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Machine-learning based automatic
assessment of communication in
interpreting

Xiaoman Wang* and Lu Yuan

School of Language, Culture and Society, University of Leeds, Leeds, United Kingdom

Communication assessment in interpreting has developed into an area with new

models and continues to receive growing attention in recent years. The process refers

to the assessment of messages composed of both “verbal” and “nonverbal” signals. A

few relevant studies revolving around automatic scoring investigated the assessment

of fluency based on objective temporal measures, and the correlation between

the machine translation metrics and human scores. There is no research exploring

machine-learning-based automatic scoring in-depth integrating parameters of

delivery and information. What remains fundamentally challenging to demonstrate

is which parameters, extracted through an automatic methodology, predict more

reliable results. This study presents an original study with the aim to propose

and test a machine learning approach to automatically assess communication in

English/Chinese interpreting. It proposes to build predictive models using machine

learning algorithms, extracting parameters for delivery, and applying a translation

quality estimation model for information assessment to describe the final model. It

employs the K-nearest neighbour algorithm and support vector machine for further

analysis. It is found that the best machine-learning model built with all features by

Support Vector Machine shows an accuracy of 62.96%, which is better than the K-

nearest neighbour model with an accuracy of 55.56%. The assessment results of the

pass level can be accurately predicted, which indicates that the machine learning

models are able to screen the interpretations that pass the exam. The study is the

first to build supervised machine learning models integrating both delivery and fidelity

features to predict quality of interpreting. The machine learning models point to

the great potential of automatic scoring with little human evaluation involved in the

process. Automatic assessment of communication is expected to complete multi-

tasks within a brief period by taking both holistic and analytical approaches to assess

accuracy, fidelity and delivery. The proposed automatic scoring systemmight facilitate

human-machine collaboration in the future. It can generate instant feedback for

students by evaluating input renditions or abridge the workload for educators in

interpreting education by screening performance for subsequent human scoring.

KEYWORDS

automatic assessment, communication in interpreting, machine learning, computational

features for fidelity, computational metrics for delivery

1. Introduction

When the phenomenon of interpreting is modeled in a broader sense of socio-institutional

dimension, it can be viewed as a communicative activity and performed by human beings

in a particular situation of interaction. Scholars have referred to interpreting activities in the

process of communication as a signal process (Shannon, 1949). In this early communication

model, the message “encoded” from the source speech is transmitted to interpreters as

receivers for “decoding” in interpreting. However, as Stenzl (1989) pointed out, “We need

a reorientation of perhaps more accurately a widening of our research framework so that

rather than the predominantly psychological perspective we adopt a more functional approach

that considers interpretation in the context of the entire communication process from
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speaker through the interpreter to the receiver”. We have been

paying too little attention to those who have been proposing such

an approach for years, Kirchhoff, for example (Stenzl, 1989, p. 24).

The concept of interpreting as a language process of “encoding”

and “decoding” was further developed by Kirchhoff (1976) in his

dual system of communication, who perceived interpreting activities

as a multi-channel phenomenon. In the system, both verbal and

non-verbal information is included for transmitting in a given

situation or socio-cultural background. Interpreters would decode

the information encoded by a primary sender and transmit the

decoded information to the primary receiver. While Kirchhoff’s

model is also situated within the field of social semiotics with verbal

and non-verbal signals as two channels, a more sophisticated matrix

model provided by Poyatos (2002) represents sign-conveying verbal

and non-verbal systems with visual and/or acoustic copresence.

According to Poyatos (2002), the matrix cross-tabulating systems

cover simultaneous and consecutive interpreting with audible

part that involves verbal language, paralanguage, qusiparalinguistic

sounds emitted through audible kinesics and silence, and visible one

comprises of stills, kinesics, and visual chemical and dermal systems

such as tear (Poyatos, 2002).

Assessment of communication of interpreting is a complex and

overarching theme that relates to many topics such as fidelity or

source-target correspondence in interpreting quality, non-verbal

information such as fluency and good pace, articulation and

pronunciation, ability to engage with the audience, and kinesics,

communicative effect and role performance, etc. In Bühler’s (1986)

of AIIC members using a list of sixteen criteria to assess the

quality of interpreting and interpreters, sense consistency with the

original message is the top-ranking criterion of quality. It is widely

acknowledged that the actually rendered message should be faithful

to the originally intended message. Scholars in interpreting studies

often refer to fidelity (Gile, 1995) or sense consistency (Bühler,

1986) or information with a more concrete focus on information

processing (Gile, 1992; Marrone, 1993). In the remainder of this

article, we use the term “fidelity” to refer to the equivalence

concept. Meanwhile, interpreters should “re-express the original

speaker’s ideas and the manner of expressing them as accurately

as possible and without omission (Harris, 1990, p. 118).” The

concept of accuracy is also evident in Moser (1996) and Seleskovitch

(1978), who call for accuracy with the implication of completeness.

Fluency of delivery has been rated one of the top-ranking criteria

of quality in Bühler’s (1986) survey. Other than fluency of delivery,

articulation and pronunciation and ability to engage with the

audience should be listed as the criterion to assess delivery

in interpreting.

When it comes to the automatic assessment of communication

of interpreting, what remains fundamentally difficult to operate is

which parameters, extracted through an automated methodology,

can be used to build a machine learning model to predict more

reliable results. Based on the existing work, the coverage in this

study is therefore limited to the measurement and judgement

of communication in interpreting with parameters in fidelity

and paraverbal information. Against this background, we conduct

the current research to build a machine-learning model for the

automatic assessment of communication in interpreting with fidelity

and delivery parameters and investigate the predictive ability of

such model.

2. Literature review

2.1. Computational features for delivery
assessment

Computation features for delivery assessment require automatic

extraction of features for fluency, articulation and pronunciation.

Engagement with the audience must rely on manual annotation,

but it should be able to be extracted with neuro networks in the

near future for academic purposes. In terms of delivery, linguistic

and paralinguistic elements such as truncated or mispronounced

words, and filled and unfilled pauses have been transcribed

to allow researchers to conduct research with disfluencies in

European Parliament Interpretation Corpus or Directionality

in Simultaneous Interpreting Corpus (DIRIS). However, the

paralinguistic information is extracted semi-manually. For example,

EPICG is compiled to the format of EXMARaLDA (Schmidt and

Wörner, 2009) with its audios time-aligned with discourses and

their interpretations.

Wang andWang (2022b) have examined whether low confidence

measures (CM) can indicate unintelligibility in interpretations by

fitting manually labeled words as clear or unclear and confidence

measures from forty-nine interpretations into a binary logistic

regression model. They use the Receiver Operation Characteristic

(ROC) curve of K-fold cross-validation to estimate the model’s

performance. CM is a score computed between zero and one assigned

to each word and individual sentence to indicate how likely speeches

are correctly recognized. They can be extracted from Jason format

transcript files provided by Speech-to-text Service via API. The

result shows that CM can be used to annotate articulation and

pronunciation in interpreting, and the words whose CM is lower than

the cut-off point of 0.321 are identified as unclear. Wang and Wang’s

(2022a) findingsmake it possible to automatically extract information

about articulation and pronunciation and apply them to building

a machine-learning model for the assessment of communication

in interpreting.

In recent years several empirical studies have begun to identify

temporal measures for automatic assessment of fluency by applying

statistical models in testing the predictability of objective fluency

in modeling judged fluency in interpreting. Yu and Van Heuven’s

(2017) study found strong correlations between judged fluency

and objective fluency variables. They suggest that effective speech

rate (number of syllables, excluding disfluencies, divided by the

total duration of speech production and pauses) can be used as

a predictor of judged fluency. Other important determinants of

judged fluency are the number of filled pauses, articulation rate,

and mean length of pause. Han et al. (2020) also modeled the

relationship between utterance fluency and raters’ perceived fluency

of consecutive interpreting. The results show that mean length

of unfilled pauses, phonation time ratio, mean length of run and

speech rate had fairly strong correlations with perceived fluency

ratings in both interpreting directions and across rater types. Yang

(2018) adopts a temporal approach to measure fluency, which was

divided into three dimensions: speed fluency, breakdown fluency and

repair fluency. Speed fluency was investigated by using speaking rate

and articulation rate. Breakdown fluency was measured by using

phonation/time ratio, mean length of runs, mean length of silent

pauses per minute, number of silent pauses per minute and number
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of filled pauses per minute. Repair fluency was measured using the

mean length of repairs per minute. Based on the previous work,

Wang and Wang (2022a) identify and vectorise objective utterance

measures through descriptive statistical analysis of interpreting data.

They also explore the best explanation for the variation of dependent

variables with newly defined parameters. The results indicate that

the median value should be selected as the threshold for unfilled

pauses or articulation rate, and outliers can be extracted as the

relatively long and particular unfilled pauses, as well as relatively slow

articulation and particularly slow articulation. They suggest number

of filled pauses, number of unfilled pauses, number of relatively

slow articulation, mean length of unfilled pauses, mean length of

filled pauses should be selected to build machine-learning models to

predict interpreting fluency in future studies.

2.2. Computational features for fidelity
assessment

Computational features for automatic fidelity and accuracy

assessment should be extracted during a process wherein little

human judgement is directly involved. As the past decades witnessed

the rapid development of natural language processing, scholars

conducted experiments to explore the automation of fidelity and

accuracy assessment through automated machine translation quality

estimation (MTQE). MTQE is used to improve machine translation

systems and is labor-wise and cost-free to be applied to translation

and interpreting quality assessment. According to the results in

two strands of research, some of the indices can be applied in

translation and interpreting quality assessment, which means they

can be extracted as features for building the machine learning

model. The two lines of research are (a) assessment based on

algorithmic evaluation metrics for MTQE; and (b) assessment based

on pre-trainedmodels (i.e., feature-basedmodels or neural networks)

for MTQE.

The automatic algorithmic evaluation metrics are developed on

the concept that machine translation should be close to human

translation. This concept is similar to one of the approaches to

assessing interpreting fidelity by checking target language renditions

against the source text transcripts. Carroll (1978) is the first

linguist to propose to assess fidelity between source and target

texts for the evaluation of machine translation. In her study,

raters assess the fidelity of the transcript of each original sentence

compared to the target sentence to identify what information has

not been conveyed rather than focusing on the interpreting product.

Therefore, human resources should be available to generate multiple

versions of reference to evaluate the output of interpreting using

evaluation metrics.

Metrics developed to calculate the evaluation scores include

Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002),

National Institute of Standards and Technology (NIST) (Doddington,

2002), Metric for Evaluation of Translation with Explicit Ordering

(Banerjee and Lavie, 2005), and Translation Edit Rate (Snover et al.,

2006). In general, metrics such as BLEU are based on the modified n-

gram precision, which counts how many n-grams of the candidate

translation match with the n-grams of the reference translation.

Where BLEU simply calculates n-gram precision adding equal weight

to each one, NIST also calculates how informative a particular n-gram

is, and METEOR uses and emphasizes recall in addition to precision.

TER measures the number of actions required to edit a translated

segment in line with one of the reference translations.

In recent empirical studies (Chung, 2020; Han and Lu, 2021; Lu

and Han, 2022), a few researchers have investigated the utility of

several metrics (i.e., BLEU, METEOR, NIST, and TER) in assessing

translations or interpretations and correlate the metric scores with

the human assigned scores. Chung (2020) computes two metrics (i.e.,

BLEU and METEOR) to assess 120 German-to-Korean translations

produced by ten student translators on 12 German texts concerning

a variety of topics. The results of Chung’s (2020) study found

that metrics scores computed by BLEU (r = 0.849) and METEOR

(r = 0.862) are fairly highly correlated with human assessment

overall. However, it is found that there is a low correlation between

metric scores and human assessment at the individual text level with

28–40% of the correlation coefficients below 0.3. Therefore, Chung

(2020) proposes that BLEU and METEOR can only be used to assess

students’ translation at an overall level.

Han and Lu’s (2021) study examines the usefulness of

four metrics, BLEU, NIST, METEOR and TER, to assess 33

English-to-Chinese interpretations produced by undergraduate and

postgraduate by correlating automated metrics with human-assigned

scores. It is found that METEOR scores (r = 0.882) computed

at the sentence level correlate more closely with human-assigned

scores than those at the text level. The metric-human correlation was

moderately strong, averaging at r = 0.673 and 0.670 for NIST and

BLEU, respectively. Han and Lu’s (2021) study differs from Chung

(2020) study as their experiment focuses on interpreting, and the best

results are shown at the sentence level. Han and Lu’s (2021) suggest

that results provide preliminary evidence for using certain automated

metrics to assess human interpretation.

Recently, Lu and Han (2022) in another study evaluate 56

bidirectional consecutive English–Chinese interpretations produced

by 28 student interpreters of varying abilities by the same metrics and

one more pre-trained model, Bidirectional Encoder Representations

from Transformers (BERT) (Devlin et al., 2019). They correlate the

automated metric scores with the scores assigned by different types

of raters using different scoring methods (i.e., multiple assessment

scenarios). The major finding corroborates their previous study that

BLEU, NIST, and METEOR had moderate-to-strong correlations

with the human-assigned scores across the assessment scenarios,

especially for the English-to-Chinese direction. They provide an

initial insight into comparing MT evaluation metrics and neural

networks to assess interpreting automatically.

In Lu and Han’s (2022) study, neural networks of computing

systems are inspired by biological neural networks to perform

different tasks with a huge amount of data involved. Different

algorithms are used to understand the relationships in a given

data set to produce the best results from the changing inputs. The

network is trained to produce the desired outputs, and different

models are used to predict future results with the data. The nodes

are interconnected so that it works like a human brain. Different

correlations and hidden patterns in raw data are used to cluster

and classify the data. The exploration of neural networks for

MTQE coincides with shared tasks from the Conference on Machine

Translation. Unlike MT metrics, operationalizing neural networks to

assess students’ interpretation does not require multiple versions of
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references since it’s an intra-lingua comparison between source and

target texts.

Wang andWang (2022c) report on an empirical study to compare

the utility of MT evaluation metrics vis-à-vis neural networks for

machine translation quality estimation (MTQE) as two approaches

to automatic assessment of information fidelity in English-Chinese

consecutive interpreting. The study operationalizes METEOR and

BLEU as MT metrics to assess interpretation via inter-lingual

comparisons between actual renditions and exemplar target texts

based on multiple versions of references. It also uses reference-

free neural network models, including Similarity, OpenKiwi and

TransQuest, and three deep-learning models trained by the authors

to assess the fidelity of English-Chinese consecutive interpreting

by making the cross-lingual comparison. The study correlates the

automated metric scores computed by two different approaches

with human-assigned scores on the sentence level to examine the

degree of machine-human parity. The analysis results suggest that the

neural network outperforms MT evaluation metrics as a fairly strong

metric-human correlation for Similarity (r = 0.54) and a moderate

correlationwith TransQuest (r= 0.49) have been observed. The study

points to the possibility of recruiting pre-trained neural models to

assess the information fidelity in interpreting.

As for assessment based on a feature-based pre-trained model,

Stewart et al. (2018) predicts simultaneous interpreting performance

by building on three models with QuEst++ (Specia et al.,

2015). As QuEst++ includes seventeen features such as n-gram

frequency, the number of tokens in source/target utterances,

and average token length tec, Stewart et al. (2018) augments

the model’s baseline feature set with four additional types of

features to handle interpreting-specific phenomena, including

ratio of pauses/hesitations/incomplete words, the ratio of non-

specific words, the ratio of “quasi-”cognates, and the ratio of

number of words. Results show that the predicted scores of the

augmented QuEst++ had statistically significant correlations with

the METEOR scores, which perform the other two models in all

language pairs.

2.3. Formulation for the assessment of
interpreting quality

Although it is difficult to describe the various factors of

interpreting quality assessment and their interrelationships

theoretically, the evaluation using formulas should be intuitive.

According to Cai (2007). Interpretation quality (user expectations

or satisfaction) = fidelity × weight ratio + accuracy × weight ratio

+ delivery × weight ratio + validity of interpreting strategy use.

In this formula, the weight ratio varies according to the specific

interpretation settings or tasks. In addition, the “validity interpreting

strategy use” in the formula does not need to be multiplied by

the “weight ratio” because there is any interpretation task would

require an effective strategy which accounts for ∼20% (Cai, 2007).

If renditions are graded by a hundred-mark system, the weight

ratio for each parameter should be: Interpretation quality (user

expectations or satisfaction) = 50% fidelity + 15% accuracy +

15% delivery + validity of strategy use 20% (Cai, 2007). Cai

suggested that the evaluation of interpreting quality should establish

corresponding weights and proportion reference values according

to different communication backgrounds. However, in automated

assessment communication of interpreting, all parameters must be

extracted in an automated way that it is impossible to operationalize

the validity of strategy use with human labor for annotation. As

other parameters can be assessed independently to some extent,

the validity of strategy use can only be assessed holistically. The

use of strategies and their validity should be inferred based on

assessing other parameters, with qualitative analysis required before

quantitative statistics.

3. Research questions

Against this background, we conducted the current study to

investigate further the automatic assessment of communication

of interpreting by a machine-learning model. We designed an

experiment in which both fidelity, accuracy and delivery are applied

as the parameters and remove the validity of strategy use since

it cannot be operationalized in an automated way. Based on the

previous literature, the best model to predict the parameters of fidelity

and accuracy are neural networks (i.e., similarity and TransQuest)

and temporal measures for the delivery parameters. With parameters

and scores as data ready, the actual machine learning process starts

when we train your model. This training is a cyclic process with

the cycles we run through the model, and the predictions can

improve. Themodel’s decisions will becomemore accurate withmore

training sessions. Once developed and prepared, machine learning

algorithms help design and create systems that can automatically

interpret data. Finally, we use the patterns in the training data to

perform classifications and future predictions. During the process, we

examined three questions:

RQ1: To what extent would the scores computed by pre-trained

neural models correlate with human-assigned scores for fidelity?

RQ2: To what extent would the delivery parameters correlate with

human-assigned scores for delivery?

RQ3: What is the predictive ability of a machine-learning model

built with fidelity and delivery parameters?

4. Methodology

4.1. Interpreting recordings

This study selects three recordings English-Chinese consecutive

interpreting performed by three interpreting trainees sourced from

48 renditions by 24 trainees in a professional training program.

All renditions have been rated by two tutors who are professional

interpreters based on a holistic scale form. The discrepancy in

rating a trainee’s performance between two raters is smaller than

three points. In case where the discrepancy is bigger than three,

a third-rater adjudication is employed. The choice of these three

renditions is made for the normal distribution as one scored

the highest, one the lowest and one scored the median. The

English source speeches cover topics such as gender inequality in

shopping and the gender pay gap, which are the topics trainees

find familiar with and loaded with appropriate amount of data

and figures.
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4.2. Transcription and manual alignment

All video files are first converted into audio files and then

transcribed automatically via a speech-recognition service provided

IBM by means of Python script. IBM returns more accurate

timestamps and reserves filled pauses in interpreted texts to extract

prosodic information based on accurate timestamps. The initially

transcribed texts are examined manually for more accurate results.

To create a parallel dataset for fidelity and accuracy assessment, we

use memoQ to manually align sentence pairs to ensure that source

and target transcripts corresponded. There are one hundred and

three pairs of sentences in total, and ninety-four are suitable for

machine learning since nine source transcribed sentences have no

correspondence. The most common way to define whether a data

set is sufficient is to apply a 10 times rule. This rule means that the

amount of input data should be ten times more than the number

of parameters in the data set. Therefore, ninety-four sentence pairs

is enough to build a machine learning model as there are seven

parameters in the study.

4.3. Human raters and scoring

With each sentence aligned, the study recruited two raters to

assess the information between each language pair from two aspects:

accuracy and fidelity, and delivery. One of the raters has obtained

postgraduate-level degrees in interpreting and taught consecutive

interpreting full-time in a university in China. Another rater is now

a PhD candidate and interpreter who used to be an interpreting

tutor for more than 3 years working at a university in China.

Their L1 language is Mandarin and L2 language is English. Given

their experience in interpreting, teaching and assessing students’

performances, they are considered qualified raters in the study.

Cohen’s Kappa for two raters for Manual sentence alignment is

0.87, for auto alignment is 0.88, indicating perfect agreement. The

overall scores are calculated based on the formula proposed by Cai

(2007), with fidelity and accuracy accounting for 65/85 and delivery

representing 15/85, removing the validity of strategy application.

4.4. Parameters as results of automatic
assessment of fidelity

According to Wang and Wang (2022c), neural network

outperforms MT evaluation metrics as a fairly strong metric-

human correlation for Similarity (Pearson’s r = 0.54) and a

moderate correlation with TransQuest (r= 0.49) have been observed.

Therefore, this study uses the scores computed by Similarity and

two models from TransQuest as the parameters for fidelity and

delivery to build the machine learning model. Before calculating

the evaluation metrics with neural networks, we clean data of

language pairs by removing marks (i.e., hesitation marks generated

automatically by speech recognition technology). We employed

TransQuest (available at https://tharindu.co.uk/TransQuest/) to

assess two groups of data by different alignment methods in three

steps, respectively. To be more specific, we first Install TransQuest

locally using pip. Then the pre-trained quality estimation models for

English-Chinese pairs on sentence level are downloaded (available

at: https://tharindu.co.uk/TransQuest/models/sentence_level_pretra

ined/). The models include two predicting direct assessments

(i.e., MonoTransQuest and SiameseTransQuest) and one predicting

HTER (i.e., MonoTransQuest). Once the download is completed, we

use the three models to compute the data’s sentence-level scores of

DA and HTER.

To compute similarity scores, we first set up the environment to

access the Multilingual Universal Sentence Encoder Module, which

is downloaded for sentence embedding (available at: https://tfhub.

dev/google/universal-sentence-encoder-multilingual-large/3). We

employ the module to precompute the embeddings of the parallel

sentences in the dataset, which are used to compute Cosine Similarity

between source text and renditions.

4.5. Parameter as delivery features

As the previous study (Wang and Wang, 2022a) identifies and

vectorizes objective utterancemeasures through descriptive statistical

analysis of interpreting data, the study uses number of pauses (NUP)

number of filled pauses (NFP), number of relatively long unfilled

pauses (NRLUP), number of relative slow articulation (NRSR),

number of particularly long unfilled pauses (UPLUP) for fluency

and average of confidence measure (ACM) and number of extremely

unclear words (NEUW) and number of relatively unclear words

(NRUW) for articulation and pronunciation.

Fluency parameters are calculated based on the timestamps in the

transcripts by IBMWaston service. The number of unfilled pauses is

defined as the number of unfilled pauses equal to and longer than

0.25 s, excluding the first pause at the very beginning of interpreting.

The number of relatively long unfilled pauses refers to the number

of unfilled pauses duration larger than Q3 +1.5 ∗ IQR1 and smaller

than and equal to Q3 + 3 ∗ IQR. The number of relative slow

articulation is the number of the duration per syllable larger than

Q3 +1.5 ∗ IQR and smaller than and equal to Q3 + 3 ∗ IQR,

the number of particularly long unfilled pauses is the number of

unfilled pauses duration larger than Q3 + 3 ∗ IQR. The number of

extremely unclear words is the number of unclear words pronounced

by the participants whose confidence measure smaller than Q3 + 3
∗ IQR. The number of relatively unclear words refers to the number

of unclear words pronounced by the participants whose confidence

measure larger than Q3+1.5 ∗ IQR and smaller than and equal to Q3

+ 3 ∗ IQR.

4.6. Experiment design

The final scores have been evenly distributed into five levels of

performance (very good: 100–80, good: 79–60, pass: 59–40, poor: 39–

20, very poor: 19–0) since machine learning aims at classification

rather than to obtain the absolute score as human score. The five-

group classification is also implemented to make up for the minor

inconsistency among different raters or even within the same rater.

This study uses a support vector machine (SVM) in supervised

machine learning to randomly select seventy per cent of the training

1 Q3: Upper quartile or the 75th percentile. IQR: The di�erence between the

75th and 25th percentiles of the data.
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TABLE 1 Score distribution of fidelity in five levels of performance.

Very poor Poor Pass Good Very good

Category (0, 20) (20, 40) (40, 60) (60, 80) (80, 1000)

Number

of

sentences

7 17 38 17 15

Percentage 7.4% 18.1% 40.4% 18.1% 16.0%

data as the sample multiple times and the rest as prediction data

to establish the machine-learning model. SVM, one of the best

machine learning algorithms, is applied tomany pattern classification

problems. It is used in this study as it is suitable for machine learning

with a small number of data and being able to optimize parameters

during the experiment to achieve the best prediction. Among the

many packages of SVM algorithms, the free libsvm toolkit developed

by Taiwan Zhiren Lin implements simple and quick operations by

providing kernels such as linear, polynomial, radial basis function

and sigmoid. As the toolkit provides probability values for prediction,

weights in classification patterns and cross-validation and a more

accurate interface for SVM through visualization and parameter

tuning, the study uses the E1071 package for dynamic random data

training to perform SVM in R language. The study also uses KNN

algorithm to store all the available data and classify a new data point

based on the Similarity. With new scores appearing, it can be easily

classified into a well-suited category using the K- NN algorithm.

First, the data is randomized by applying the random seed in the R

language. Next, seventy per cent of the data is selected as training

data and thirty per cent as the test data after two thousand times

of randomization. The model is then built with the delivery and

information features.

After building the machine-learning model and predicting scores

on the test dataset, the study checks the accuracy of the prediction

by a confusion matrix. The confusion matrix, also known as the

error matrix, is used to check whether the prediction results of

the system model are accurate as the prediction falls into the

categories of True Positive, True Negative, False Positive, and False

Negative. The indices to evaluate the quality of machine learning

models by confusion matrix are accuracy, sensitivity, specificity and

Kappa. Accuracy represents the ratio of correct prediction. Sensitivity

measures the ratio of predicted positive classes, and specificity

measures the rate of actual negatives identified correctly. Kappa

(Cohen’s Kappa) identifies how well the model is predicting by

measuring the agreement between classification and truth values. A

kappa value of 1 represents the perfect agreement, while a value of 0

represents no agreement.

5. Results

5.1. Data distribution

Table 1 gives an overview of the score distribution of fidelity

over the five levels to assess interpreting performances. Sentences

grades are mainly concentrated in the level of pass with a total

count of thirty-eight, accounting for 40.4% of the total. It is followed

by level poor and good with seventeen sentences that account for

18.1%. Seven sentences are clustered in level very poor and fifteen

FIGURE 1

Score distribution of fidelity in five levels of performance.

TABLE 2 Score distribution of delivery in five levels of performance.

Very poor Poor Pass Good Very good

Category (0, 20) (20, 40) (40, 60) (60, 80) (80, 100)

Number

of

sentences

2 10 25 26 31

Percentage 2.1% 10.6% 26.6% 27.7% 33.0%

in level very good. Figure 1 shows the normal distribution of the

score distribution of fidelity as an approximately bell curve indicating

values are more likely aroundmean over extremes, which is beneficial

for model building.

Table 2 shows the score distribution over the five levels to assess

delivery in interpreting. Sentences grades are mainly concentrated in

the level of very good with a total count of thirty-one, accounting for

33.0% of the total number. It is followed by level good and pass with

each of twenty-six and twenty-five sentences that account for 27.7 and

26.6%, respectively. Ten sentences are clustered in level very poor and

two in level very poor. Figure 2 illustrates that the score of delivery

does not result in a skewed distribution with toomany extreme values

in the dataset.

Table 3 shows the overall score distribution over the five levels.

The overall scores are calculated for each sentence with fidelity

and accuracy accounting for 65/80 and delivery 15/80 for the

overall assessment. The result shows that sentence grades are mainly

concentrated in the level of pass with a total count of 40, accounting

for 42.6% of the total number. It is followed by level good and

poor with each of nineteen and seventeen sentences that account

for 20.2 and 18.1%, respectively. Fourteen sentences are clustered

in level very good and four in level very poor. Figure 3 shows

that the distribution of overall scores presents the shape of a bell

curve with most scores near the middle but fewer scores in level

very poor.
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FIGURE 2

Score distribution of delivery in five levels of performance.

TABLE 3 Overall score distribution in five levels of performance.

Very poor Poor Pass Good Very good

Category (0, 20) (20, 40) (40, 60) (60, 80) (80, 100)

Number

of

sentences

4 17 40 19 14

Percentage 4.3% 18.1% 42.6% 20.2% 14.9%

5.2. Correlation analysis among parameters
and scores

The inter-correlation among the scores computed to assess

fidelity and accuracy by neuro network has been summarized in

Figure 4. Scores computed by Sent Siamese with DA from TrasQuest

have a moderate negative correlation with scores by Sent Mono with

HTER, another model from TransQuest (r = −0.61, p < 0.001).

There is a moderate positive correlation between Scores computed by

Sent Siamese with DA and scores computed by Similarity (r = 0.57, p

< 0.001). The only model that is moderately correlated to human-

assigned scores for fidelity and accuracy is Similarity (r = 0.53,

p < 0.001).

Figure 5 shows the inter-correlation among temporal measures

and human assessment for delivery. The number of unfilled pauses

have a negative moderate correlation with human-assigned scores

for delivery (r = −0.4, p < 0.001). There is a moderate positive

correlation between the number of relative unclear words and the

number of unfilled pauses (r = 0.39, p < 0.001). Both number of

extreme unclear words (r= 0.32, p< 0.001). and number of relatively

slow articulation (r = 0.38, p < 0.001) are moderately correlated to

number of unfilled pauses.

Figure 6 shows the inter-correlation among temporal measures

and scores computed by neuro networks and overall human-assigned

scores. The overall scores by human raters have positive moderate

correlation with scores computed by Sent Mono with DA from

TrasQuest (r = 0.43, p < 0.001) and Similarity (r = 0.52, p < 0.001).

FIGURE 3

Overall score distribution in five levels of performance.

FIGURE 4

Correlation matrix chart among scores computed by neural networks

and human assessment for fidelity.

The random seed selects training and test data with 67 sentences

in the training set and 27 sentences with their overall scores in the

test set. In the training set, there are three sentences (4.5%) in the

level very poor, sixteen (23.9%) in poor, twenty-four (35.8%) in pass,

fourteen (20.9%) in good and ten (14.9%) in very good. In the test

dataset, there is one sentence (1.7%) in the level very poor, one (1.7%)

in poor, sixteen (59.3%) in pass, five (18.5%) in good and four (14.8%)

in very good. The distribution of the training dataset is close to the

distribution of human-assigned overall scores.

The accuracy of the best SVM machine learning model is tested

by confusion matrix after more than two thousand times of dynamic

random sampling (Table 4). The correct predictions for each level

are 0, 0, 16, 0, and 1. The best SVM algorithm’s accuracy rate for

predicting the test data is 62.96%, and the 95% confidence interval

is between 42.37 and 80.6%. Kappa value is 0.1263, and the P-value is

0.4273. In addition, Table 4 shows that specificity (the negative rate)

for each level is high, with 1.0 for level very poor, poor, good, and
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very good, and 0.9 for level pass, indicating accurate predictions for

the number of correct negative predictions. However, the sensitivity

(recall) for the very poor, poor, pass and good level are zero and 0.25

for level very good. The numerical value shows that the probability of

true positives of each available category is approximately none.

FIGURE 5

Correlation matrix chart among temporal measures and human

assessment for delivery.

5.3. Confusion matrix for SVM and KNN
models

The accuracy of the best KNN machine learning model is

tested by confusion matrix after more than two thousand times of

FIGURE 6

Correlation matrix chart among temporal measures and scores

computed by neural networks and overall human-assigned scores.

TABLE 4 Results of confusion matrix of the best SVMmodel.

Overall statistics

Accuracy: 0.6296

95% CI: (0.4237, 0.806)

No Information Rate: 0.5926

P-value (Acc > NIR): 0.4273

Kappa: 0.1262

Statistics by class:

Reference

Very poor Poor Pass Good Very good

Prediction Very poor 0 0 0 0 0

Poor 0 0 0 0 0

Pass 1 1 16 5 3

Good 0 0 0 0 0

Very good 0 0 0 0 1

Sensitivity 0.00000 0.00000 0.00000 0.00000 0.25000

Specificity 1.00000 1.00000 0.09091 1.00000 1.00000

Pos pred value NaN NaN 0.61538 NaN 1.00000

Neg pred value 0.96296 0.9626 1.00000 0.8148 0.88462

Prevalence 0.03704 0.03704 0.59259 0.1852 0.14815

Detection rate 0.00000 0.00000 0.59259 0.0000 0.03704

Detection prevalence 0.00000 0.00000 0.59259 0.0000 0.03704

Balanced accuracy 0.50000 0.50000 0.54545 0.50000 0.62500
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TABLE 5 Results of confusion matrix of the best KNN model.

Overall statistics

Accuracy: 0.5556

95% CI: (0.3533, 0.7452)

No information rate: 0.5926

P-value (Acc > NIR): 0.7239

Kappa: 0.0609

Statistics by class:

Reference

Very poor Poor Pass Good Very good

Prediction Very poor 0 0 0 0 0

Poor 0 0 0 0 1

Pass 1 1 14 4 3

Good 0 0 2 1 0

Very good 0 0 0 0 0

Sensitivity 0.00000 0.00000 0.8750 0.20000 0.00000

Specificity 1.00000 0.96154 0.1818 0.90909 1.00000

Pos pred value NaN 0.00000 0.6087 0.33333 NaN

Neg pred value 0.96296 0.96154 0.5000 0.83333 0.8519

Prevalence 0.03704 0.03704 0.5926 0.18519 0.1481

Detection rate 0.00000 0.00000 0.5185 0.03704 0.00000

Detection prevalence 0.00000 0.03704 0.8519 0.11111 0.0000

Balanced accuracy 0.50000 0.48077 0.5284 0.55455 0.5000

dynamic random sampling (Table 5). In the table with combinations

of predictions and references, the correct predictions for each level

are 0, 0, 14, 1, and 0. The accuracy rate to predict the test data by the

best KNN algorithm is 55.56%, and the 95% confidence interval is

between 35.33 and 74.52%. Kappa value is 0.0609, and the P-value is

0.7239. In addition, Table 5 shows that specificity (the negative rate)

for each level is high except level pass, with 1.0 for level very poor and

very good, 0.96 for level poor, 0.91 for level good, indicating accurate

predictions for the number of correct negative predictions. However,

the sensitivity (recall) for the level very poor, poor, and very good are

zero but 0.86 for level pass and 0.2 for level good.

6. Discussion

The aim of this study is to predict the quality of interpretations for

pedagogical purposes. It successfully creates two classifiers to predict

one out of five classes: very poor, poor, pass, good, or very good

with the most important variables that can quantified. In the table

of confusion matrix with different combinations of predicted and

actual values by SVM model, the assessment results of pass can be

accurately predicted which indicates that the SVM machine learning

model is able to screen the interpretations that pass the exam. Similar

accurate results can also be found in the KNN model. Two machine

learning models are not able to categorize the assessment results into

more sets of “classes”, with very few correct predictions in terms

of categories other than “pass”. Ideally, we want to maximize both

Sensitivity & Specificity, which is not possible always as there is always

a trade-off. Sensitivity is the proportion of observed positives that

were predicted to be positive. Specificity refers to the proportion of

observed negatives that were predicted to be negatives. Our SVM

model compromises on sensitivity and CNN model compromises

on specificity.

The reason behind inaccurate prediction is disproportionate data

with little assessed as very poor, poor, good, or very good have been

provided for machine learning. Therefore, the study suggests that

machine learning models for the prediction of interpreting quality

can be built with parameters of fidelity and delivery. With new,

larger and proportionate dataset available for future pattern learning

by the computers, the model which will possibly produce more

accurate prediction results entertains the possibility of application in

education or even certification.

The study is the first to build the supervised machine learning

models integrating both delivery and fidelity features to predict

quality of interpreting. The machine learning models point to great

potential of automatic scoring with little human evaluation involved

in the whole process. The prediction is based on a supervised learning

algorithms trying to model relationships and dependencies between

the assessment results and the input features of delivery and fidelity.

It is cost-wise, and timesaving compared with manual assessment

that requires great effort put into the process wherein assessors must

compare, analyze, and evaluate. The machine learning models are

also the first built in the computing science to assess interpreting

quality. Recent years have witnessed rapid development of MTQE, an
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AI-powered feature that provides segment-level quality estimations

for machine translation suggestions. Giant techs have also explored

the possibility of AI-interpreting. However, with robots not being

able to understand culture, or matching the human mind’s versatility,

human interpreters are not being able to be replaced now. The

language industry should not be immune to AI-based technology but

seek cooperation with AI so that better service can be provided not

only for interpreting practice but also for education. It is expected

that the exploration of model building based on machine learning

for the prediction of interpreting quality contributes toward the

advancement of Natural Language Processing by adding something

new. The model building is an abstract mathematic representation of

human assessment, systematic evaluation, and analysis. It simulates

and studies the complex system of quality assessment in interpreting

using mathematics and computer science.

7. Conclusion

This study examines the viability of using computational features

for fidelity and accuracy, and delivery extracted automatically

to build a machine learning model for automatic assessment of

communication of interpreting. In this study, we computed three

metrics, including Similarity, Sent Siamese with DA, Sent Mono with

HTER from TransQuest, as the parameters for fidelity and accuracy.

We also extract temporal measures for the feature extraction for

delivery. All features have been used to build SVM and KNN

machine-learning models. The major finding is the best SVM model

can be used to predict interpreting performance with five levels.

About Research Question 1, scores computed by all three neuro

networks are moderately correlated to human-assigned scores for

fidelity and accuracy, with Similarity showing higher correlations.

Concerning Research Question 2, the number of unfilled pauses

negatively correlates with human-assigned delivery scores. Regarding

Research Question 3, the best machine-learning model built with all

features by SVM shows an accuracy of 62.96%, which is better than

the KNN model with an accuracy of 55.56%. The results suggest that

machine learning models for predicting interpreting quality can be

built with quantified parameters.

As the first exploration, the study proposes a paradigm that

has the potential to assist human in the assessment of interpreting

quality. It calls for more rigorous research with larger dataset

and more automatic features fed into the learning process. The

machine learning model for automatic assessment of communication

in interpreting is expected to be applied in low-stake interpreting

assessment and complementary to human scoring, which might have

great potential in wider application large-scale assessment tasks as it

is labor-wise and cost-effective.

Despite these findings, our study has at least two limitations. The

first is that there is not enough data for machine learning at the level

of very poor, with only three sentences in the training set and one

sentence in the testing set at this level. The lack of data at this level

also leads to the problem of the non-normal distribution of the data

from machine learning. Future work may improve the predictability

of machine-learning models at different levels with more data with

low scores and normally distributed databases. The second limitation

is that some temporal measures related to delivery rate have not been

extracted in this study because the timestamps are lost during the

process of manual alignment with memoQ. In future research, we

may design an interface with a system to enable the post-editing for

alignment with timestamps reserved in the sentence so that more

delivery features can be used for machine learning.
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