantic maps has been suggested so far.

This article presents a new approach to synchronic and
diachronic semantic map inference which is based on techniques
of causal discovery (Glymour et al., 2019), a class of statistical
methods in which sets of variables are analyzed in order to assign
a minimal model of the underlying causal structure. This causal
structure is expressed as a directed acyclic graph connecting the
variables. The application of causal inference to discrete data has
not been explored very widely, but it turns out that existing work
on causal inference of phylogenetic networks from cognacy data
(Dellert, 2019) can be applied rather directly to the task of inferring
semantic maps from a collection of overlapping isolectic sets.
The algorithm starts with a fully connected graph over a set of
meanings, and progressively deletes links based on a connecting
path criterion which ensures that no isolectic set is split into
several components. Eventually, the algorithm arrives at a graph
where every link is necessary according to the criterion that each
isolectic set needs to be a connected component. I present example
results of my implementation of the new algorithm, discussing
some of its properties, and show that inferring what is called
the causal skeleton corresponds to the inference of a synchronic
semantic map.

I then present some options for using my efficient
implementation to run the algorithm many times on variations
of the input data, and exploring the space of possible semantic
maps, in order to quantify our uncertainty about each inferred
link. Finally, I build on previous research on determining the
directionality of semantic change (Dellert, 2016) in order to recover
the directional signal, allowing the algorithm to automatically infer
diachronic semantic maps from synchronic data alone, without
requiring the presence and analysis of historically attested changes.
To explore the potential of the method on currently available data,
I attempt to reproduce classical findings on pathways of semantic
change among body parts and verbs of perception.

2 Materials and methods

2.1 Semantic map inference as causal
discovery

Causal discovery is a comparatively young field which develops
approaches to the inference of causal structures from observational
data. In the most popular model laid out by Pearl (2009),
causal structures are expressed as directed acyclic graphs over the
observed variables, and the observations are taken to be samples
of the joint distribution of these variables. Beyond the purpose of
other types of graphical models, where the focus is on modeling the
joint distribution of variables, the directionality of causal structures
additionally enables predictions of what would happen if one of
the variables were manipulated. There is a mathematical procedure
(the do-calculus) which enables the calculation of probabilities
for counterfactuals (how would the outcome have been different
given different actions and/or circumstances?), which is necessary
to consistently identify primary and secondary causes of an event,
as will often need to be done in the context of assessing legal
responsibility, or finding the root cause of a system failure.
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More crucially for our application, causal discovery algorithms
are able to assign a directionality to at least some links in the
structure, reflecting a monodirectional causal relationship. This
provides causal discovery with the unique ability to infer causality
from observational data alone, against the traditional scientific
view that causality can only be established by experiment, i.e.,
by manipulating some variable while observing the behavior
of others. As in many sciences, direct experimentation is
potentially unethical (medicine, psychology) or infeasible (politics,
economics), techniques which allow to infer causality from
available observational data are very promising.

To cite a famous example for context, Spirtes et al. (2000) show
how causal inference can be used to refute an argument proposed
by lawyers representing the tobacco industry in order to explain
away the link between smoking and lung cancer. The argument was
that the apparent correlation (which was taken to suggest a direct
causal link S → C from smoking to cancer) was due to a hidden
common cause, such as a genetic predisposition G which causes
both a tendency to develop lung cancer and a taste for cigarettes
(S← G→ C).Without being able tomeasureG, classical statistical
methods are unable to resolve the question, and running a medical
experiment to test the causality hypothesis directly is obviously
unethical. By performing conditional independence tests involving
additional variables (such as income and the parents’ smoking
habits), causal inference can, under certain conditions, prove the
direction of causality must be S → C, independently of whether
the claimed genetic predisposition exists or not.

For linguistic typology, causal discovery holds some promise
because we obviously cannot (and would not want to) manipulate
the grammar or the lexicon of an entire community of speakers. In
lexical typology, we can try to use causal inference in order to infer
pathways of semantic change from observational data in the shape
of synchronic polysemies.

Causal discovery from linguistic data was previously explored
by Dellert (2019) as a framework for phylogenetic network
inference. Here, the variables are attested or reconstructed
languages, and the presence or absence of cognate sets in these
languages forms the observations which give rise to constraints
that correspond to connected components. The underlying idea
is that the lexicon of a language can be framed as being caused
by the lexicon inherited from previous stages and by possible
contributions from the lexicon of donor languages, with lexical
replacement and semantic shift being treated as noise in this causal
structure over languages. Results by Dellert (2019) have shown that
in many situations, the application of causal inference results in
plausible minimal contact networks between the languages, and
that directionality inference (i.e., determining the directionality of
borrowing between languages that were inferred to have been in
contact) works reasonably well in a range of cases, but is generally
much more difficult.

In order to apply causal discovery algorithms to polysemy
data, we will instead treat the meanings of the relevant domain
(the nodes of the semantic map) as variables, and take the ways
in which different languages carve up the semantic space as
joint observations of these variables. A link between two senses
will imply that the associated variables are in a direct causal
relationship, i.e., the forms for one sense can be seen as “causing”

the forms for the other. This directly reflects our understanding
of how lexifications tend to arise. To take a classical example, if
the forms assigned to the meaning MONTH are often originally
the forms for MOON, and the additional lexification of forms for
MOON arises through semantic extension, we can quite literally
frame this as the forms for MOON having a causal influence on the
words forMONTH.Under the diachronic interpretation, a directed
link between two meanings would imply that semantic extension
across the link will typically only happen in the direction of the
arrow, e.g., MOON→MONTH.

Under the do-calculus, if we have a directed link MOON →
MONTH, and otherwise no indirect connection between the two
meanings, this would imply that if a new word for MOON gets
introduced into the language, there is a change in the expectation
of what the word for MONTH could be, whereas a new word for
MONTH will not allow any prediction about a possible change to
the word for MOON.

The algorithm proposed here builds on the central insight that
the semantic map inference problem can be seen as the transpose
of the lexical flow network inference problem. Both problems can
be addressed by the same algorithm on data of the same shape:
a meaning-language matrix with a list of synonymous forms in
each entry, which is often simply called a coexpression matrix.
The only relevant difference between the two applications lies in
exchanged roles for variables and observations. Where the previous
application treated languages as being connected by cognate sets
(denoting different meanings), we are now interested in meanings
connected by isolectic sets (as observed in different languages).
The meanings are the variables among which we want to infer a
causal structure, and the isolectic sets are the (joint) observations
of these variables.

2.2 Conditional mutual information and
the connected component criterion

Causal inference has grown into a large field where a wide
range of algorithmic approaches are being explored, but only the
framework of constraint-based causal discovery provides a direct
match to the lexical flow network and semantic map inference
problems on discrete coexpression data. The PC* (read: “PC star”)
algorithm (Spirtes et al., 2000), which we are going to apply to our
polysemy data, is an improved version of the original PC (Peter-
Clark) algorithm introduced by Spirtes and Glymour (1991) as
the very first constraint-based causal inference algorithm. Most
of the later improvements of the original PC algorithm carry
over to the PC* algorithm, and my implementation will make
use of some of these improvements. The core building block
of constraint-based causal inference algorithms is a consistent
conditional independence test. Instances of such a test need to
decide whether the correlation between two (sets of) variables can
be fully explained by mediation through a third set of variables, and
each test result allows the discovery algorithm to narrow down the
set of possible causal graph structures.

The PC* algorithm is usually applied to continuous variables,
and most common conditional independence tests are based
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on testing for vanishing partial correlation. However, Steudel
et al. (2010) show that consistent conditional independence tests
for non-Gaussian variables can be based on tests for vanishing
conditional mutual information on any information measure h

which fulfills a small set of core properties. The requirement for this
is a submodular information measure for sets of variables, which
needs to behave to a sufficient degree like entropy H, allowing to
understand the nature of such ameasure in themultitude of ways in
which entropy can be understood: as a measure of unpredictability,
of chaos, or of joint descriptive complexity.

Dellert (2019) builds on these theoretical results, and shows
that there is a straightfoward way of defining such a measure h for
cognate sets. As the joint information for a set of languages, we
can take the number of etyma which have reflexes in any of the
languages. This means that for completely unrelated languages, the
joint information will be equal to the sum of the information for the
individual languages, whereas for closely related languages with a
large etymological overlap, the joint information will barely exceed
the information measure for each individual language. Under this
definition, the derived mutual information i(L1; L2) is the number
of etyma shared between languages L1 and L2, and conditional
mutual information i(L1; L2|L) measures the number of shared
etyma for which no reflex exists in any of the languages we are
conditioning on.

It turns out that this definition can be applied in a completely
analogous fashion to the transposed problem of semantic map
inference, by simply defining the joint information measure h for
a set of meanings as the number of isolectic sets which contain one
or more of the relevant meanings. Mutual information i(C1;C2)
between two meanings C1 and C2 is then based on the number
of isolectic sets which include both meanings in relation to the
number of isolectic sets including either meaning, and conditional
mutual information i(C1;C2|C) measures the number of isolectic
sets which include both meanings, but none of the additional
meanings from the set C we are conditioning on. This definition
of mutual information makes intuitive sense: given the frequency
of the colexification between MOON and MONTH, if we know the
words for MOON in a set of languages, we are likely to already have
seen the words for MONTH in some of them. In the information-
theoretic reading, a list of words for MOON is bound to contain
some information about words for MONTH, as we have better
chances of correctly guessing some of the words for MONTH if the
words for MOON are available to us.

To illustrate the behavior of the information measure h and
the measures derived from it, we take our example data from
CLICS3 (Rzymski et al., 2020), a large database of cross-linguistic
polysemies which is automatically extracted from the polysemy
data contained in a large number of lexical databases coveringmany
language families from all continents, and has already been put to
use quite successfully in semantic map research (Georgakopoulos
and Polis, 2022).

Staying with our example around MOON and MONTH, we
find that CLICS3 contains a total of 2,878 isolectic sets which
contain the meaning MOON, but only 715 isolectic sets containing
MONTH, i.e., h(MOON) = 2, 878 and h(MONTH) = 715,
quantifying the amounts of information we have about the two
meanings. The joint information h(MONTH,MOON) = 3, 266

is defined as the number of isolectic sets containing at least one
of the two meanings. Based on these three numbers, we can use
the standard definition I(X;Y) : = H(X) + H(Y) − H(X,Y) to
compute the mutual information as i(MONTH;MOON) = 715+
2, 878−3, 266 = 327, which is exactly the number of colexifications
between MOON and MONTH in the database.

In order to explain the derived measure of conditional
mutual information, we need to add a third meaning to the
example. SUN turns out to work well for purposes of illustration.
There is a total of 3,209 isolectic sets involving SUN, hence
h(SUN) = 3, 209. The values of joint information with the
two existing meanings are h(MONTH, SUN) = 3, 922 and
h(MOON, SUN) = 6, 049, and all three meanings together are
involved in h(MONTH,MOON, SUN) = 6, 437 isolectic sets. The
two newmutual information values are i(MONTH; SUN) = 715+
3, 209−3, 922 = 2 and i(MOON; SUN) = 2, 878+3, 209−6, 049 =
38, showing us that the two celestial bodies are colexified much
more often than MONTH and SUN are, though of course, we are
ignoring the fact that we have far less data aboutMONTH available,
exemplifying a major problem of lexical typology on the basis of
aggregated lexical databases with their uneven coverage.

Crucially, the numbers we computed so far allow us to apply
the definition of conditional mutual information as I(X;Y|Z) : =
H(X,Z) + H(Y ,Z) − H(X,Y ,Z) − H(Z) in order to compute
i(SUN;MONTH|MOON) = 6, 049 + 3, 266 − 6, 437 −
2, 878 = 0. This vanishing conditional mutual information directly
reflects the fact that in the CLICS3 database, every isolectic set
involving SUN and MONTH also involves MOON. In contrast,
i(SUN;MOON|MONTH) = 3, 922 + 3, 266 − 6, 437 − 715 = 36
remains larger than zero, reflecting that there are isolectic sets
which contain both SUN and MOON, but not MONTH. This
implies that in a semantic map built for these three meanings,
SUN and MOON would have to be linked in order to satisfy
the connected component condition. In this small example, we
find illustrated the close connection between vanishing conditional
mutual information and the ability to delete a link from a semantic
map under construction.

The core mechanism of the PC* algorithm consists in applying
this logic systematically to all links in an initially fully connected
graph, using certain heuristics to efficiently find separating
sets which lead to successful conditional independence tests,
progressively removing more links until it can be safely determined
that no further separating set exists in the current reduced graph,
implying that one cannot remove any additional link, which makes
inference complete.

A major challenge in applying this logic to semantic map
inference is that the choices of conditional independence tests rely
on a faithfulness assumption, which states that true correlation
will always remain identifiable and cannot be blocked by chance
overlaps as we condition on additional variables. In a long
chain between continuous variables, there will typically be some
signal which cannot be blocked by spurious conditioning, so
that it is not actually necessary to enforce the condition that
each component of the shared signal can actually have traveled
between the variable sets we are trying to separate, but it is
sufficient to test for vanishing conditional mutual information
at the variable level. Among continuous variables, a complete
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masking of correlations along some path will almost never occur
by chance.

We can take a cycle A — B — C — D — E — A as an example
of a configuration where this becomes apparent. Assume that in
this configuration, A — E is made necessary by a single isolectic
set containing the meanings A, B, D, E, but not C. Unfortunately,
this single isolectic set will cancel itself out during the test,
as the component of i(A;E|B,D) = h(A,B,D) + h(B,D,E) −
h(A,B,D,E) − h(B,D) which is supposed to measure the need
to keep the isolect sets connected, will evaluate to 1 + 1 − 1 −
1 = 0. This causes the conditional independence test to succeed,
and the link to be erroneously deleted, violating the connected
component criterion.

The lack of faithfulness on discrete data which becomes visible
in such examples makes it necessary to ensure that the discrete
pieces of information (in both linguistic applications discussed so
far, these would be individual forms) can actually have traveled
along the network formed by the variables we are conditioning
on. In Dellert (2019), this intuition was formalized as the flow
separation criterion. In the application to cognate sets, this amounts
to reasoning about pathways of transmission of lexical material by
inheritance or borrowing. On the dual problem of semantic map
inference, the reasoning is about pathways of semantic extension
within the conceptual space of which we are trying to infer
the geometry.

In our example, the flow separation criterion would determine,
based on the word not having the meaning C, that the isolectic set
cannot be held together by assuming a path of semantic extension
through C, which blocks the indirect path via A — B — C — D —
E, and causes the separation test to fail, which means that A — E
will not be deleted.

It could be argued that on many datasets, such a decision
on whether a link is necessary should not hinge on a single
missing entry in the list of meanings of a single polysemous word,
because there can always be issues with missing or erroneous
data. What is more, homonymy is often hard to distinguish from
true polysemy, causing spurious connections which have no actual
semantic justification. In order to reduce the risk of spurious links
resulting from such data problems, a reasonable strategy is to
relax the connectivity criterion in some limited and controlled
way, at the risk of ignoring some less common colexifications
so that the level of detail in the inferred map will be somewhat
diminished. In the algorithm by Regier et al. (2013), this can be
implemented by putting a threshold on the minimal improvement
of isolectic set coverage which needs to motivate the addition of
a link, and terminating semantic map construction as soon as
there is no additional link whose utility exceeds this threshold. My
implementation of this idea supports two different threshold values
which can be used to configure the degree of robustness against
noisy input data.

The first is a link strength threshold θl which can be applied
on the level of the conditional independence tests, considering
a conditional mutual information to vanish if i(C1;C2|C) ≤ θl,
i.e., the test is treated as successful even if there is a certain
small number θl of otherwise unexplained colexifications. With the
default threshold (θl = 0), the connected component criterion
is applied strictly, and the result will be a semantic map as one

would produce it by hand under the assumption that the data
are carefully curated and complete. During inference from noisier
datasets such as CLICS3, where there is a certain percentage of
spurious colexifications due to homophony or coding errors, it
makes sense to set θl to a higher value. In one of my experiments
with semantic map inference from CLICS3 (see Section 3.2.1),
a setting of θl = 3 caused a number of obviously spurious
colexifications to disappear, which is very similar to the edge weight
threshold which Georgakopoulos and Polis (2022) found necessary
in order to derive clearly interpretable patterns from the CLICS3

data about the domain of emotions.
The second threshold is the gap threshold θg , which filters

data from the input for languages where data for some of the
meanings is missing. In our example, it could just be the case that
the word for C in the relevant language is simply not known, and
that the meaning would actually have been present in the isolectic
set given perfect information about the language. To limit the
risks of such gaps leading to wrong conclusions, it makes sense to
automatically restrict the input data to only those languages where
information about the realizations of each meaning in the map is
known (θg = 0). However, this criterion can be too restrictive in
larger maps, or on databases which include less well-documented
languages. In the second experiment with semantic map inference
from CLICS3 (see Section 3.2.2), a setting of θg = 2 (allowing
data for two of the meanings to be missing) made it possible
to use the data from more than three times as many languages
as at θg = 0, which leads to a much more detailed, albeit less
reliable result.

2.3 Causal skeletons as synchronic
semantic maps

We now turn to the question how the connectivity-based
conditional independence tests are plugged into the first phase of
the PC* algorithm, which infers the topology of the causal graph,
in order to arrive at a new inference algorithm for synchronic
semantic maps.

Unlike the semantic map inference algorithm by Regier et al.
(2013), where links are progressively added until the connected
component criterion is met for each isolectic set, the PC* algorithm
starts out with a fully connected graph over the nodes, and proceeds
by deleting links until no further link can be deleted without
predicting spurious independences. Each link deletion is justified
by a successful conditional independence test, allowing us to plug
in the conditional independence test from the previous section,
which fails exactly when the connected component criterion would
be violated if the link were removed.

Because the PC* algorithm and its theoretical justification has
been described in much detail in the aforementioned literature
(Spirtes et al., 2000; Pearl, 2009), I can limit its presentation here
to a very informal explanation, accompanied by relevant examples
that keep the discussion close to the task of semantic map inference.
A much broader discussion of the underlying assumptions and
necessary adaptations of the original algorithm is provided in
Dellert (2019).
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The PC* algorithm goes through potential separating set
candidates (which the independence tests will be conditioned on)
in stages organized by the size of the separating set candidates.
In the initial stage (size 0), every independence test will be
conditioned on the empty set, which turns it into an unconditional
independence test. In semantic map inference, this means that at
this first stage, links will be deleted whenever the meanings are
not colexified by any isolectic set in the first place. For instance,
if we run the algorithm on a subset of the CLICS3 meanings
which includes DAY and MOON (which are never colexified),
the link between these two meanings will be removed at this
initial stage, and the algorithm will store the information that
the only minimal separating set between the two meanings is the
empty set.

At each new stage, the size of separating set candidates is
incremented by one. For instance, at stage 3, separating sets
consisting of pairs of other variables are used for the tests.
An exhaustive test of larger separating sets can easily lead to
a combinatorial explosion (and exponential runtimes) in very
difficult cases, but the crucial innovation of the PC* algorithm
over the original PC algorithm is that it only needs to consider
separating set candidates which are formed by neighbors of
the nodes to be separated, and only those neighbors which lie
on connecting paths between the nodes. While this criterion
is costly to compute, it often reduces the number of variables
which can be members of separating sets considerably, and
makes causal discovery feasible in practice even for hundreds
of variables.

In a small benchmark experiment, my open-source Java
implementation (running on an Intel Core i7-8700 at 3.3 GHz)
needed 24 min (92 min of processor time) to infer a semantic
map with 1,321 links connecting 775 meanings from a dataset
composed of 564 isolectic sets from 356 languages (a subset of
all CLICS3 isolectic sets of size three or larger), whereas on
the same machine, the implementation by Regier et al. (2013)
had only managed to add 26 links after running for 90 min on
this dataset, and had reached 108 links when the experiment
had to be terminated after 12 h. Using my implementation,
inference of a single semantic map for the experiments that
will be detailed in Section 3 only takes 1 or 2 s, and it was
possible to perform a thousand runs in less than half an hour.
The limiting factor for the feasible size of the input seems
to be memory consumption rather than execution time (an
experiment on all of CLICS3 exceeded the 10 GB of memory
that was available after just over 3 h, with about 6,000 links left).
Memory efficiency will be a focus of further development, which
will occur in the accompanying publicly accessible repository,
allowing other researchers who would like to run the new
algorithm on their own data to always benefit from the most
recent optimisations.

Among the many refinements and optimization to PC* and
similar algorithms which have been suggested in the literature, we
adopt the stable PC strategy by Colombo and Maathuis (2012),
which means that the graph does not get updated immediately after
each successful conditional independence test, but all link deletions
are only applied at the end of each stage. This makes the result less
dependent on the order in which the links are processed.

2.4 Estimation of uncertainty through
resampling

A previously underemphasized advantage of automated
semantic map inference procedures is that they provide us with a
systematic way to model uncertainty and the possible consequences
of missing data. For tractability reasons, the existing literature
on semantic maps has implicitly assumed that the data from the
languages under analysis are correct and complete. In reality,
semantic map research is riddled with problems of missing
and imperfect data. The two main approaches to compiling
coexpression matrices both come with their specific types of
errors. In the onomasiological approach, we always risk that a
consultant fails to remember a less common word for a meaning,
or the fact that some word can actually be used for the desired
meaning in some contexts. This applies even more to the work with
dictionaries, where the number of usage examples is typically very
limited, and focused on the more prototypical uses of the lexeme.
In the semasiological approach, it puts a very high demand on
language consultants if we expect them to be able to list all potential
uses of some word in their language. Similarly, even a very good
dictionary will never be able to fully cover the extent of an isolectic
set for a given domain.

The advantage of having a fast implementation of semanticmap
inference is that it becomes possible to execute it many times on
slight variations of the input data. This is the standard mechanism
by which confidence values are associated with each element of
complex output structures in probabilistic algorithms, such as in
phylogenetic tree inference. To be more precise, we will use the
bootstrapping technique, which consists in producing resamples by
sampling from the original data with replacements. If the original
dataset was small, these resamples will differ more than for larger
datasets, reflecting the intuition that more data will give us more
certainty. This process effectively allows us to get an impression of
how different the results could have looked on a different sample
from the same assumed underlying distribution, as long as we can
assume that the processes generating the lexification patterns for
each language are independent and identically distributed (which
is not a major restriction, as it can be taken as an assumption
which underlies the very idea of inferring a semantic map in the
first place).

There are multiple ways in which resampling can be applied to
our lexification data to account for different sources of uncertainty.
The most obvious strategy, which I will therefore discuss first, is
to perform bootstrapping at the language level, i.e., to generate
a resample, we take our original dataset and randomly draw
languages (with replacement) as many times as we had languages in
the original dataset. In the resulting modified datasets, the data for
some of the original languages will not be present, while for some
other languages, multiple copies of the associated data will exist.
Running the algorithm on these samples models the uncertainty
that results from picking a subset of the given size among all
the independent language samples that would theoretically have
been available.

Independently from modeling the uncertainty for a given map
extraction by resampling on the language level, we can also use
resampling to model the uncertainty in the space of possible
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semantic maps given a fixed dataset. Here, the samples differ
by processing the links in different orders, and the resampling
is performed by drawing random permutations of this link
processing order. The resulting confidence value for a given link
will approximate the percentage of possible semantic maps over the
same input which feature the link in question.

2.5 Directionality inference based on
unshielded triples

In this section, we finally turn to themain advantage of applying
a causal discovery algorithm to the inference of semantic maps,
which is the possibility to infer a directionality for some of the
links in a causal skeleton, turning a synchronic semantic map into
a diachronic one.

Directionality inference in the PC* algorithm and its variants
ultimately depends on the presence of unshielded triples, i.e.,
configurations of shape A— B— C where A and C are not directly
connected in the causal skeleton. The crucial insight is that under
the assumption of causal sufficiency (all potential causes are part
of the input), each triple can be classified as having one of exactly
four different causal patterns: the chain A← B← C, the chain A
→ B→ C, the fork A← B→ C, or the collider A→ B← C. If
we find that there is a dependence between A and C which only
vanishes when conditioning on B (i.e., B is in the separating set
which allowed us to delete the link A — C), the triple must have
been either a chain or a fork, and if we find that conditioning on
B was not necessary to delete the link between A and C, we must
be dealing with a collider. Because chains can be oriented in either
direction, only the latter result allows us to add arrows to the links
A— B and C—B. Such an unshielded collider configuration is also
called a v-structure.

To illustrate this logic on the basis of our running example, let
us assume that successful independence tests have left us with an
unshielded triple MONTH — MOON — SUN. If conditioning on
MOON was necessary to separate MONTH from SUN, this means
there are isolectic sets which contain all three meanings. Within
such a set, there must have been semantic extensions from one
of the three meanings to the others, and the three possibilites for
this are the chains MONTH → MOON → SUN and MONTH
← MOON ← SUN as well as the fork MONTH ← MOON →
SUN. The pattern we can reject is the collider MONTH→MOON
← SUN, because that would make it impossible for a form which
starts out with one of the three meanings to be extended to the
other two. Conversely, if we find in a very large database that the
three meanings are never colexified, only a collider pattern will
offer a good explanation of this observation. This simple reasoning
pattern ultimately underlies the entire directional signal which the
PC* algorithm can extract from synchronic polysemy data, and the
only part that is left to describe is how this possibility to classify
unshielded colliders as v-structures is used for maximum effect
during the second phase of the algorithm.

Different variants of the algorithm vary in the conditions they
apply when several separating sets lead to successful conditional
independence tests during the same stage. In all examples discussed
in this article, the algorithm was run with the conservative strategy

(Ramsey et al., 2006), where a v-structure is only considered as
safely established if B was not contained in a single one of the
successful separating sets. This strategy provides some robustness
against spurious successful conditional independence tests, which
can easily occur on unbalanced data, and even more with an
independence test based on discrete units, where the faithfulness
assumption is problematic.

Once we have classified all unshielded triples in a causal
skeleton as being either v-structures or not, the PC* algorithm
propagates the directionality information from these v-structures
through further unshielded triples of shape A → B — C (i.e.,
where only a single inward link was detected so far), based on the
knowledge that they were found not to be v-structures, and must
therefore be chains A→ B→ C. This propagation rule is applied
recursively until there is no context for applying it any longer.

In the default PC* algorithm, further directionality propagation
can be achieved based on an acyclicity condition (i.e., exclusion of
any circular directed path A→ ...→ A), which makes sense under
the standard assumption that a cause needs to temporally precede
its effect. However, this assumption is not natural for the concept
of causality which we have taken to underlie diachronic semantic
maps, so I chose to deactivate it for the purposes of semantic map
inference in my implementation of the PC* algorithm.

Under the acyclicity assumption, it has be shown that the causal
signal which can be determined based on conditional independence
tests allows us to determine the causal structure up to its Markov
equivalence class, where each such class is defined by the causal
skeleton and the set of v-structures on that skeleton. For many
semantic maps, especially densely connected ones, the Markov
equivalence class can contain many possible directed graphs,
because there will be many links for which the directionality cannot
be determined in principle. In the extreme case, the fully connected
graph, it is never possible to add any arrows to the skeleton,
because there are no unshielded colliders which could serve as
seed evidence of directionality. However, in sparser structures
with many unshielded colliders, which characterizes many of the
semanticmaps derived in previous research, the number of directed
links in the output of the PC* algorithm output will tend to be
larger, as we will see when running the algorithm on real examples
in Section 3.2.

3 Results

3.1 Synchronic semantic map inference

To demonstrate that the algorithm successfully infers near-
optimal synchronic maps, we apply it to the loose colexification
data from François (2008), the seminal study which pioneered the
application of the semantic map methodology to a purely lexical
domain, building on semasiological data about nouns denoting an
act of breathing.

A recreation of the original map is given in Figure 1A,
with somewhat shortened meaning names in order to facilitate
rendering and mental processing. For more information about
the data, the reader is referred to the original publication. My
digitalized version of the original isolectic sets uses the meaning
names as they appear on my version of the map, but is otherwise
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FIGURE 1

Result of synchronic semantic inference using the PC* algorithm on the data provided by François (2008). (A) Reproduction of the semantic map

inferred by François (2008), approximating the original layout. (B) A result of applying the PC* algorithm with default link ordering. (C) Result of

applying the inference algorithm by Regier et al. (2013).
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completely true to the original coexpression matrix. Figure 1B
shows a causal skeleton which results from a run of the PC*
algorithm. Figure 1C shows the output of Regier et al. (2013) on
the same dataset. The layout of both outputs has been optimized
for easier readability, and to make it obvious that the inferred map
is not more chaotic in structure than the original map, though the
differences are substantial.

As the reader will be able to verify by checking the connected
component criterion for each of the 15 isolectic sets (the input data
are provided as examples in the accompanying GitHub repository),
the causal skeletons resulting from these example runs are indeed
semantic maps, and at 28 links, they both require fewer edges than
the original map by François (2008) with its 32 edges. Still, while
the algorithms provide us with more parsimonious representations
of the available colexification data, one would probably not want
to claim that either of these maps is a better representation of
universals than the original, because as a result of the purely
data-driven algorithms which are not constrained in their choices
by anything except for the connected component criterion, they
assume some links that do not seem very plausible on semantic
grounds. In order to correct for this, it would be possible to add
some artificial isolectic sets which express the constraints under
which the original map was drawn, e.g., one isolectic set each
subsuming all verbal and all nominal meanings, or additional
sets joining together all nouns which involve air, or the two
meanings BLOW and BLOW (WIND) which were separated by
both algorithm in the absence of English colexification data.

Summarizing the outputs of the PC* algorithm in a map which
contains only those links which occur in the majority of outputs, we
receive information about which lexification patterns are actually
robust enough that we would expect them to be inferred from any
sample of languages, not only the original one. For purposes of
visualization, I represent the confidence value (the percentage of
resamples for which the link survived in the resulting semantic
map) by the thickness of the lines representing each link. For
clarity, links which occurred in <25% of samples are not shown,
an arbitrary threshold reflecting the intuition that links which exist
in less than a quarter of the sampled maps are much more likely
to be unstable artifacts rather than actual patterns which we should
infer from such as small dataset. To actually determine the links
which can be considered safely established, amuch higher threshold
would be chosen.

Figure 2A shows the consensus map which results as the output
of the bootstrapping procedure. While the colexifications at the
center of the map are well-attested enough that we could expect
them to be present on most maps derived from a different language
sample of the same size, it becomes clear that almost nothing can
be said about the outer reaches of the original map. Much larger
amounts of cross-linguistic polysemy data would be needed to
elucidate the structure of a domain of this size.

To illustrate the consequences of the non-determinism
involved in map drawing, Figure 2B shows the summary map for
1,000 random permutations of link processing order when the
algorithm is run on my digitalization of the colexification data. The
minimum number of links in any of the outputs was 30, and the
maximumwas 49. If we attempt to delete links by their default order
(by the number of isolectic sets showing the colexification, using

some random noise to resolve ties), we get the output with 28 links
in Figure 1B that we already discussed.

If we add the language-level bootstrapping to model the
uncertainty caused by the small size of the language sample
combined with the non-determinism in map drawing, we arrive
at the consensus map in Figure 2C. As usual, every link which
occurs in more than 25% of the maps is shown, but only six of
these links are actually present in more than 50% of the outputs:
ACT OF BREATHING has five connections (to AIR OR WIND,
BREATHE, PAUSE FOR BREATH, PUFF OF BREATH, and TAKE
A REST), and there is one additional connection between PAUSE
FOR BREATH and TAKE A REST. In my view, this output is
a good representation of what we can actually safely say about
colexifications between meanings from the domain of breathing
based on the dataset published by François (2008), if we do not use
additional knowledge and intuition to structure the domain, as was
done in the original paper.

3.2 Diachronic semantic map inference

In this section, we will revisit two classic papers in lexical
typology which yielded semantic maps along with generally
accepted directionality judgments, and check in how far the
patterns established by these contributions can be reproduced by
running the PC* algorithm on the CLICS3 data. But before we
embark on testing the capabilities of the PC* algorithm in inferring
diachronic semantic maps, some general remarks are in order about
the quality of results we can expect even in the best case.

A major weakness of this approach to directionality inference
is that triples with the target of semantic change in the middle are
necessary to get any directionality signal, making it very difficult to
get arrows which point into nodes of degree 1, i.e., nodes which
are connected to the rest of the map only through one link, for
which we would like to infer an outward-facing arrow. In many
cases, maps with arrows facing either way across such a bridge will
belong to the same Markov equivalence class, making it impossible
in principle to infer the directionality.

A second major problem, which is however not due to inherent
properties of the method, is that the size of non-trivial isolectic
sets extracted even from major lexical databases is actually quite
small. For instance, among the 16,746 non-singleton isolectic sets
extracted from the CLICS3 database, only 4,036 cover three or more
meanings. But for a v-structure test on an unshielded triple to
fail, we need at least one isolectic set covering the three meanings,
which we will not necessarily be able to observe, especially when
less common colexifications are involved.

This sparsity of data means that we should not expect the
method to perform very well on currently available cross-linguistic
data. To give a concrete example, Georgakopoulos and Polis (2021)
find diachronic evidence which leads them to posit an arrow TIME
→ AGE in their diachronic semantic map of the temporal domain.
In CLICS3, there is not a single polysemy which covers all three
relevant meanings (AGE, TIME, and HOUR) at the same time,
which leads to the unshielded triple AGE— TIME—HOUR being
detected as a v-structure (conditioning on TIME is not needed to
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FIGURE 2

Consensus maps resulting from running the PC* algorithm on the data provided by François (2008) using resampling strategies for quantifying

uncertainty. (A) Result of language-level bootstrapping under the default link prioritization strategy. (B) Consensus map resulting from 1,000 random

variations in link processing order. (C) Result of bootrapping combined with randomized link processing order.
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break the connection between AGE and HOUR), and an arrow
AGE→ TIME.

In general, the sparsity of large isolectic sets will lead to a
severe overgeneration of v-structures, which lead to a bidirectional
signal being inferred for most links. Still, in the somewhat rare
case where all v-structure tests which would predict some arrow
to fail, the inference can be expected to detect the correct
(inverse) directionality.

3.2.1 Example 1: body part terms
The study by Wilkins (1996) on pathways of semantic change

within the domain of body parts is a classical example of a
diachronic typology in a domain that is covered very well by large-
scale lexical databases. Based on diachronic evidence from five
large language families, Wilkins concludes that across different
parts of the body, we can observe unidirectional synechdochic
change, i.e., from parts to wholes, as in SOLE → FOOT, but
never FOOT→ SOLE.

For our analysis, we revisit the parts of the leg and the parts
of the head, reducing Wilkin’s original four-part maps of attested
changes to subsets for which CLICS3 provides substantial cross-
linguistic coverage. Among the parts of the leg covered by Wilkins,
the toenail needs to be removed due to its ambiguous encoding,
whereas among the parts of the head, we are lacking sufficient data
for EYEBROW and CROWN OF HEAD. Once some obviously
spurious connections are removed via a link strength threshold
(θl = 3), EAR turns out to not be synchronically colexified with
any other part of the head, which is why it was removed as well.
The resulting reduced versions of the expected maps for these
subdomains are visualized in Figure 3A.

In order to summarize the results of randomization in
diachronic map inference, we again rely on a consensus map with
a somewhat more complex format. Every link is represented by
several arrows and lines, where the thickness of each line or arrow
indicates the percentage of the samples in which the link had the
respective shape. Dark green arrows represent the samples where
a directionality was successfully inferred for the link (A→ B or B
→ A), light green lines represent the samples where v-structures
were found in both directions (A↔ B, which we can interpret to
mean that there is no strong unidirectional tendency in semantic
change or expansion), and yellow lines represent samples where no
directional evidence at all was found for that link in either direction
(A — B, the Markov equivalence class includes graphs with arrows
in both directions). As described previously, we can only expect
to infer the directionality for some of the links, so the focus in an
evaluation of the result will be on the arrows which were actually
inferred (dark green).

Inspecting the consensus map under language bootstrapping
and link order resampling for this dataset (Figure 3B), we see
that the causal skeleton for the parts of the leg looks exactly as
predicted byWilkins, indicating that the algorithm is able to extract
good semantic maps even from somewhat inconsistent datasets.
In contrast, the causal skeleton for the parts of the head deviates
in some interesting ways from the structure posited by Wilkins,
though it still follows the suggested universal of synechdochic
change. The two main differences are that cross-linguistically, the

FIGURE 3

Results of diachronic map inference (bootstrap with random link

processing order) on CLICS3 data about body parts. (A) CLICS

approximation of the relevant parts of the original map by Wilkins

(1996). (B) Consensus map based on inference results on 1,000

bootstrap samples with randomized link processing order, executed

on CLICS3 data at θl = 3 (every link necessary for more than two

isolectic sets). Thickness of links represents number of samples (at

least 250) on which the respective link was inferred. Monodirectional

arrows in dark green, bidirectional links in light green, links where

the PC* algorithm could not assign a directionality in yellow.

lips appear to be conceptualized chiefly as a part of the mouth
(rather than directly a part of the face, as in Wilkins’s link based on
Dravidian evidence), and that the forehead can be conceptualized
as either belonging to or not belonging to the face. The additional
link between EYE andHEAD indicates that there are colexifications
between the concepts which do not include FACE, which might be
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a data problem, but could also reflect cultures where the concept
FACE only refers to the lower part of the denotation of its English
equivalent, including e.g., the nose and the mouth, but not the eyes.
The automatically inferred skeleton thus indicates that the exact
region of the head conceptualized as “the face” in English is not in
fact universal, making it rather problematic to treat it as a universal
meaning FACE that can be compared easily across languages.

For the causal discovery algorithm, directionality is ambiguous
in some cases, but if a clear directional signal (dark green arrow)
appears on a link, the directionality always comes out as expected
by Wilkins (1996), which can be taken as an encouraging sign. The
unexpected situation of the LEG — FOOT link, where arrows in
both directions are each inferred in about half of the samples, can be
traced back to the problem that the concept which unambiguously
includes the entire leg from waist to toe (Wilkin’s “leg”) is actually
mapped to an additional meaning FOOT OR LEG in CLICS3 in
some of the languages which colexify FOOT and LEG, leading to
some missing data in our subselection. In order to achieve a better
result for these two meanings, it seems like the relevant parts of
CLICS3 would have to be recoded very carefully.

3.2.2 Example 2: verbs of perception
As another classic example of a diachronic semantic map, we

revisit the modality hierarchy first proposed by Viberg (1983),
which was found to be generally consistent with observations on a
very different language sample by Evans and Wilkins (2000). From
the perspective of directionality inference, the problem with the
original map by Viberg (1983) (visualized in Figure 4A) is that it is
densely connected and does not contain a single v-structure, which
means that the PC* algorithm will not be able to determine the
directionality of any link. In contrast, the one major modification
by Evans and Wilkins (2000), which makes the link SMELL →
TASTE monodirectional, leads to two v-structures which we might
find recoverable. This means that we should be able to apply the
algorithm and expect to receive at least some directed links. Still,
this example illustrates the issue of a lack of identifiability in more
densely connected maps, leading to fewer opportunities to detect
v-structures. The expected diachronic map (with the change) has
exactly two v-structures: TOUCH→ TASTE← SMELL and SEE
→ TASTE ← SMELL. After adding the three arrows, the lack
of adjacent unshielded triples means that directionality inference
could not be propagated any further, i.e., themaximumwe can hope
for is to infer the three directed links TOUCH→ TASTE, SEE→
TASTE, and SMELL→ TASTE.

To maximize the amount of CLICS3 data which we can use
for the inference, we limit the analysis to the five CLICS meanings
which were classified by Wilkins as belonging to the dynamic
system of experience: SEE, HEAR, TOUCH, SMELL (PERCEIVE),
and TASTE (SOMETHING). Not all languages in CLICS3 have
data for these five meanings, and the uneven coverage can be
expected to cause problems for map inference. However, unlike
during inference over larger sets of meanings (as in Example 1),
where larger numbers of gaps are unavoidable, on this smaller set of
meanings, the gap threshold θg can be applied successfully, because
there will be more than enough languages with (near-)complete
data for these five meanings. The fact that data sparsity forces us

to limit the analysis in this way is problematic from the perspective
of the underlying assumption of causal sufficiency, because there
is some evidence (Vanhove, 2008) that the colexifications between
SEE and the other perception meanings are mediated by cognition,
which implies that on a better dataset, meanings such as THINK
or UNDERSTAND should have been included in addition to better
approximate causal sufficiency.

Figures 4B, C show the consensus maps for different choices
of θg . It turns out that for the less frequent colexifications to
become visible in the consensus map, we need to include all
languages where data is available only for three out the five
meanings (Figure 4C). At this gap threshold, the causal skeleton
is exactly the one inferred by Viberg (1983), again demonstrating
the good performance of the algorithm in inferring synchronic
semantic maps, and that even less common colexifications are
attested sufficiently in the CLICS3 database.

As expected, directionality inference is a challenge. The three
links for which we could have expected a directional signal
are all oriented correctly in the vast majority of samples, and
we get some of the expected unidirectional evidence for the
arrow HEAR → TASTE (SOMETHING) in addition, but there
are wrongly directed arrows TOUCH → HEAR and SMELL
(PERCEIVE)→ HEAR in a majority of samples, and evidence for
the remaining two links is inconclusive. In order to understand
why this happens, we inspect a run on a single sample, the
result of which is visualized in Figure 5. It turns out that the
problems in directionality inference are ultimately due to the fact
that the three meanings HEAR, TOUCH, SMELL (PERCEIVE)
are never jointly part of any isolectic set in the entire CLICS3

database, which causes a spurious v-structure TOUCH→ HEAR
← SMELL (PERCEIVE) to be inferred. This is one of the false
positives in v-structure detection which we were expecting due to
the low frequency of large isolectic sets in the database. In this
case, the assumption that all v-structures were detected leads to a
further propagation of the spurious wrong directionalities: Because
TOUCH — SEE — HEAR was found not to be a v-structure
(there are colexifications!), the directional evidence TOUCH →
HEAR propagates into HEAR → SEE on those samples where
the TOUCH — HEAR link exists. With adequate amounts of
cross-linguistic data, this type of problem should occur much
less frequently.

4 Discussion

This article has demonstrated that the PC* algorithm for
the discovery of causal graphs from observational data can be
used to infer synchronic semantic maps from input data in the
shape of isolectic sets that encode cross-linguistic polysemies. To
ensure that the connected component criterion holds, we can use
a flow-based conditional independence test, which was originally
developed for the causal inference of phylogenetic networks. The
PC* algorithm can use this criterion to motivate link deletion
decisions, thinning out an initially fully connected graph until
no further links can be removed, implementing the minimality
property of a semantic map.

Unlike previous algorithms for semantic map inference,
the algorithm comes with a systematic way of inferring the
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FIGURE 4

Results of diachronic map inference (bootstrap with random link processing order) on CLICS3 data about verbs of perception. (A) CLICS

approximation of map by Viberg (1983). (B) Based on 293 languages where data for all meanings was available. (C) Based on 1,071 languages where

data for at most two of the meanings were missing.

directionality of links, which can be used to automatically infer
a diachronic signal even from purely synchronic input data.
The method can thus be seen as a computational approach to
leveraging the diachronic signal that has always been assumed
to be hidden in polysemy data, as many synchronic polysemies
will in fact represent intermediate stages of semantic change.
Directionality inference ultimately relies on the assumption
that whenever two meanings are connected only via links to
a third meaning, we would expect to see some polysemies
involving the three meanings, unless the third meaning is the

target of two separate pathways of semantic extension from
either direction.

It is important to be aware of the fact that due to its reliance
on these unshielded triples, the PC* algorithm can only determine
a directional signal in sparse structures, and that it works best on
input data which contains many isolectic sets covering at least three
meanings. We have seen that the spurious v-structures resulting
from a lack of such sets can have a large impact on the results, and
such a lack is typical of the unbalanced onomasiological datasets
that research on large-scale inference of semantic maps has had
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FIGURE 5

Typical output of PC* on a sample underlying the consensus map in

Figure 4C, illustrating that the errors are the consequence of a

spurious v-structure which leads to arrow propagation.

to work with so far. Whenever a massively cross-linguistic, but
semasiologically oriented dataset is available for some domain,
the algorithm can be expected to be much more resilient against
spurious v-structures resulting from a lack of larger isolectic sets.
The same positive effect of larger isolectic sets could be expected
from datasets which take loose colexification into account.

Dellert (2019) developed and evaluated some alternative ways
of determining arrow directionality which are designed to relax the
sparseness and set size requirements substantially, but additional
experimentation suggests that while these methods (Unique Flow
Ratio and Triangle Score Sum) work reasonably well on large
amounts of cognacy data, they do not provide any advantage over
the much more theoretically well-founded PC* algorithm with
flow separation for semantic map inference, at least not given the
amount and quality of data that can be extracted from the CLICS3

database or similar resources.
The second major concern addressed by this article is the

question of how much of the assumed underlying semantic map
is actually identifiable based on the small amounts of hand-curated
data which are typically the basis of published semantic maps. For
this purpose, my flexible implementation of the PC* algorithm
supports both bootstrapping of observations and randomization of
link processing order, resulting in a large number of semantic maps
which can be summarized into a consensus map. This consensus
map shows the links which would be likely to appear on other
language samples of the same size, and which will appear in
most semantic maps derived from such varying input data. In
our analysis of the seminal work by François (2008), we found
that only a very small core of the semantic map can actually
be considered safely established based on the data compiled for
that study. Uncertainty estimation has the potential to serve as
a more objective criterion of whether the amount of data was
actually sufficient to draw any given conclusion about a universal
of lexification.

Beyond simple uncertainty estimation, several promising
directions could be explored by expanding on the methodology
introduced by this article. For instance, if we know that our
dictionary data are more complete and reliable for certain
languages than for others, the resampling could be adjusted to
take such differences into account, e.g., by resampling not on the

language level, but within batches of isolectic sets of similar size,
reliability, or gappiness.

This could also be a first step toward answering a major open
question for the field. In the cases where applying θg will leave
us with insufficient data, how severe are the consequences of the
gaps in lexical coverage which are unavoidable in large-scale lexical
databases? It is very likely that, as in the case of phylogenetic lexical
flow inference, the informationmeasures will have to be normalized
in order to compensate for unequal amounts of data for different
meanings, though this will make it more difficult to maintain
clearly interpretable threshold values for successful conditional
independence tests. Beyond normalization, it could be worthwhile
to explore whether imputation of missing meaning-formmappings
could be feasible. There are clear cases where such a strategy does
not seem too risky (as when a verb means SEE and SMELL, but we
lack the data for HEAR), but how frequently do such simple cases
occur, and can we use sophisticated imputation techniques to fill in
many blanks in our unavoidably gappy lexical datasets?

Systematic exploration of the estimated uncertainties in the
outputs on datasets of different size and shape could yield more
objective answers to many more general questions of relevance
to lexical typologists: How many languages do we really need to
sample in order to infer a reliable semantic map? How many
spurious colexification patterns must we expect to pollute our map
when we work with a language sample of a given size? Which data
sources and data collectionmethods can help increase the reliability
of the inferred universals of lexification?

Data availability statement

The datasets and the software presented in this study
can be found in online repositories. The names of the
repository/repositories and accession number(s) can be found
at: https://github.com/jdellert/causal-semantic-maps and https://
zenodo.org/records/10152577.

Author contributions

JD: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
has been supported by the European Research Council (ERC)
under the Horizon 2020 research and innovation programme
(CrossLingference, grant agreement no. 834050, awarded to
Gerhard Jäger).

Acknowledgments

The author would like to thank Terry Regier for sharing
the original code described in Regier et al. (2013), and giving
his permission to publish an adapted version together with this

Frontiers inCommunication 14 frontiersin.org

https://doi.org/10.3389/fcomm.2023.1288196
https://github.com/jdellert/causal-semantic-maps
https://zenodo.org/records/10152577
https://zenodo.org/records/10152577
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Dellert 10.3389/fcomm.2023.1288196

publication. Further thanks go to Gerhard Jäger and the colleagues
from the CrossLingference project (especially Christian Bentz and
TimWientzek) for their valuable feedback and interested questions
after a presentation of preliminary results, to the editors for their
patience in waiting for this contribution to finally materialize, and
to the two reviewers for their helpful suggestions about which parts
of the originally submitted version needed further refinement.

Conflict of interest

The author declares that the research was conducted
in the absence of any commercial or financial relationships

that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Anderson, L. B. (1982). “The “Perfect” as a universal and as a language-specific
category,” in Tense-Aspect: Between Semantics and Pragmatics, Volume 1 of Typological
Studies in Language, ed. P. J. Hopper (Amsterdam: John Benjamins), 227–264.
doi: 10.1075/tsl.1.16and

Colombo, D., and Maathuis, M. H. (2012). A modification of the
PC algorithm yielding order-independent skeletons. CoRR abs/1211.3295.
doi: 10.48550/arXiv.1211.3295

Croft, W. (2002). Typology and Universals, 2nd ed. Cambridge: Cambridge
University Press. doi: 10.1017/CBO9780511840579

Dellert, J. (2016). “Using causal inference to detect directional tendencies in
semantic evolution,” in The Evolution of Language: Proceedings of the 11th International
Conference (EVOLANGX11) Bristol: Evolang Scientific Committee.

Dellert, J. (2019). Information-Theoretic Causal Inference of Lexical Flow. Berlin:
Language Science Press.

Evans, N., and Wilkins, D. (2000). In the mind’s ear: the semantic extensions of
perception verbs in Australian languages. Language 76, 546–592. doi: 10.2307/417135

François, A. (2008). “Semantic maps and the typology of colexification: Intertwining
polysemous networks across languages,” in From Polysemy to Semantic Change:
Towards a Typology of Lexical Semantic Associations. Number 106 in Studies in
Language Companion Series, ed. M. Vanhove (Amsterdam: Benjamins), 163–215.
doi: 10.1075/slcs.106.09fra

François, A. (2022). Lexical tectonics: mapping structural change in patterns of
lexification. Z. Sprachwiss. 41, 89–123. doi: 10.1515/zfs-2021-2041

Georgakopoulos, T., and Polis, S. (2018). The semantic map model: state of the
art and future avenues for linguistic research. Linguistics Lang. Compass. 12, e12270.
doi: 10.1111/lnc3.12270

Georgakopoulos, T., and Polis, S. (2021). Lexical diachronic semantic
maps. the diachrony of time-related lexemes. J. Hist. Linguist. 11, 367–420.
doi: 10.1075/jhl.19018.geo

Georgakopoulos, T., and Polis, S. (2022). New avenues and challenges in semantic
map research (with a case study in the semantic field of emotions). Z. Sprachwiss. 41,
1–30. doi: 10.1515/zfs-2021-2039

Glymour, C., Zhang, K., and Spirtes, P. (2019). Review of causal discovery methods
based on graphical models. Front. Genet. 10, 524. doi: 10.3389/fgene.2019.00524

Haspelmath, M. (2003). “The geometry of grammatical meaning: semantic maps
and cross-linguistic comparison,” in The New Psychology of Language, Vol. 2, ed. M.
Tomasello (Mahwah, NJ: Lawrence Erlbaum), 211–242.

Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.
doi: 10.1017/CBO9780511803161

Ramsey, J., Spirtes, P., and Zhang, J. (2006). “Adjacency-faithfulness and
conservative causal inference,” in Proceedings of the Twenty-Second Conference on
Uncertainty in Artificial Intelligence, UAI’06 (Arlington, VA: AUAI Press), 401–408.

Regier, T., Khetarpal, N., and Majid, A. (2013). Inferring semantic maps. Linguist.
Typol. 17, 89–105. doi: 10.1515/lity-2013-0003

Rzymski, C., Tresoldi, T., Greenhill, S., Wu, M.-S., Schweikhard, N.
E., Koptjevskaja-Tamm, M., et al. (2020). The database of cross-linguistic
colexifications, reproducible analysis of cross- linguistic polysemies. Sci. Data 7,
1–12. doi: 10.1038/s41597-019-0341-x

Spirtes, P., and Glymour, C. (1991). An algorithm for fast recovery of sparse causal
graphs. Soc. Sci. Comput. Rev. 9, 62–72. doi: 10.1177/089443939100900106

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction,
and Search, 2nd ed. Cambridge, MA: MIT Press. doi: 10.7551/mitpress/1754.
001.0001

Steudel, B., Janzing, D., and Schölkopf, B. (2010). “Causal Markov condition for
submodular information measures,” in Proceedings of the 23rd Annual Conference on
Learning Theory, eds A. T. Kalai, and M. Mohri (Madison, WI: OmniPress), 464–476.

Vanhove, M. (2008). “Semantic associations between sensory modalities,
prehension and mental perceptions,” in From Polysemy to Semantic Change:
Towards a Typology of Lexical Semantic Associations. Number 106 in Studies in
Language Companion Series, ed. M. Vanhove (Amsterdam: Benjamins), 341–370.
doi: 10.1075/slcs.106.17van

Viberg, Å. (1983). The verbs of perception: a typological study. Linguistics 21,
123–162. doi: 10.1515/ling.1983.21.1.123

Wilkins, D. (1996). “Natural tendencies of semantic change and the
search for cognates,” in The Comparative Method Reviewed: Regularity and
Irregularity in Language Change, eds M. Durie, and M. Ross (Oxford:
Oxford University Press), 264–304. doi: 10.1093/oso/9780195066074.00
3.0010

Frontiers inCommunication 15 frontiersin.org

https://doi.org/10.3389/fcomm.2023.1288196
https://doi.org/10.1075/tsl.1.16and
https://doi.org/10.48550/arXiv.1211.3295
https://doi.org/10.1017/CBO9780511840579
https://doi.org/10.2307/417135
https://doi.org/10.1075/slcs.106.09fra
https://doi.org/10.1515/zfs-2021-2041
https://doi.org/10.1111/lnc3.12270
https://doi.org/10.1075/jhl.19018.geo
https://doi.org/10.1515/zfs-2021-2039
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1515/lity-2013-0003
https://doi.org/10.1038/s41597-019-0341-x
https://doi.org/10.1177/089443939100900106
https://doi.org/10.7551/mitpress/1754.001.0001
https://doi.org/10.1075/slcs.106.17van
https://doi.org/10.1515/ling.1983.21.1.123
https://doi.org/10.1093/oso/9780195066074.003.0010
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org

	Causal inference of diachronic semantic maps from cross-linguistic synchronic polysemy data
	1 Introduction
	2 Materials and methods
	2.1 Semantic map inference as causal discovery
	2.2 Conditional mutual information and the connected component criterion
	2.3 Causal skeletons as synchronic semantic maps
	2.4 Estimation of uncertainty through resampling
	2.5 Directionality inference based on unshielded triples

	3 Results
	3.1 Synchronic semantic map inference
	3.2 Diachronic semantic map inference
	3.2.1 Example 1: body part terms
	3.2.2 Example 2: verbs of perception


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


