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Formal and functional theories of language seem disparate, because formal theories

answer the question of what a language is, while functional theories answer the question

of what functions it serves. We argue that information theory provides a bridge between

these two approaches, via a principle of minimization of complexity under constraints.

Synthesizing recent work, we show how information-theoretic characterizations of

functional complexity lead directly to mathematical descriptions of the forms of possible

languages, in terms of solutions to constrained optimization problems. We show how

certain linguistic descriptive formalisms can be recovered as solutions to such problems.

Furthermore, we argue that information theory lets us define complexity in a way which

has minimal dependence on the choice of theory or descriptive formalism. We illustrate

this principle using recently-obtained results on universals of word and morpheme order.
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1. INTRODUCTION

Information theory is the mathematical theory of communication and the origin of the modern
sense of the word “information” (Shannon, 1948; Gleick, 2011). It proceeds from the premise
(Shannon, 1948, p. 379):

The fundamental problem of communication is that of reproducing at one point either exactly or
approximately a message selected at another point.

In information theory, a code is any function which maps between a message (the content that
is to be communicated) and a signal (any object or event that can be transmitted through a
medium from a sender to a receiver). The signal is considered to contain information about
the message when the message can be reconstructed from the signal. An optimal code conveys
maximal information about the message in some potentially noisy medium, while minimizing the
complexity of encoding, sending, receiving, and decoding the signal.

Our goal in this paper is to advance an information-theoretic characterization of human
language in terms of an optimal code which maximizes communication subject to constraints
on complexity. Optimality in this sense is relative: it requires specifying specific mathematical
functions for communication and complexity and the ways they trade off. Once these constraints
are specified, the form of the optimal code can be derived. Within this framework, the most
important question becomes: what set of constraints yields optimal codes with the characteristics
of human language?
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The efficiency-based research program advocated here has a
long scientific pedigree (Gabelentz, 1891; Zipf, 1935; Mandelbrot,
1953), and recent years have seen major advances based on ideas
from information theory (for example, Ferrer i Cancho and Solé,
2003; Zaslavsky et al., 2018; Mollica et al., 2021) (see Gibson
et al., 2019, for a recent review). The main contributions of the
present paper are (1) to show how information theory provides
a notion of complexity which is relatively neutral with respect
to descriptive formalism and to discuss the consequences of this
fact for linguistic theory, where differences between formalisms
often play an important role, and (2) to demonstrate the utility of
this framework by deriving existing linguistic formalisms from it,
and by providing an example where it gives a natural explanation
of a core property of human language. In the example, using
previously-published results, we argue that, by minimizing the
information-theoretic complexity of incremental encoding and
decoding in a unified model, it is possible to derive a fully formal
version of Behaghel’s Principle (Behaghel, 1932): that elements
of an utterance which ‘belong together mentally’ will be placed
close to each other, the same intuition underlying the Proximity
Principle (Givón, 1985, 1991), the Relevance Principle (Bybee,
1985), dependency locality (Gibson, 1998, 2000; Futrell et al.,
2020c), and domain minimization (Hawkins, 1994, 2004, 2014).

We conclude by arguing that characterizing linguistic
complexity need not be an end in itself, nor a secondary
task for linguistics. Rather, a specification of complexity can
yield a mathematical description of properties of possible
human languages, via a variational principle that says that
languages optimize a function that describes communication
subject to constraints.

The remainder of the paper is structured as follows. In
Section 2, we describe how information theory describes both
communication and complexity, arguing that it does so in ways
that are independent of questions about mental representations
or descriptive formalisms. In Section 3, we show how functional
information-theoretic descriptions of communication and
complexity can be used to derive descriptions of optimal codes,
showing that certain existing linguistic formalisms comprise
solutions to information-theoretic optimization problems. In
Section 4, we show how an information-theoretic notion of
complexity in incremental production and comprehension yields
Behaghel’s Principle. Section 5 concludes.

2. INFORMATION-THEORETIC CONCEPTS
OF COMMUNICATION AND COMPLEXITY

Imagine Alice and Bob want to establish a code that will enable
them to communicate about some set of messages M. For
example, maybe M is the set of movies playing in theaters
currently, and Alice wants to transmit a signal to Bob so that he
knows which movie she wants to see. Then they need to establish
a code: a mapping from messages (movies) to signals, such that
when Bob receives Alice’s signal, he can reconstruct her choice of
message (movie). We say communication is successful if Bob can
reconstruct Alice’s message based on his receipt of her signal.

More formally, a code L is a function L from messagesm ∈ M
to observable signals s drawn from some set of possible signals S:

L :M → S.

In general, the function L can be stochastic (meaning that it
returns a probability distribution over signals, rather than a single
signal). Canonically, we suppose that the set of possible signals is
the set of possible strings of characters drawn from some alphabet
6. Then codes are functions from messages to strings:

L :M → 6∗.

Note that these definitions are extremely general. A code is any
(stochastic) function from messages to signals: we have not yet
imposed any restrictions whatsoever on that function.

2.1. Definition of Information
Given this setting, we can now formulate the mathematical
definition of information. Information is defined in terms of the
simplest possible notion of the effort involved in communication:
the length of signals that have to be sent and received. The amount
of information in any object x will be identified with the length
of the signal for x in the code which minimizes the average
length of signals; the problem of finding such a code is called
source coding.

Below, we will give an intuitive derivation showing that the
information content for some object x is given by the negative
log probability of x. For a more comprehensive introduction to
information content and related ideas (see Cover and Thomas,
2006). This derivation of the concept of information content
serves two purposes: (1) it gives some intuition for what a “bit”
of information really is, and (2) it allows us to contrast the
minimal-length source code against human language (which we
will argue results fromminimization of a very different and more
interesting notion of complexity).

Consider again the case where the set of messages M is a set
of movies currently playing, and suppose Alice and Bob want
to find a code L which will enable perfect communication about
M with signals of minimal length. That is, before Bob receives
Alice’s signal, he thinks the set of movies Alice might want to see
is the set M, with size |M|. If the code is effective, then after Bob
receives Alice’s signal, he should have reduced the set of movies
down to a set of size 1, {m} for the target m. The goal of the code
is therefore to reduce the possible messages from a set of size |M|

to a set of size 1.
Canonically we suppose that the alphabet 6 has two symbols

in it, resulting in a binary code. We will define the information
content of a particular movie m as the length of the signal for m
in the binary code that minimizes average signal length. If Alice
wants her signals to be as short as possible, then she wants each
symbol to reduce the set of possible movies as much as possible.
We suppose that Alice and Bob decide on the code in advance,
before they knowwhichmovie will be selected, so the code should
not be biased toward any movie rather than another. Therefore,
the best that can be done with each symbol transmitted is to
reduce the set of possible messages by half.
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The problem of communication therefore reduces to the
problem of transmitting symbols that each divide the set of
possible message M in half, until we are left with a set of size 1.
With this formulation, we can ask how many symbols n must be
sent to communicate about a set of size |M|:

1

2n
|M| = 1. (1)

This equation expresses that the set M is divided in half n times
until it has size 1. The length of the code is given by solving for n.
Applying some algebra, we get

1

2n
|M| = 1

|M| = 2n.

Taking the logarithm of both sides to solve for n, we have

n = log2 |M|. (2)

Therefore, the amount of information in any object m drawn
from a setM is given by log2 |M|. For example, suppose that there
are 16movies currently playing, andAlice and Bobwant to design
a minimal-length code to communicate about the movies. Then
the length of the signal for each movie is log2 16 = 4. We say
that the amount of information contained in Alice’s selection of
any individual movie is 4 bits, the standard unit of information
content. If Alice successfully communicates her selection of a
movie to Bob—no matter what code she is actually using—then
we say that she has transferred four bits of information to Bob.

The derivation above assumed that all the possible messages
m ∈ M had equal probability. If they do not, then it
might be possible to shorten the average length of signals by
assigning short codes to highly probable messages, and longer
codes to less probable messages. If we know the probability
distribution on messages P(m), then we can follow the derivation
above, calculating how many times we have to divide the total
probability mass on M in half in order to specify m. This
procedure yields the length of the signal for meaning m in the
code which minimizes average signal length. We call this the
information content ofm:

n = − log2 P (m) . (3)

The quantity in Equation (3) is also called surprisal and
self-information1. The information content is high for low-
probability messages and low for high-probability messages,
corresponding to the assignment of longer codes to lower-
probability events.

A few remarks are in order about the definition of
information content.

1Information content in bits is given using logarithms taken to base 2.
Henceforward, all logarithms in this paper will be assumed to be taken to base 2.

2.1.1. Meaning of “Bit of Information”
Although the bit of information is defined in terms of a discrete
binary code, it represents a fundamental notion of information
which is general to all codes. A bit of information corresponds
to a distinction that allows a set to be divided in half (or, more
generally, which allows a probability distribution to be divided
into two parts with equal probability mass).

A naïve way to define the amount of information in some
object x would be to ask for the length of the description of x
in some language. For example, we could identify the amount
of information in an event with the length of the description
of that event in English, measured in phonemes. This would
not be satisfying, since our measurement of information would
depend on the description language chosen. If descriptions were
translated into languages other than English, then their relative
lengths would change.

Information theory solves this problem by using the minimal-
length code as a distinguished reference language. By measuring
information content as the length of a signal under this code, we
get a description-length measure that is irreducible, in the sense
that there is no description language that can give shorter codes
to a certain set of objects with a certain probability distribution.

For this reason, the bit is not only a unit of information
communicated, but also a fundamental unit of complexity.
The complexity of a particular grammar, for example, could
be identified as the number of bits required to encode that
grammar among the set of all possible grammars. This measure
of information content would, in turn, depend on the choice of
probability distribution over grammars. Choices of grammatical
formalism would only matter inasmuch as they (explicitly or
implicitly) define a probability distribution over grammars.

2.1.2. Representation Invariance
Surprisingly, the information content of an object x does not
really depend on the object x itself. Rather, it only depends on the
probability of x. This property gives information theory a very
powerful general character, because it means that information
content does not depend on the choice of representation
for the object x—it depends only on the probability of
the object. We will call this property of information theory
representation invariance.

While representation invariance makes information theory
very general, it also means that information theory can feel
unusual compared to the usual methods deployed in linguistic
theory. Traditional linguistic theory pays careful attention to the
formal representation of linguistic data, with explanations for
linguistic patterns often coming in the form of constraints on
what can be described in the formalism (Haspelmath, 2008). In
information theory, on the other hand, any two representations
are equivalent as long as they can be losslessly translated one to
the other—regardless of any difficulty or complexity involved in
that translation. This property is what Shannon (1948, p. 379) is
referring to when he writes:

Frequently the messages have meaning; that is they refer to or
are correlated according to some system with certain physical
or conceptual entities. These semantic aspects of communication
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are irrelevant to the communication problem. The significant
aspect is that the actual message is one selected from a set of
possible messages.

That is, if the goal is simply to communicate messages while
minimizing code length, all that matters is the set that the
message is selected from, and the probability of that message in
that set—the meaning of the message does not matter, nor any
other aspect of the message.

Representation invariance is the source of the great generality
of information theory, and also of its limits (James and
Crutchfield, 2017; Pimentel et al., 2020). This property of
information theory has led some to question its relevance for
human language (and for human cognition more generally, e.g.
Luce, 2003), where the structure of meaning clearly plays a
large role in determining the form of languages, via principles
of compositionality, isomorphism, and iconicity (Givón, 1991;
Culbertson and Adger, 2014).

However, it is more accurate to see this property of
information theory as an extreme form of the arbitrariness of

the sign (Saussure, 1916) which holds in certain kinds of ideal
codes. In human language, at least at the level of morphemes,
there is no relationship between a form and the structure of its
meaning, or only a weak relationship (Bergen, 2004; Monaghan
et al., 2014; Pimentel et al., 2019); the mapping between the
form and meaning of a morpheme is best described, to a first
approximation, as an arbitrary lookup table which a learner of a
language must memorize. A minimal-length source code yields
an extreme version of this idea: in such a code, there is no
consistent relationship between a form and the structure of its
meaning at any level. The idea that a signal contains information
about a message is totally disentangled from the idea that there
is some systematic relationship between the structure of the
message and the structure of the signal.

2.1.3. Natural Language Is Not a Minimal-Length

Source Code
The last point above brings us to the question of what similarities
and differences exist between the code described above, which
minimizes average signal length, and human language, when
we view it as a code. Although the lexicon of words seems
to share some basic properties of minimal-length codes—for
example, assigning short forms to more predictable meanings
(Zipf, 1949; Piantadosi et al., 2011; Pate, 2017; Kanwal, 2018;
Pimentel et al., 2021)—when we view language at the level of
phrases, sentences, and discourses, it has important properties
which such codes lack. Most vitally, there is a notion of
systematicity or compositionality in morphology and larger
levels of analysis: a word or a sentence can be segmented (at
least approximately) into units that collectively convey some
information as a systematic function of the meanings of the
individual units. Furthermore, these units are combined together
in a process that usually resembles concatenation: they are placed
end to end in the signal, with phonological rules often applying
at their boundaries. Although non-concatenative morphology
and discontinuous syntax do exist (e.g., scrambling), they are
relatively rare and limited in scope.

The minimal-length code has nothing at all corresponding to
systematicity, compositionality, or concatenation of morphemes.
In such a code, if two different messages have some commonality
in terms of their meaning, then there is nothing to guarantee
any commonality in the signals for those two messages. Even if
it is (by chance) possible to identify some symbols in a minimal-
length code as corresponding jointly and systematically to some
aspect of meaning, then there is no guarantee that those symbols
will be adjacent to each other in the signal. After some reflection,
this is not surprising: minimal-length codes result only from the
minimization of average signal length, subject to the constraint
of enabling lossless communication. Such codes are under no
pressure to have any isomorphism between messages and signals.
Conversely, we can conclude that if we wish to characterize
human language as an optimal code, then it must operate under
some constraint which forces systematicity, compositionality,
and a tendency toward concatenation as a means of combination
at the level of form, as well as the other properties of human
language. Minimization of average signal length alone does not
suffice to derive these properties.

2.2. Further Information Quantities:
Entropy, Conditional Entropy, Mutual
Information
Information theory is built on top of the definition of information
content given in Equation (3). Based on this definition, we can
define a set of further information quantities that are useful for
discussing and constraining the properties of codes. This section
is not exhaustive; it covers only those quantities that will be used
in this paper.

2.2.1. Entropy
The most central such quantity is entropy: the average
information content of some random variable. Given a random
variable X (consisting of a set of possible outcomes X

and a probability distribution P(x) on those outcomes), the
entropy of X is

H [X] = −
∑

x∈X

P (x) log P (x) .

Entropy is best thought of as a measure of uncertainty: it
tells the amount of uncertainty about the outcome of the
random variable X.

2.2.2. Conditional Entropy
Suppose we have a code—amapping L :M → S frommessages to
signals—and we want to quantify howmuch uncertainty remains
about the underlying message M after we have received a signal
S. This question is most naturally answered by the conditional
entropy: the entropy of some random variable such as M that
remains after conditioning on some other random variable such
as S. Conditional entropy for any two random variablesM and S
is defined as

H [M | S] = −
∑

m,s

P (m, s) log P (m | s) .
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For example, suppose that a code L :M → S is a perfect code
forM, meaning that there is no remaining uncertainty about the
value ofM after observing S. This corresponds to the condition

H [M | S] = 0.

An ambiguous code would have H [M | S] > 0.

2.2.3. Mutual Information
Mutual information quantifies the amount of information in
one random variable S about some other random variableM:

I [M : S] =
∑

m,s

P (m, s) log
P (m, s)

P (m)P (s)
.

It is best understood as a difference of entropies:

I [M : S] = H [S]−H [S | M]

= H [M]−H [M | S] .

In this case, if we interpret S as signal and M as message, then
I [S :M] indicates the amount of information contained in S
about M, which is to say, the amount of uncertainty in M which
is reduced after observing S.

2.3. Information-Theoretic Notions of
Complexity
As discussed in Section 2.1, information theory gives us a notion
of complexity that does not depend on the descriptive formalism
used. However, the complexity of an object still depends on
the probability distribution it is drawn from. The problem
of choosing a probability distribution is substituted for the
problem of choosing a descriptive formalism2. For this reason,
information-theoretic notions of complexity are most easy and
useful to apply in scenarios where the relevant probability
distribution is already known3. In other scenarios, it is still useful,
but loses some of its strong theory-neutrality.

When the relevant probability distributions are known,
information theory gives us a complexity metric that generalizes
over representations and algorithms, indicating an irreducible
part of the resources required to store or compute a value.
Any particular representation or algorithm might require more
resources, but certainly cannot use less than the information-
theoretic lower bound.

2In fact, there are conditions under which these problems are exactly equivalent.
This observation forms the basis of the principle of Minimum Description Length
(Grünwald, 2007).
3There have been attempts to develop a version of information theory that does
not depend on probabilities, where the complexity of an object is a function
only of the intrinsic properties of the object and not the probability distribution
it is drawn from. This is the field of Algorithmic Information Theory, and the
relevant notion of complexity is Kolmogorov complexity (Li and Vitányi, 2008).
The Kolmogorov complexity of an object x, denoted K(x), is the description
length of x in the so-called “universal” language. Given any particular Turing-
complete description language L, the description length of x in L differs from
the Kolmogorov complexity K(x) only at most by a constant factor KL which is
a function of L, not of x. While Kolmogorov complexity is well-defined and can
be used productively in mathematical arguments about language (see for example
Chater and Vitányi, 2007; Piantadosi and Fedorenko, 2017), the actual number
K(x) is uncomputable in general.

2.3.1. Example 1: Sorting
As an example of the relationship between information measures
and computational complexity, consider the computations that
would be required to sort an array of numbers which are
initially in a random order. Information theory can provide
a lower bound on the complexity of this computation in
terms of the number of operations required to sort the array
(Ford and Johnson, 1959). Let the array have n elements; then
sorting the array logically requires determining which of the
n! possible configurations it is currently in, so that they can
be transformed into the desired order. Assuming all orders
are equally probable and that all elements of an array are
distinct, the information content of the order of the array is
log (n!). Any sorting algorithm must therefore perform a series
of computations on the array which effectively extract a total of
log (n!) bits of information. If each operation has the effect of
extracting one bit of information, then log (n!) operations will
be required. Therefore the information-theoretic complexity of
the computation is log (n!), which is indeed a lower bound on
time complexity of the fastest known sorting algorithms, which
require on the order of n log n operations on average (Cormen
et al., 2009, p. 91).

This kind of thinking more generally underlies the decision

tree model of computational complexity, in which the
complexity of a computation is lower bounded using the
minimal number of yes-or-no queries which must be asked
about the input in order to specify the computation of the
output. This quantity is nothing but the number of bits of
information which must be extracted from the input to specify
the computation of the output, yielding a lower bound on
resources required to compute any function. In general, there
is unavoidable cost associated with computational operations
that reduce uncertainty (Ortega and Braun, 2013; Gottwald and
Braun, 2019).

In this sense, information theory gives a notion of complexity
which is irreducible and theory-neutral. The true complexity of
computing a function using any concrete algorithmmay be larger
than the information-theoretic bound, but the information-
theoretic bound always represents at least a component of the full
complexity. In the case of information processing in the human
brain, the information-theoretic bounds give good fits to data: the
mutual information between input and output has been found to
be a strong predictor of processing times in the human brain in
a number of cognitively challenging tasks (see Zénon et al., 2019,
for a review).

2.3.2. Example 2: Incremental Language

Comprehension
In amore linguistic example, consider the computations required
for online language comprehension. A comprehender is receiving
a sequence of inputs w1, . . . ,wT , where wt could indicate a unit
such as a word. Consider the computations required in order
to understand the word wt given the context of previous words
w<t . Whatever information is going to be ultimately extracted
from the word wt , the comprehender must identify which word
it is. The comprehender can do so by performing any number
of computations on sensory input; each computation will have
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the effect of eliminating some possible words from consideration.
The minimal number of such computations required will be
proportional to the information content of the correct word in
its context, which is

− log P (wt | w<t) (4)

following the definition of information content in Equation (3).
Therefore, the number of computations required to recognize a
word wt given preceding context w<t will be proportional to the
surprisal of the word, given by Equation (4).

This insight underlies the surprisal theory of online language
comprehension difficulty (Hale, 2001; Levy, 2008), in which
processing time is held to be a function of surprisal. Levy (2013)
outlines several distinct converging theoretical justifications
for surprisal theory, all based on different assumptions about
human language processing mechanisms. The reason these
disparate mechanisms all give rise to the same prediction,
namely surprisal theory, is that surprisal theory is based
on fundamental information-theoretic limits of information
processing. Furthermore, empirically, surprisal theory has the
capacity to correctly model reading times across a wide variety
of phenomena in psycholinguistics, including modeling the
effects of syntactic construction frequency, lexical frequency,
syntactic garden paths, and antilocality (Levy, 2008). Surprisal is,
furthermore, a strong linear predictor of average reading times in
large reading time corpora (Boston et al., 2011; Smith and Levy,
2013; Shain, 2019; Wilcox et al., 2020) (cf. Meister et al., 2021),
as well as ERP magnitudes (Frank et al., 2015; Aurnhammer and
Frank, 2019).

While surprisal has strong success as a predictor of
reading times, it does not seem to account for all of the
difficulty associated with online language processing. However,
the information-theoretic argument suggests that processing
difficulty will always be lower-bounded by surprisal: there will
always be some component of processing difficulty that can
be attributed to the surprisal of the word in context. In this
connection, a recent critical evaluation of surprisal theory found
that, although it makes correct predictions about the existence
of garden path effects in reading times, it systematically under-
predicts themagnitude of those effects (van Schijndel and Linzen,
2018, 2021). The results suggest that reading time is determined
by surprisal plus other effects on top of it, which is consistent with
the interpretation of surprisal as an information-theoretic lower
bound on processing complexity.

2.3.3. Example 3: Effects of Memory on Language

Processing
Relatedly, Futrell et al. (2020b) advance an extension of surprisal
theory intended to capture the effects of memory limitations
in sentence processing. In this theory, called lossy-context

surprisal, processing difficulty is held to be proportional not
to the information content of a word given its context as in
Equation (4), but rather the information content of a word given
amemory trace of its context:

− log P (wt | mt) , (5)

where mt is a potentially noisy or lossy memory representation
of the preceding words w<t . Because the memory representation
mt does not contain complete information about the true context
w<t , predictions based on the memory representation mt will be
different from the predictions based on the true context w<t

4.
Memory representations may become lossy as more and more
words are processed, or simply as a function of time, affecting the
temporal dynamics of language processing.

This modified notion of surprisal can account for some of
the interactions between probabilistic expectation and memory
constraints in language processing, such as the complex patterns
of structural forgetting across languages (Gibson and Thomas,
1999; Vasishth et al., 2010; Frank et al., 2016; Frank and Ernst,
2019; Hahn et al., 2020a), as well as providing a potential
explanation for the comprehension difficulty associated with long
dependencies (Gibson, 1998, 2000; Demberg and Keller, 2008;
Futrell, 2019). Notably, lossy-context surprisal is provably larger
than the plain surprisal in Equation (4) on average. The purely
information-theoretic notion of complexity given by surprisal
theory provides a lower bound on resource usage in language
processing, and the enhanced theory of lossy-context surprisal
adds memory effects on top of it.

3. MODELING COMMUNICATION UNDER
CONSTRAINTS

Here we take up the question of what an information-theoretic
characterization of human language as a code would look
like. We show that an optimal code is defined by a set of
constraints that the code operates under. So an information-
theoretic characterization of human language would consist of
a set of constraints which yields optimal codes that have the
properties of human language.

An optimal code is defined by the constraints that it operates
under. For example, a minimal-length source code operates
under the constraints of (1) achieving lossless information
transfer for a given source distribution, while (2) minimizing
average code length, subject to (3) a constraint of self-
delimitation,meaning that the end of each signal can be identified
unambiguously from the signal itself. Using the concepts from
Section 2.2, we can now make this notion more precise. The
optimization problem that yields the minimal-length source code
is a minimization over the space of all possible probability
distributions on signals given messages q(s|m):

minimize
q(s|m)

〈

l (s)
〉

(6)

subject to H [M | S] = 0 (no ambiguity)
∑

s : q(s)>0

2−l(s) ≤ 1, (self-delimitation)

4In keeping with representation invariance, the actual representational format of
the memory trace mt does not matter in this theory—it could be a structured
symbolic object, or a point in high dimensional space, or the state of an associative
store, etc. All that matters is what information it contains.
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where the function l (s) gives the length of a signal, and the
notation 〈·〉 indicates an average. The expression (6) specifies the
minimization problem: over all possible codes q (s | m), find the
one that minimizes the average length of a signal l (s), subject to
the condition that the conditional entropy of messages M given
signals Smust be zero, and an inequality constraint that enforces
that the code must be self-delimiting5.

We argue that an information-theoretic characterization
of human language should take the form of a constrained
optimization problem, such that the solutions correspond to
possible human languages. The set of constraints serve as a
“universal grammar,” defining a space of possible languages
corresponding to the optima. However, unlike typical attempts
at formulating universal grammar, this approach does not
consist of a declarative description of possible languages, nor a
constrained formalism in which a language can be described by
setting parameters. Rather, the goal is to specify the functional
constraints that language operates under. These constraints
might have to do with communication, and theymight have to do
with the computations involved in using and learning language.
Optimally, each constraint can be justified independently based
on experimental grounds, using empirical results from fields such
as psycholinguistics and language acquisition.

In order to show the utility of this approach, here
we will show how influential formalisms from linguistic
theory can be recovered as solutions to suitably specified
optimization problems.

A very simple objective function, generalizing the objective
for minimal-length source codes, would be one which minimizes
some more general notion of cost per signal. Let C(s) denote a
cost associated with a signal s. Then we can write an optimization
problem to find a code which minimizes ambiguity while also
achieving a certain low level k of average cost:

minimize
q(s|m)

H [M | S]

subject to 〈C (s)〉 = k.

In many cases, such a constrained optimization problem can be
rewritten as an unconstrained optimization problem using the
method of Lagrange multipliers6. In that case, we can find the
solutions by finding minima of an objective function

H [M | S]+ β 〈C (s)〉 , (7)

where the scalar parameter β indicates how much cost should be
weighed against ambiguity when finding the optimal code.

We are not aware of a simple general form for solutions of
the objective (7). But a closely related objective does have general
solutions which turn out to recapitulate influential constraint-
based formalisms:

H [M | S]− αH [S | M]+ β 〈C (s)〉 . (8)

5This is the Kraft Inequality; when the Kraft Inequality holds for a given set of
signal lengths, then a self-delimiting code with those signal lengths exists (Cover
and Thomas, 2006, Theorem 5.2.1).
6We note that the optimization problem (6) cannot be solved in this way, due to
the constraint of self-delimitation.

Equation (8) adds a maximum entropy constraint to
Equation (7) (Jaynes, 2003): with weight α, it favors solutions
with relatively high entropy over signals s givenmessagesm. Note
that Equation (8) reduces to Equation (7) as α → 0. The solutions
of Equation (8) have the form of self-consistent equations7:

q (s | m) ∝ exp−
β

α
C (s) +

1

α
log q (m | s) (9)

q (m | s) ∝ q (s | m) p (m) .

We see that the solutions of Equation (8) have the form of
Maximum Entropy (MaxEnt) grammars. In MaxEnt grammars,
the probability of a form is held to be proportional to an
exponential function of its negative cost, which is a sum
of penalties for constraints violated. These penalties encode
markedness constraints on forms, which have been identified
with articulatory effort (Kirchner, 1998; Cohen Priva, 2012),
thus providing independent motivation for the cost terms in the
objective. MaxEnt grammars are used primarily in phonology
as a probabilistic alternative to Optimality Theory (OT); they
differ fromOT in that constraints have real-valued weights rather
than being ranked (Johnson, 2002; Goldwater and Johnson, 2003;
Jäger, 2007; Hayes and Wilson, 2008). Equation (9) differs from
a typical MaxEnt grammar in one major respect: an additional
term log q(m|s) enforces that the message m can be recovered
from the signal s—this term can, in fact, be interpreted as
generating faithfulness constraints (Cohen Priva, 2012, Ch. 3).
Thus we have a picture of MaxEnt grammars where markedness
constraints come from the term C (s) reflecting articulatory cost,
and faithfulness constraints come from the term log q (m | s)
reflecting a pressure against ambiguity.

Equation (9) is also identical in form to the “speaker function”
in the Rational Speech Acts (RSA) formalism for pragmatics
(Frank and Goodman, 2012; Goodman and Stuhlmüller, 2013;
Goodman and Frank, 2016). In that formalism, the speaker
function gives the probability that a pragmatically-informed
speaker will produce a signal s in order to convey a messagem. A
derivation of the RSA framework on these grounds can be found
in Zaslavsky et al. (2020).

We therefore see that key aspects of different widely-
used formalisms (MaxEnt grammars and Rational Speech Acts
pragmatics models) emerge as solutions to an information-
theoretic objective function. The objective function describes
functional pressures—reducing ambiguity and cost—and then
the solutions to that objective function are formal descriptions of

7For a derivation, see Zaslavsky et al. (2020), Proposition 1. More generally, any
probability distribution of the form

P (x) ∝ exp−C (x)

can be derived as a minimum of the objective

〈C (x)〉 −H[X] ,

i.e., maximizing entropy subject to a constraint on the average value of C (x).
This insight forms the basis of the Maximum Entropy approach to statistical
inference (Jaynes, 2003)—probability distributions are derived by maximizing
uncertainty (i.e., entropy) subject to constraints [i.e., C (x)]. For example, a
Gaussian distribution is the result of maximizing entropy subject to fixed values
of mean and variance.
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possible languages. Functional and formal descriptions are thus
linked by a variational principle8.

A number of objective functions for language have been
proposed in the literature, which can be seen as variants of
Equation (7) for some choice of cost function. For example,
in the Information Bottleneck framework, which originated
in information theory and physics (Tishby et al., 1999), as it
has been applied to language, the complexity of a language is
characterized in terms of the mutual information between words
and cognitive representations of meanings. The Information
Bottleneck has recently been applied successfully to explain
and describe the semantic structure of the lexicon in natural
language, in the semantic fields of color names (Zaslavsky et al.,
2018) and animal and artefact categories (Zaslavsky et al., 2019).
The same framework has been applied to explain variation in
morphological marking of tense (Mollica et al., 2021).

Another objective function in the literature proposes to add
a constraint favoring deterministic mappings from messages to
signals. Setting C (s) = − log q (s) in Equation (7), we get
an objective

H [M | S]+ βH [S] , (10)

which penalizes the entropy of signals, thus creating a
pressure for one-to-one mappings between message and signal
(Ferrer i Cancho and Díaz-Guilera, 2007) and, for carefully-
chosen values of the scalar trade-off parameter β , a power-
law distribution of word frequencies (Ferrer i Cancho and
Solé, 2003) (but see Piantadosi, 2014, for a critique). Recently,
Hahn et al. (2020b) have shown that choosing word orders to
minimize Equation (10), subject to an additional constraint that
word orders must be consistent with respect to grammatical
functions, can explain certain universals of word order across
languages. The latter work interprets the cost C (s) = − log q (s)
as the surprisal of the signal, in which case minimizing
Equation (10) amounts to maximizing informativity while
minimizing comprehension difficulty as measured by surprisal,
as discussed in Section 2.3.2.

What are the advantages to specifying a space of codes in terms
of an information-theoretic objective function?We posit three:

1. The objective function can provide a true explanation for the
forms of languages, as long as each term in the objective can
be independently and empirically motivated. Each term in
the objective corresponds to a notion of cost, which should
cash out as real difficulty experienced by a speaker, listener,
or learner. This difficulty can, in principle, be measured using
experimental methods. When constraints are independently
verified in this way, then we can really answer the question
of why language is the way it is—because it satisfies
independently-existing constraints inherent to human beings
and their environment.

8The idea that possible languages should correspond to solutions of an objective
function is still somewhat imprecise, because a number of different solution
concepts are possible. Languages might correspond to local minima of the
function, or to stationary points, or stable recurrent states, etc. The right solution
concept will depend on the ultimate form of the objective function.

2. It is natural to model both soft and hard constraints within
the framework (Bresnan et al., 2001). Constraints in the
objective are weighted by some scalar, corresponding to a
Lagrange multiplier, naturally yielding soft constraints whose
strength depends on that scalar. Hard constraints can be
modeled by taking limits where these scalars go to infinity9.
More generally, all the tools from optimization theory are
available for specifying and solving objective functions to
capture various properties of language.

3. Objective functions and information theory are the
mathematical language of several fields adjacent to linguistics,
including modern machine learning and natural language
processing (Goldberg, 2017). Many modern machine learning
algorithms amount to minimizing some information-
theoretic objective function over a space of probability
distributions parameterized using large neural networks.
Despite enormous advances in machine learning and natural
language processing, there has been little interplay between
formal linguistics and those fields, in large part because of
a mismatch of mathematical languages: linguistics typically
uses discrete symbolic structures with hard constraints on
representation, while machine learning uses information
theory and optimization over the space of all distributions.
In neuroscience also, neural codes are characterized using
information-theoretic objectives, most prominently in the
“Infomax” framework (Linsker, 1988; Kay and Phillips, 2011;
Chalk et al., 2018). If we can formulate a theory of language in
this way, then we can open a direct channel of communication
between these fields and linguistics.

Above, we argued that when we consider codes that maximize
communication to a cost function, we recover certain linguistic
formalisms and ideas. Shannon (1948) had the initial insight that
there is a connection between minimal average code length and
informational optimization problems. Our proposal is to extend
this insight, using appropriately constrained informational
optimization problems to characterize more interesting
properties of human languages, not merely code length.

Within this paradigm, the main task is to characterize
the cost function for human language, which represents the
complexity of using, learning, and mentally representing a code.
In some cases, the cost function may reflect factors such as
articulatory difficulty which are not information-theoretic. But
in other cases, it is possible to define the cost function itself
information-theoretically, in which case we reap the benefits
described in Section 2.3: we get a notion of complexity which
is maximally theory-neutral. In the next section, we describe
the application of such an information-theoretic cost function
to describe incremental memory usage in language production
and comprehension. We show that this cost function ends
up predicting important universal properties of how languages
structure information in time.

9See for example, Strouse and Schwab (2017) who study codes that are constrained
to be deterministic by adding an effectively infinitely-weighted constraint against
nondeterminism in the distribution P(s|m).
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4. CASE STUDY: LOCALITY

Here we discuss a particular set of information-theoretic
constraints on incremental language processing and how they
can explain some core properties of human language. The
properties of language we would like to explain are what
we dub locality properties: the fact that elements of an
utterance which jointly correspond to some shared aspect of
meaning typically occur close together in the linear order
of the utterance. Locality properties encompass the tendency
toward contiguity in morphemes, the particular order of
morphemes within words, and the tendency toward dependency
locality in syntax. We will show that these properties follow
from memory constraints in incremental language processing,
characterized information-theoretically.

4.1. Locality Properties of Natural
Language
In English utterances such as “I saw a cat” and “The cat ate
the food,” there is a repeating element 〈cat〉 which systematically
refers to an aspect of meaning which is shared among the two
utterances: they both have to do with feline animals. The fact that
natural language has this kind of isomorphism between meaning
and form is what is often called systematicity—the phonemes
/kæt/ jointly refer to a certain aspect of meaning in a way which
is consistent across contexts, forming a morpheme. Systematicity
is one of the deepest core properties of language, setting it apart
from minimal-length codes and from most codes studied in
information theory, as discussed in Section 2.1.

Here, we do not take up the question of what constraint on
a code would force it to have the systematicity property; a large
literature exists on this topic in the field of language evolution
(e.g., Smith et al., 2003; Kirby et al., 2015; Nölle et al., 2018;
Barrett et al., 2020), much of which suggests that systematicity
emerges from a balance of pressures for communication and
for compressibility of the grammar. Rather, we wish to draw
attention to an aspect of linguistic systematicity which often
goes unremarked-upon: the fact that, when parts of an utterance
jointly correspond to some aspect of meaning in this way, those
parts of an utterance are usually localized near each other in
time. That is, the phonemes comprising the morpheme /kæt/
are all adjacent to each other, rather than interleaved and
spread throughout the utterance, mingling with phonemes from
other morphemes.

This locality property is non-trivial when we consider the
space of all possible codes where signals have length >1, even
if these codes are systematic. It is perfectly easy to conceive of
codes which are systematic but which do not have the locality
property: for example, a code which has systematic morphemes
which are interleaved with each other, or broken into pieces
and scattered randomly throughout the utterance, or perhaps
even morphemes are simultaneously co-articulated in a way that
remains systematic. Such phenomena can be found in language
games such as Pig-Latin, for example.

Furthermore, these “spread out” codes are actually optimal
in an environment with certain kinds of noise. If a code must
operate in an environment where contiguous segments of an

utterance are unavailable due to noise—imagine an environment
where cars are going by, so that contiguous parts of utterances
will be missed by the listener—then it would actually be best for
all morphemes to be distributed as widely as possible in time,
so that the meanings of all the morphemes can be recovered in
the presence of the noise. Many error-correcting codes studied
in coding theory work exactly this way: the information that
was originally localized in one part of a signal is spread out
redundantly in order to ensure robustness to noise (Moser and
Chen, 2012).

Natural language is clearly not an error-correcting code
of this type. Although it does have some tendencies toward
spreading out information, for example using gender marking
to redundantly indicate about 1 bit of information about
nouns (Futrell, 2010; Dye et al., 2017), and using optional
complementizers and syllable length to promote a uniform
distribution of information in time (Aylett and Turk, 2004;
Levy and Jaeger, 2007; Jaeger, 2010), we will argue below that
the overwhelming tendency is toward localization. Therefore,
constraints based on robustness, which favor spreading
information out in time, exert only a relatively weak influence on
natural language10.

The most striking locality property in language is the strong
tendency toward contiguity in morphemes and morphology
more generally. Although non-contiguous morphology
such as circumfixes and Semitic-style non-concatenative
morphology do exist, these are relatively rare. Most morphology
is concatenative, up to phonological processes. Even non-
concatenative morphology does not create large amounts
of non-locality; for example, in Semitic consonantal-root
morphology, the morphemes indicating plurality, aspect, etc.
are spread throughout a word, but they do not extend beyond
the word. Beyond the level of individual morphemes, words are
usually concatenated together as contiguous units; Jackendoff
(2002, p. 263) describes the concatenation of words as the
“absolutely universal bare minimum” of human language.

Even within words, a kind of locality property is present in
the ordering of morphemes. Morphemes are generally ordered
according to a principle of relevance (Bybee, 1985): morphemes
are placed in order of “relevance” to the root, with morphemes
that are more relevant going closer to the root and those
less relevant going farther. Mirror-image orders are observed
for prefixes and suffixes. For example, in verb morphology,
markers of transitivity go close to a verbal root, while markers
of object agreement go farther. As we will see, the information-
theoretic account yields a mathematical operationalization of this
notion of “relevance” which can be calculated straightforwardly
from corpora.

10Spreading information out in time in this way is only one aspect of robustness,
corresponding to one particular kind of noise that might affect a signal. Language
users may also implement ‘information management’ strategies such as placing
high-information parts of an utterance at regular rhythmic intervals in time,
lowering the information rate for faster speech (Cohen Priva, 2017), or using
special focusing constructions to signal upcoming areas of high information
density (Futrell, 2012; Rohde et al., 2021). The distribution of information may
also be aligned with neural oscillations to facilitate language processing (Ghitza
and Greenberg, 2009; Giraud and Poeppel, 2012).
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Beyond the level of morphology, locality properties are also
present in syntax, in patterns of word order. Dependency

locality refers to the tendency for words in direct syntactic
relationships to be close to each other in linear order (Futrell
et al., 2020c), potentially explaining a number of typological
universals of word order, including Greenberg’s harmonic word
order correlations (Greenberg, 1963; Dryer, 1992). Dependency
locality has appeared in the functionalist typological literature as
the principles of Domain Minimization (Hawkins, 1994, 2004,
2014) and Head Proximity (Rijkhoff, 1986, 1990), and has been
operationalized in the corpus literature as dependency length
minimization (Ferrer i Cancho, 2004; Liu, 2008; Gildea and
Temperley, 2010; Futrell et al., 2015; Liu et al., 2017; Temperley
and Gildea, 2018). We argue here that it is an extension of the
same locality property that determines the order and contiguity
of morphemes.

4.2. Memory, Surprisal, and Information
Locality
We propose that the locality properties of natural language
can be explained by assuming that natural language operates
under constraints on incremental language processing. Applying
the information-theoretic model of processing difficulty from
Section 2.3.3 and considering also the complexity of encoding,
decoding, and storing information in memory, we get a picture
of processing difficulty in terms of a trade-off of surprisal
(predictability of words) and memory (the bits of information
that must be encoded, decoded, and stored in incremental
memory). It can be shown mathematically under this processing
model that when codes do not have locality, then they will
create unavoidable processing difficulty. This section summarizes
theory and empirical results that are presented in full detail by
Hahn et al. (2021).

The information-theoretic model of the incremental
comprehension difficulty associated with a word (or any other
unit) wt given a sequence of previous words w<t is given by
lossy-context surprisal (Futrell et al., 2020b):

− log P (wt | mt) ,

where mt is a potentially lossy memory representation of the
context w<t . Since our goal is to characterize languages as
a whole, we should consider the average processing difficulty
experienced by someone using the language. The average
of Equation (5) is the conditional entropy of words given
memory representations:

H [Wt | Mt] , (11)

where Wt and Mt are the distributions on words and
memory representations given by the language and by the
comprehender’s memory architecture. Equation (11) represents
the average processing difficulty per word under the lossy-context
surprisal model11.

11In the field of natural language processing, language models are derived by
finding distributions on Wt and Mt to minimize Equation (11), called “language

FIGURE 1 | Example memory–surprisal trade-off curves for two possible

languages, A and B. While storing 2.0 bits in memory in language A, it is

possible to achieve an average surprisal of around 3.5 bits; but in language B,

a lower average surprisal can be achieved at the same level of memory usage.

Language B has a steeper memory–surprisal trade-off than Language A, so it

requires less memory resources to achieve the same level of surprisal. Figure

from Hahn et al. (2021).

In addition to experiencing processing difficulty per word,
a comprehender must also use memory resources in order to
form the memory representations Mt that encode information
about context. We can quantify the resources required to
keep information in memory in terms of the entropy of the
memory states:

H [Mt] , (12)

which counts the bits of information stored in memory on
average. These two quantities (average surprisal in Equation 11
and memory entropy in Equation 12) trade off with each other.
If a listener stores more information in memory, then a lower
average surprisal per word can be achieved. If a listener stores less
information in memory, then the listener will experience higher
average surprisal per word. The particular form of the trade-off
will depend on the language, as summarized in Figure 1. This
trade-off curve is called thememory–surprisal trade-off.

In Hahn et al. (2021), it is shown that languages allow for
more favorable memory–surprisal trade-offs when they have a
statistical property called information locality: that is, when

modeling loss” in that field. The quality of language models is measured using
the quantity perplexity, which is simply 2H[Wt |Mt ]. The current state-of-the-art
models achieve perplexity of around 20 on Penn Treebank data, corresponding to a
conditional entropy of around 4.3 bits per word (Brown et al., 2020). These models
are capable of generating connected paragraphs of grammatical text, having been
trained solely byminimization of the objective function in Equation (11) as applied
to large amounts of text data.
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parts of an utterance which predict each other strongly are
close to each other in time. More formally, we can define a
quantity IT which is the average mutual information between
words separated by a distance of T words, conditional on the
intervening words:

IT = I [Wt :Wt−T | Wt−T+1, . . . ,Wt−1] . (13)

Thus I1 indicates the mutual information between adjacent
words, i.e., the amount of information in a word that can be
predicted based on the immediately preceding word. Similarly,
the quantity I2 indicates the mutual information between two
words with one word intervening between them, etc. The curve
of IT as a function of T is a statistical property of a language.
Information locality means that IT falls off relatively rapidly, thus
concentrating information in time12. Such languages allow words
to be predicted based on only small amounts of information
stored about past contexts, thus optimizing the memory–
surprisal trade-off. The complete argument for this connection,
as given in Hahn et al. (2021), is fully information-theoretic and
independent of assumptions about memory architecture.

Information locality implies that parts of an utterance that
have high mutual information with each other should be close
together in time. There is one remaining logical step required to
link the idea with the locality properties discussed above: it must
be shown that contiguity of morphemes, morpheme order, and
dependency locality correspond to placing utterance elements
with high mutual information close to each other. Below, we will
take these in turn, starting with dependency locality.

4.2.1. Dependency Locality
Dependency locality reduces to a special case of information
locality under the assumption that syntactic dependencies
identify word pairs with especially high mutual information.
This is a reasonable assumption a priori: syntactically dependent
words are those pairs of words whose covariance is constrained
by grammar, which means information-theoretically that
they predict one another. The connection between mutual
information and syntactic dependency is, in fact, implicit in
almost all work on unsupervised grammar induction and on
probabilistic models of syntax (Eisner, 1996; Klein and Manning,
2004; Clark and Fijalkow, 2020). Empirical evidence for this
connection, dubbed the HDMI Hypothesis, is given by Futrell
and Levy (2017) and Futrell et al. (2019).

Information locality goes further than dependency locality,
predicting that words will be under a stronger pressure to
be close when they have higher mutual information. That is,
dependency locality effects should be modulated by the actual
mutual information of the words in the relevant dependencies.
Futrell (2019) confirms that this is the case by finding a negative
correlation of pointwise mutual information and dependency
length across Universal Dependencies corpora of 54 languages.

12We can estimate values of IT for increasing T from corpora, and we find that IT
generally decreases as T increases: that is, words that are close to each other contain
more predictive information about each other, moreso in real natural language
than in random baseline grammars (Hahn et al., 2021). Relatedly, the results of
Takahira et al. (2016) imply that IT falls off as a power law, a manifestation of the
Relaxed Hilberg Conjecture (Dębowski, 2011, 2018).

Futrell et al. (2020a) demonstrate that information locality in this
sense provides a strong predictor of adjective order in English,
and Sharma et al. (2020) show that it can predict the order of
preverbal dependents in Hindi. The modulation of dependency
locality bymutual informationmight explain why, although there
exists a consistent overall tendency toward dependency length
minimization across languages, the effect seems to vary based on
the particular constructions involved (Gulordava et al., 2015; Liu,
2020).

4.2.2. Morpheme Order
The memory–surprisal trade-off and information locality apply
at all timescales, not only to words.We should therefore be able to
predict the order of morphemes within words by optimization of
the memory–surprisal trade-off. Indeed, Hahn et al. (2021) find
that morpheme order in Japanese and Sesotho can be predicted
with high accuracy by optimization of the memory–surprisal
trade-off. The ideas of “relevance” and “mental closeness”
which have been used in the functional linguistics literature
(Behaghel, 1932; Bybee, 1985; Givón, 1985) are cashed out as
mutual information.

4.2.3. Morpheme and Word Contiguity
If we want to explain the tendency toward contiguity of
morphemes using information locality, then we need to establish
that morphemes have more internal mutual information among
their parts than external mutual information with other
morphemes. In fact, it is exactly this statistical property of
morphemes that underlies segmentation algorithms that identify
morphemes and words in a speech stream. In both human
infants and computers, the speech stream (a sequence of
sounds) is segmented into morphemes by looking for low-
probability sound transitions (Saffran et al., 1996; Frank et al.,
2010). Within a morpheme, the next sound is typically highly
predictable from the previous sounds—meaning that there is
high mutual information among the sounds within a morpheme.
At a morpheme boundary, on the other hand, the transition
from one sound to the next is less predictable, indicating
lower mutual information. This connection between morpheme
segmentation, transitional probabilities, and mutual information
goes back at least to Harris (1955). Since morphemes have high
internal mutual information among their sounds, the principle
of information locality predicts that those sounds will be under a
pressure to be close to each other, and this is best accomplished if
they are contiguous.

At the level of words, we note that words have more internal
mutual information among their parts than phrases (Mansfield,
2021). Thus, information locality can explain the fact that words
are typically more contiguous than phrases.

4.3. Objective Function
The memory–surprisal trade-off synthesizes two notions of
complexity in language processing: surprisal and memory usage.
Surprisal is quantified as the conditional entropy H[Wt|Mt] of
words given memory states, while memory usage is quantified
using the entropy of memory states H[Mt]. These two quantities
can be combined into a single expression for processing
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complexity by taking a weighted sum:

αH [Wt | Mt]+ βH [Mt] , (14)

where α and β are non-negative scalars that indicate how much
a bit of memory entropy should be weighted relative to a bit
of surprisal in the calculation of complexity. The values of α

and β are a property of the human language processing system,
possibly varying from person to person, indicating how much
memory usage a person is willing to tolerate per bit of surprisal
reduced per word. When languages have information locality,
then they enable lower values of Equation (14) to be achieved
across all values of α and β . Therefore, languages that optimize
the memory–surprisal trade-off described above can be seen as
minimizing Equation (14).

Thememory–surprisal trade-off as described by Equation (14)
has been seen before in the literature on general complexity,
although its application to language is recent. It is fundamentally
a form of the Predictive Information Bottleneck (PIB) described
by Still (2014), which has been applied directly to natural
language based on text data by Hahn and Futrell (2019).

We have argued that when we consider codes which are
constrained to be simple in the sense of the PIB, then those
codes have properties such as information locality. It is therefore
possible that some of the most basic properties of human
language result from the fact that human language is constrained
to have low complexity in a fundamental statistical sense,
which also corresponds to empirically strong theories of online
processing difficulty from the field of psycholinguistics.

In Section 3, we considered minimal-length codes as codes
which maximize information transfer while minimizing average
code length. Our proposal is that human language is a code
which maximizes information transfer while minimizing not
code length, but rather the notion of complexity in Equation (14).
Thus, we have motivated an objective function for natural
language of the form

H [M | S]+ αH [Wt | Mt]+ βH [Mt] , (15)

with α and β positive scalar parameters determined by the
human language processing system. This derives from using the
memory–surprisal trade-off as the cost function in Equation (7).
We have shown that codes which minimize the objective (15)
have locality properties like natural language, via the notion of
information locality.

There are still many well-documented core design features
of language which have not yet been explained within this
framework. Most notably, the core property of systematicity
has not been shown to follow from Equation (14): what has
been argued is that if a code is systematic, and it follows
Equation (14), then that code will follow Behaghel’s Principle,
with contiguity of morphemes, relevance-based morpheme
ordering, and dependency locality. A key outstanding question
is whether systematicity itself also follows from this objective, or
whether other terms must be added, for example terms enforcing
intrinsic simplicity of the grammar.

In general, our hope is that it is possible to explain the
properties of human language by defining an objective of

the general form of Equation (15), in which each term is
motivated functionally based on either a priori or experimental
grounds, such that the solutions of the objective correspond
to descriptions of possible human languages. We believe we
have motivated at least the terms in Equation (15), but it is
almost certain that further terms would be required in a full
theory of language. The result would be a fully formal and also
functional theory of human language, capable of handling both
hard and soft constraints.

5. CONCLUSION

We conclude with some points about the motivation for the
study of complexity and the role of information theory in
such endeavors.

1. The study of complexity need not be an end unto itself. As we
have shown, once a notion of complexity is defined, then it is
possible to study the properties of codes which minimize that
notion of complexity. In Section 3, we showed that MaxEnt
grammars and the Rational Speech Acts model of pragmatics
can be derived by minimizing generic complexity functions.
In Section 4, we defined complexity in terms of a trade-
off of memory and surprisal, and found that codes which
minimize that notion of complexity have a property called
information locality. The functional description of complexity
(memory–surprisal trade-off) led to a formal description of a
key property of language (information locality).

2. Information theory can provide notions of complexity that
are objective and theory-neutral by quantifying intrinsic lower
bounds on resource requirements for transforming or storing
information. For example, surprisal measures an intrinsic
lower bound on resource usage by amechanismwhich extracts
information from the linguistic signal.

3. The theory-neutral nature of information theory comes
with two major costs: (1) by quantifying only a lower
bound on complexity, it misses possible components of
complexity that might exist on top of those bounds, and
(2) information-theoretic measures are only truly theory-
neutral when the relevant probability distributions are
known or can be estimated independently. For example,
in the case of predicting online comprehension difficulty,
the relevant probability distribution is the probability
distribution on words given contexts, which can be estimated
from corpora or Cloze studies (e.g., as in Wilcox et al.,
2020). On the other hand, if the relevant probability
distribution is not independently known, then the choice of
probability distribution is not theory-neutral. For example,
the complexity of a grammar, as selected from a probability
distribution on possible grammars, will depend on how
precisely that probability distribution on grammars is
defined—hardly a theory-neutral question.

With these points in mind, the great promise of information
theory is that it can open a theoretical nexus between linguistics
and other fields. Across fields with relevance to human language,
information theory has been used to study fundamental notions
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of complexity and efficiency, including cognitive science and
neuroscience (e.g., Friston, 2010; Fan, 2014; Sims, 2018; Zénon
et al., 2019), statistical learning (e.g., MacKay, 2003), and biology
(e.g., Adami, 2004, 2011; Frank, 2012). When a theory of
human language is developed in the mathematical language
of information theory, as in the examples above, then all the
results from these other fields will become legible to linguistics,

and the results of linguistics and language science can become
immediately useful in these other fields as well.
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Chalk, M., Marre, O., and Tkačik, G. (2018). Toward a unified theory of efficient,

predictive, and sparse coding. Proc. Natl. Acad. Sci. U.S.A. 115, 186–191.
doi: 10.1073/pnas.1711114115

Chater, N., and Vitányi, P. (2007). ’Ideal learning’ of natural language: positive
results about learning from positive evidence. J. Math. Psychol. 51, 135–163.
doi: 10.1016/j.jmp.2006.10.002

Clark, A., and Fijalkow, N. (2020). Consistent unsupervised estimators
for anchored PCFGs. Trans. Assoc. Comput. Linguist. 8, 409–422.
doi: 10.1162/tacl_a_00323

Cohen Priva, U. (2012). Sign and signal: deriving linguistic generalizations from

information utility (Ph.D. thesis). Stanford University, Stanford, CA, United
States.

Cohen Priva, U. (2017). Not so fast: fast speech correlates with
lower lexical and structural information. Cognition 160, 27–34.
doi: 10.1016/j.cognition.2016.12.002

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

Algorithms. Cambridge, MA: MIT Press.
Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory. Hoboken,

NJ: John Wiley & Sons.
Culbertson, J., and Adger, D. (2014). Language learners privilege structured

meaning over surface frequency. Proc. Natl. Acad. Sci. U.S.A. 111, 5842–5847.
doi: 10.1073/pnas.1320525111
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