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A sequential model of
two-choice intensity
identification

Robert C. G. Johansson * and Rolf Ulrich

Eberhard Karls Universität Tübingen, Tübingen, Germany

A model of perceptual decision-making in two-choice intensity identification
tasks is advanced. The model assumes that sensory pathways encode
the physical intensity of the stimulus in the firing rates of sensory
a�erents, characterized by exponentially distributed interarrival times. The
decision-making process entails a sequential comparison of each interarrival
time with memory traces from prior stimulus exposure. This yields a random
walk process reminiscent of the two-choice RT model by Stone (1960), but
with an additional stochastic element introduced by variable sampling times.
The model provides a reasonable account of data garnered in a brightness
identification task (Experiment 1), aligning with distributional RT statistics
and intensity e�ects on mean RTs. Several post hoc assumptions, such as
variability and bias in the starting point of the random walk, are required to
accurately predict error RT distributions, however, which introduces problematic
asymmetries in predicted error probabilities. Applying the model to a loudness
identification task (Experiment 2) necessitated the additional assumption of
variability in transduction rates to overcome challenges in accommodating
longer RTs for errors compared to correct responses in this task.
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Introduction

The ability to discern events of differing physical intensity is a foundational cognitive

ability. Therefore, researchers in experimental psychology have long sought to unravel

how the physical intensity of the stimulus translates into our internal realm of sensation

(Fechner, 1860; Catell, 1886; Stevens, 1957; Piéron, 1920; Treisman, 1964). This research

sought to investigate our capacity to identify stimuli based on their intensity level, as

operationalized in cognitive tasks relying on the method of absolute intensity judgments

(Wever and Zener, 1928;Warden and Rowley, 1929;Wolfle, 1937). In the absolute intensity

judgment paradigm, participants are presented with a stimulus such as a light or a tone.

This stimulus is varied along a unidimensional intensity continuum on a trial-by-trial

basis, taking on one of several predefined intensity levels. The task of the observer is, then,

to determine the identity of the presented stimulus with respect to its luminance level or

sound pressure level, for example. Because there is a direct, one-to-one mapping between

stimulus value and response category in this task, it is also commonly referred to as the

identification task.

Notably, the intricacy of behavioral measurement in identification paradigms escalates

rapidly with increasing stimulus set size. For a set of n intensity levels, each stimulus can

conceivably be confused with n− 1 other stimuli, or be correctly identified, so the number
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of response probabilities to be estimated in this task is generally

n2. The measurement of reaction times (RTs) in identification tasks

poses similar problems when stimulus set is large; in particular,

when distributional analyses of incorrect RTs are warranted but

confusion probabilities are small. Because rigorous treatment of RT

statistics was imperative for this research, empirical and theoretical

efforts were channeled toward the two-choice identification task

wherein the stimulus can take on only two possible intensity

levels. Nonetheless, a brief introduction to the broader topic

of absolute intensity judgments is provided below for context

and perspective.

Brief sketch of intensity identification

At best, people can correctly identify perhaps a handful of

intensity levels in the identification task, with rapid deterioration

of performance as stimulus set grows large (as reviewed in the

famous magic number 7 ± 2 paper of Miller, 1956). This finding

holds true for every single sensory modality and intensity domain

studied, including visual brightness (Garner, 1953; Landau et al.,

1974; Holland and Lockhead, 1968), auditory loudness (Landau

et al., 1974; Eriksen, 1953; Luce et al., 1976; Nosofsky, 1983a;

Luce and Nosofsky, 1984; Sagi et al., 2007), heaviness of weights

(Wever and Zener, 1928), amplitude of cutaneous electric current

(Hawkes and Warm, 1960), and the chemical concentration of

taste stimuli and odorants (Beebe-Center et al., 1955; Engen

and Pfaffmann, 1959). This limitation stands in stark contrast to

people’s remarkable ability to discriminate between a much larger

set of intensity levels—potentially numbering in the hundreds—

in the context of comparative judgment paradigms. Expanding

the dynamic range of the stimulus set does not alleviate this state

of affairs (Pollack, 1952; Alluisi, 1957; Luce et al., 1976; Luce

and Nosofsky, 1984), hinting that this limitation cannot be solely

attributed to poor intensity resolution in sensory pathways. Even

non-human species of animals such as rats and pigeons seem to

struggle with absolute judgments of intensity, usually exhibiting

very gradually inclining learning curves in this task, although

the same animal might provide comparative judgments in paired

discrimination paradigms with relative ease (Warden and Rowley,

1929; Wolfle, 1937).

In the early investigations of absolute judgments, response

probability emerged as the primary dependent variable of

theoretical interest (Garner, 1953; Miller, 1956; Alluisi, 1957;

Eriksen, 1953; Pollack, 1952) whereas RTs received limited

attention with only a few exceptions (e.g., Doherty, 1968; Bevan

and Avant, 1968; Pachella and Fisher, 1972). This historical neglect

of response latency reverberates through numerous attempts

to model the cognitive mechanisms underlying performance in

intensity identification. Notable examples include the trace-context

model (Durlach and Braida, 1969; Braida and Durlach, 1972), the

attention band model (Luce et al., 1976; Nosofsky, 1983b), and the

shifting categories model (Purks et al., 1980). These Thurstonian

models, firmly rooted in the theory of signal detection (Green and

Swets, 1966), are ultimately static frameworks and do not offer a

comprehensive account of the temporal dynamics of perceptual

decision-making in this type of task. Perhaps, therefore, studies

evaluating signal detection models of identification performance

have yielded mixed results, with no clear-cut evidence favoring one

theory over the other (Luce and Nosofsky, 1984; Purks et al., 1980;

Luce et al., 1982).

Recognizing this gap, modern approaches have underscored

the theoretical necessity of a chronometric analysis of identification

performance. Notable among these approaches are the

connectionist model by Lacouture and Marley (1991), the

exemplar-based theories advocated by Nosofsky (1997) and

Kent and Lamberts (2005), as well as certain hybrid frameworks

incorporating linear ballistic accumulation (Brown et al., 2008)

and leaky, competing accumulation (Lacouture and Marley, 2004).

A particularly lucid review of much of this work is to be found

in Stewart et al. (2005). For our present purposes, it suffices to

highlight a single, ubiquitous feature of these RT models, namely:

the generality of their scope. More concretely, these models aim

to account for absolute judgments in the broadest sense of the

term, without specific consideration for the sensory attribute

under examination. Implicit in this approach is the assumption

that judgments of visual line length, acoustic frequency, or

stimulus duration, for example, are mostly interchangeable. It,

therefore, seems worthwhile to seek a more psychophysically

principled account of absolute intensity judgments that explicitly

engages with the representational format of stimulus intensity

in sensory pathways. Such an approach may sacrifice some

universality, but holds promise to offer a more physiologically

plausible framework for understanding absolute intensity

judgments.

The remainder of this paper seeks to advance such a

framework. Our model bridges two important concepts from the

psychophysical information processing literature which have not

been linked previously: First, the Poisson approximation approach

to sensory encoding (Link, 1992; Luce and Green, 1972; Hildreth,

1979), and second, notions of statistically optimal decision-making

as embodied in the Sequential Likelihood Ratio Test (SLRT;

Wald, 1945, 1947). These two components form the bedrock of

a cognitive process model which seeks to predict both choice

RT and response probability in intensity identification tasks. We

introduce the proposed Poisson-SLRT model in the context of

two-choice paradigms where the stimulus set consists of n = 2

signal intensities. We then put it to empirical test in two separate

studies examining speeded absolute judgments of brightness level

(Experiment 1) and loudness level (Experiment 2).

Poisson transduction in sensory pathways

The Poisson approximation approach to sensory encoding has

been a pivotal element in psychophysical theories of intensity

processing (e.g., Luce and Green, 1972; Hildreth, 1979; Link, 1992;

Teich et al., 1978; Lachs and Teich, 1981; Treisman, 1966; Hecht

et al., 1942) as well as in the domain of time perception (Ulrich et al.,

2022; Creelman, 1962; Gibbon, 1992). It departs from the notion

that the output of peripheral sensory transducers comprises a

stream of neural pulses traveling toward a task-dependent decision

mechanism localized somewhere centrally in the brain. How this

pulse train unfolds in time is assumed to be fairly approximated by

a stationary Poisson process.
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The Poisson process, denoted N(t), is a counting process which

describes the number of events (neural pulses in this context)

occurring within the time interval t. A single impulse occurs within

a tiny time interval 1t with probability p ≈ 1t ·λ, where λ denotes

the rate of the process. The process initiates at stimulus onset and

higher intensity levels are associated with a faster rate of neural

transmission as embodied in a larger value of λ. When a signal is

presented over an interval of length t, the probability that N(t) = k

pulses arrive at the decision locus within this interval adheres to

Poisson’s probability law

P[N(t) = k] =
(λt)ke−λt

k!
, (1)

where k ∈ N0 is the number of neural events. The quantal nature of

these events can be seen to mirror the all-or-nothing characteristic

of neuronal transmission, whereby a pulse either occurs or does

not occur at any given moment. Importantly, the Poisson process

implies that the interarrival time (IAT) between two successive

pulses is exponentially distributed with mean interpulse time θ =

1/λ. In other words, a faster rate of neural transmission implies a

shorter interpulse time.

Sequential stimulus identification

Imagine an observer tasked with identifying the intensity of a

presented stimulus Si as one of two possible levels, here denoted

i (with i = w, s). For example, assume a “weak” signal Sw,

and a “strong” signal Ss, of equal duration. Upon presentation,

each signal is then associated with a renewal process which is

fully characterized by its respective Poisson rate parameter (λw
or λs). Again, the stronger signal is associated with a faster rate

of neural activation, hence λs > λw. Necessarily, the observer

is given the opportunity to become familiar with the two stimuli

through a series of practice trials. We reason that this practice

allows the observer to form two faithful memory representations,

denoted θw and θs, reflecting the mean average IAT generated upon

presentation of the corresponding signal intensity. These memory

traces are presumed to be sustained throughout the experiment on

the observers accord, enabling them to compare incoming sensory

information against prior experience.

As mentioned above, the Poisson process implies that the IATs

between two neural events at times Tj−1 and Tj are exponentially

distributed, such that Xj = Tj − Tj−1 has the expected value

E[X|Si] = 1/λi = θi. For each IAT recorded at the decision

center, we propose that the observer adjust their beliefs about

the state of the world in accordance with the statistically optimal

decision rule embodied by the SLRT (Wald, 1947). This implies

that for each neural event, the observer internally computes the

log-likelihood ratio

3j = log

[

L(θs|Xj)

L(θw|Xj)

]

(2)

= log

[

1
θs
exp(−Xj/θs)

1
θw

exp(−Xj/θw)

]

(3)

=
θs − θw

θsθw
· Xj − log

(

θs

θw

)

. (4)

FIGURE 1

Schematic illustration of the Poisson-SLRT model of two-choice
intensity identification. Please note that whenever IATs between
successive neural pulses are long, the process is attracted toward
the lower barrier B. Conversely, the process moves toward the
upper barrier A when IATs are short.

As additional pulses reach the decision center, the observer

continues to update their beliefs by accumulating further evidence

in favor of the two hypotheses. This updating process is described

as follows

6j = 6j−1 + 3j (5)

It can be seen that as sensory evidence begins to gather, 6 enters

a random walk over the line of real numbers. This step function

is discontinuous at each Tj, as schematically illustrated in Figure 1

with the starting point set to 60 = 0.

The updating process continues for as long as A > 6j > B,

where A and B denote the absorption barriers of the process. As

demonstrated byWald (1945), one can choose A and B on the basis

of the desired Type I (α) and Type II (β) error rates of the procedure

such that

A ≈ log
β

1− α
(6)

and

B ≈ log
1− β

α
. (7)

Consequently, the duration D to arrive at a decision regarding

whether Sw or Ss has been presented is given by

D = min(Tj: 6j > A or 6j < B), (8)

meaning that the updating process terminates as soon as6j exceeds

A (evidence for Ss) or falls below B (evidence for Sw). The barriers

A and B can be computed directly from the observed frequencies

of decision errors, because of the confusion probabilities α =

P(Rw|Ss) and β = P(Rs|Sw), where Rw and Rs denote the responses

in favor of Sw and Ss, respectively. The total time required for a

response to occur is RT = D + t0, where t0 represents a residual
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component time for non-decision processes such as transmission

and motor latencies in the nervous system. Because we do not wish

to read too much into t0, we simply treat this parameter as an

additive constant.

Novel features of the Poisson-SLRT model

So far, the present approach differs from previous SLRT-

models of choice RT (for a review, see Luce, 1986) with respect

to two important features: First, traditional models assume that

information is sampled at discrete time points, 1t time units apart,

that is, Tj = j · 1t, (j = 1, 2, . . .). In the present framework,

information is instead sampled approximately θw time units apart

when the intensity of the stimulus is weak, and θs time units apart

when the intensity is strong. This yields the prediction that more

intense targets should on the average be identified faster due to

constraints on evidence accumulation imposed by neural waiting

times in sensory pathways.

Second, traditional models usually assume that information at

each discrete time point is sampled from a stationary distribution,

such as the Gaussian (e.g., Ashby, 1983; Stone, 1960; Laming,

1968; Thomas, 1975). According to our model, sampling points

instead depend on the IATs between successive neural pulses.

These waiting times are governed by the Poisson process and

are, therefore, random. The introduction of random sampling

times adds an additional element of complexity when seeking an

analytical solution for the distribution of first-absorption times for

the decision process.1

A key strength of the sequential analysis framework in the

context of two-choice intensity identification tasks is that if the

Poisson approximation of sensory encoding is taken at face value,

then the SLRT can be seen to embody the optimal decision rule

in this type of task. This is because no other test procedure will

yield a smaller expected sample number for neural pulses without

also increasing the desired confusion probabilities α and β (Wald

and Wolfowitz, 1948). In this regard, the Poisson-SLRT model

aligns with the efficient coding hypothesis of Barlow (1961) which

posits that sensory systems have evolved to eliminate redundancy in

nervous transmission. A significant limitation of choice RT models

based on the SLRT, however, is their prediction that correct and

incorrect RTs should have identical distributions when conditioned

on response class (as discussed by Link and Heath, 1975). Clearly,

this prediction is unrealistic for most choice RT tasks, where

error RTs tend to be either faster or slower than correct RTs

(Maanen et al., 2018). As a result, without further refinement,

the Poisson-SLRT model imposes overly rigid constraints on

the RT distributions. This shortcoming will be addressed and

remedied next.

1 The model also di�ers from standard random walk models of choice RT

based on the Poisson process (e.g., Audley and Pike, 1965; Blurton et al.,

2020) where the accumulated di�erence D between two Poisson processes

X(t) and Y(t) is monitored over time so that D(t) = X(t) − Y(t) is a simple

(integer-valued) random walk between two barriers. In these models, the

input to the decision process is driven by two simultaneously active channels

at each time-point.

Response bias and starting variability

In the context of discrete-time SLRT models, it has been shown

that a reasonable account of fast errors necessitates some degree

of trial-to-trial variability in the starting point 60 of the evidence

accrual process (Laming, 1968, 1979; Swensson and Green, 1977;

Ashby, 1983; Thomas, 1975).2 Starting point variability also plays

a crucial role in the context of evidence accumulation models

more broadly, such as accumulator and drift-diffusion models

(e.g., Ratcliff, 2013; Ulrich et al., 2015; Heath, 1981; Brown and

Heathcote, 2005). In these models, variability in the starting

point can produce quick, erroneous responses, even when overall

decision-making ability remains stable.

The present model conceives of the starting point variability as

a Gaussian random variable, so that

60 ∼ N (µs, σs). (9)

Here, the parameters µs and σs can be read as shorthand for “bias”

and “variability,” respectively. The variability parameter, σs, reflects

trial-to-trial fluctuations in the observer’s cognitive state which

can impact decision-making consistency. This variability is due

to unsystematic influences, such as attention, arousal, or fatigue,

that randomly shifts the internal baseline from which the observer

starts accumulating information, even if the actual task remains

unchanged. It helps explain short error RTs by positing that the

observer begins some trials with a pre-activation state that is far

removed from baseline.

The bias parameter, µs, captures more systematic tendencies

in the observer’s response strategy, which tilt their choices toward

one response option across an entire experiment or set of trials.

This idea is somewhat reminiscent of the approach outlined by

Ashby (1983) who explored a discrete-time SLRT-model where a

constant k is added to each increment 3j. He demonstrated that

this is equivalent to a model in which the absorption barriers

drift toward the positive or negative domain, depending on the

sign of k. In the present model, µs simply captures the idea that

the pre-activation state may have a non-zero expected value, in

addition to trial-to-trial variability. This implies that, on average,

the observer starts each trial with a net bias toward one of the

two stimuli. From a functional perspective, µs allows for a better

account of the relative latencies between the two types of error RT

distributions which would otherwise be too constrained to capture

realistic datasets. The merits and drawbacks of these two auxiliary

model parameters, response bias (µs) and starting point variability

(σs), will be explored in the discussion following Experiment 1; in

particular, in terms of their impact on predicted error rates.

Experiment 1: Brightness identification

Experiment 1 evaluated how well the Poisson-SLRT model

captures performance in a speeded, two-choice brightness

identification task. The primary objective was to gauge its

predictions against standard behavioral benchmarks, including

2 But see Rouder (1996) for a demonstration that starting point variability

does not always yield fast errors in the discrete-time SLRT-model.
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mean RTs, error rates, and the full distributions of RTs for both

correct and incorrect responses. The impact of auxiliary parameters

on model fit was assessed by comparing a saturated model (Mθ )

to models incorporating only decision bias (Mµ) or starting

point variability (Mσ ), as well as a reduced model that included

neither (M−θ ). For reasons that will become clear once we turn

to Experiment 2, a hypersaturated model (Mθ+) which allowed

for trial-by-trial variability in transduction rate was also tested. All

parameters except for the non-decision time t0 were allowed to

vary freely between stimulus pairings in these five models.

Additionally, we sought to delve deeper into two specific areas

of interest: First, we aimed to investigate whether bright visual

stimuli are identified faster than dim visual stimuli, aiming to shed

light on the role of stimulus intensity on identification latency. The

final aim of this experiment was to examine the role of task difficulty

in brightness identification. To this end, three levels of stimulus

intensity were employed: a dim stimulus, a intermediate stimulus,

and a bright stimulus. These stimuli were paired in all possible

pairwise combinations, resulting in three experimental conditions:

dim vs. intermediate, dim vs. bright, and intermediate vs. bright.

The potential effects of stimulus pairing on transduction rates

were evaluated by fitting a null model (M0) which was identical

to M−θ except rate parameters did not vary between stimulus

pairing conditions.

Method

Participants
Thirty participants (20 females, 7 left-handed) with a mean

age of 24.2 years (age range: 19–68 years) were recruited from the

student pool at the University of Tübingen. One participant failed

to complete the entire experiment, yielding a final sample size of

N = 29. They were offered either a 10e monetary reward or

mandatory course credit as reimbursement for their participation

in a single 45-minute session. All participants provided informed

consent and reported normal or corrected-to-normal visual acuity.

The experiment was approved by the ethics committee for

psychological research at the University of Tübingen and was

conducted in accordance with the Declaration of Helsinki. Target

sample size was determined based on available resources for testing.

Apparatus and stimuli
The experiment was controlled by an Esprimo P956/E90+

microcomputer (Fujitsu Limited, Tokyo) running a PsychoPy

script (Peirce et al., 2019) on a 64-bit Windows 7 OS. Visual

stimuli were presented on a 24.1-inch FlexScan EV2495 LCD

monitor (EIZO Corporation, Hakusan) placed approximately 60

cm in front of the viewer. The monitor had a pixel resolution

of 1, 900 × 1, 200 and a refresh rate of 60 Hz. Visual stimuli

were square patches of light of dim (3 cd/m2), intermediate (30

cd/m2) or bright (300 cd/m2) luminous intensity. The stimuli

measured 3 cm width × 3 cm height and were presented in

the center of the monitor for a duration of 300 ms. Background

illumination was held constant throughout the entire procedure

at 0.3 cd/m2. The luminous intensity of stimulus materials

was measured with a P-9201-TF photometer (Gigahertz Optik,

Türkenfeld). Response time was measured from stimulus onset to

the registering of the participant’s response via a custom set of

response keys interfaced via the computer’s parallel port. Requested

timing specifications were verified through external chronometry

using a BlackBox Toolkit (Version 2; Blackbox Toolkit Ltd.,

York; see Plant, 2016) to ensure that stimulus presentation

and response recording was both accurate and consistent. The

experiment was conducted in a sound- and light-attenuated

booth.

Design and procedure
The experiment employed a 2 × 3 factorial design, combining

three intensity levels (dim, intermediate, and bright) into three

pairwise combinations: (A) dim vs. intermediate, (B) dim vs. bright,

and (C) intermediate vs. bright. Each signal pairing constituted a

stimulus set administered in separate blocks of trials. Participants

completed the entire sequence of blocks twice in a pseudo-random

order (e.g., BCA-CAB). Consequently, six blocks of experimental

trials were completed within a single session. Within each block,

there were 100 trials (50 trials per intensity level). Prior to every

experimental block, participants were administered practice blocks

comprising 20 trials (10 trials per intensity level) to familiarize

themselves with the current stimulus set.

At the beginning of the experimental session, participants

were presented with written instructions displayed on the

computer monitor. The instructions explained the task’s objective

(“determine whether the light source is dim or bright”) and

emphasized the importance of responding both quickly and

accurately. The instructions also displayed the visual stimulus

pair relevant to the current set of trials and were repeated

before the start of each practice block and experimental block.

The stimulus-response mapping for left and right response keys

was counterbalanced across participants in ABAB-fashion. Each

experimental trial began with the display of a white fixation cross

in the center of the screen, measuring 4 mm in diameter and

remaining visible for 1 second. Following the fixation period,

there was a constant foreperiod of 800 milliseconds (ms) during

which the screen remained blank. Subsequently, a stimulus was

presented in the center of the screen for 300 ms, followed by a black

screen until the participant provided a response. In the event of

an incorrect response, the German word for error (“Fehler”) was

displayed in a large red font for 500 ms. Participants were given the

option to take rests between blocks.

Data analysis
The initial step of data analysis involved screening and

removing individual outlier RTs shorter than 200 ms or longer

than 2,000 ms, which were removed from further analysis. Next,

error rates were entered into a 3 × 2 repeated-measures ANOVA

to examine the effects of stimulus pairing (3 vs. 30, 30 vs. 300, and

3 vs. 300 cd/m2) and stimulus intensity (dim or bright stimulus in

the pertinent stimulus set) on accuracy of performance. Similarly,

mean RTs for correct responses were also analyzed using a 3 × 2

repeated-measures ANOVA with the factors stimulus pairing and

stimulus intensity as categorical predictors.
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FIGURE 2

Results Experiment 1 depicted in terms of the fit between empirical data (black circles) and the saturated Poisson-SLRT model (Mθ ; colored lines).
The orange row (a–d) depicts data from the 3 vs. 30 cd/m2 condition. The blue (e–h) and violet rows (i–l) depict data from the 3 vs. 300 and the 30
vs. 300 cd/m2 conditions, respectively. The y-axes are RTs in units of ms, and the x-axes are the quantile values of the RT CDFs. Error bars again
denote the 95% CIs.

To fit the Poisson-SLRT model variants to the RT data,

empirical CDFs were computed for each participant across five

quantile values (0.10, 0.30, . . . , 0.90) for each of 3 × 2 × 2 RT

distributions (3 stimulus pairings × 2 stimuli × 2 response

categories) using the non-parametric quantile estimator proposed

by Harrell and Davis (1982). Subsequently, group-level RT

distributions were constructed by averaging quantiles across

participants (Ratcliff, 1979). The construction of individual-level

CDFs for incorrect RTs was in some cases prohibited because

people made very few errors. The number of participants who

went into estimating each CDF is denoted in Figure 2. Absorption

barriers were calculated for each stimulus pairing following

Equations 6, 7.

Next, theoretical quantiles based on 20,000 RTs per stimulus

pairing were simulated and fitted iteratively to group-level quantiles

using the downhill simplex method (Nelder and Mead, 1965). The

fitting routine sought to minimize the χ2 discrepancy between

observed (empirical) and expected (simulated) quantiles for each

of the 12 RT distributions and was repeated for each model listed in

Table 1. The best value of the non-decision time to was determined

for each model separately through a grid search in steps of 10 ms

and was always held constant across stimulus pairings. Relative

model fit was evaluated using the Bayesian Information Criterion

(BIC; Schwarz, 1978). Experimental data and analysis code are

available via the Open Science Framework (OSF).3

Results

Few responses were too fast (0.25 %) or too slow (0.37 %). The

analysis of error rates revealed a main effect of stimulus pairing

[F(2, 56) = 10.62, p < 0.001, η2G = 0.051] and a pairing × intensity

interaction [F(2, 56) = 6.33, p = 0.003, η2G = 0.014] but no

main effect of intensity [F(1, 28) = 2.04, p > 0.05]. With respect

3 https://osf.io/8df64/
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TABLE 1 Comparison of model fits for Experiment 1, tabulated in terms of the number of free parameters (k), the chi-square goodness-of-fit statistic

(χ2), and the Bayesian Information Criterion (BIC).

Model Adaptation Decision bias Start variability Rate variability k χ2 BIC

M0 3 260 456

M−θ X 7 186 456

Mµ X X 10 84 423

Mσ X X 10 108 439

Mθ X X X 13 37 386

Mθ+ X X X X 16 41 406

Results are shown for the null model (M0), reduced model (M−θ ), bias model (Mµ), variability model (Mσ ), saturated model (Mθ ), and hypersaturated model (Mθ+).

FIGURE 3

Results from Experiment 1 depicted in terms of mean RTs (a) and error rates (b) for stimulus pairings 3 vs. 30 (orange squares), 3 vs. 300 (blue circles),
and 30 vs. 300 (violet triangles) cd/m2, respectively. The dashed lines convey the predictions of the saturated Poisson-SLRT model (Mθ ). Error bars
signify the within-subjects 95% confidence intervals (95% CIs; Loftus and Masson, 1994) with the correction suggested by Morey (2008).

to RTs, the analysis supported a main effect of stimulus pairing

[F(2, 56) = 45.38, p < 0.001, η2G = 0.017], a main effect of intensity

[F(1, 28) = 37.48, p < 0.001, η2G = 0.010], and a pairing× intensity

interaction [F(2, 56) = 5.42, p = 0.007, η2G = 0.0006]. Post hoc

contrasts indicated that mean RTs for bright targets (440 ms) were

consistently shorter than for dim targets [464 ms; t(28) = −6.12,

p < 0.001, dz = 1.14], yet bright and dim targets evoked the

same proportion of errors [t(28) = 1.44, p > 0.05]. Error rates

and mean RTs are depicted together with their within-subjects 95%

confidence intervals in Figure 3.

Poisson-SLRT Model: The saturated model (Mθ ) provided the

most parsimonious account of RT CDFs (compare BIC values

reported in Table 1). Rate, bias, and variability parameters for the

3 vs. 30 cd/m2 pairing condition were λ̂3 = 47 Hz, λ̂30 =

106 Hz, µ̂s = −1.1, and σ̂s = 0.75. For the 3 vs. 300 cd/m2

pairing, we obtained λ̂3 = 45 Hz, λ̂300 = 113 Hz, µ̂s = −0.79,

and σ̂s = 1.29. Finally, fitting the 30 vs. 300 cd/m2 pairing

data yielded λ̂30 = 47 Hz, λ̂300 = 98 Hz, µ̂s = −0.63, and

σ̂s = 0.82. Non-decision time was t̂0 = 340 ms. These 13 free

parameters provided an aggregated fit of χ2 = 37.0 to the entire

set of 60 RT quantiles. Figure 2 illustrates the goodness-of-fit of

the saturated model in terms of observed and estimated CDFs for

all twelve RT distributions. Visual inspection reveals that much of

the discrepancy between theory and data can be attributed to the

extreme quantiles of the error RT distributions. The dashed lines

in Figure 3 depict predicted mean RTs and error rates. It bears

remarking that predicted error rates deviated systematically from

their observed values.

Discussion

Experiment 1 evaluated the Poisson-SLRT model in a two-

choice intensity identification task with visual stimuli. First, as

predicted, mean RTs were shorter for bright targets compared to

dim targets. Notably, this shortening of RTs for bright stimuli

could not be explained by a speed-accuracy trade-off, as error

rates remained unaffected by visual luminance. The Poisson-

SLRT model accounts for a selective effect of stimulus intensity

on RTs by proposing that evidence accumulation proceeds more

slowly for dim stimuli compared to bright ones due to slower

neural transmission rates associated with less intense visual

input. This prediction was corroborated by the data, suggesting

that shorter RTs observed for bright stimuli have an early

sensory origin, whereby shorter IATs for bright stimuli confer a

processing advantage already at the earliest stage of the visual

processing stream. This finding aligns with prior research by

Pins and Bonnet (1996) demonstrating that responses to bright

visual stimuli are faster than those to dim stimuli in speeded

choice tasks.
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Interestingly, achieving an acceptable goodness of fit for all

three stimulus pairings necessitated six free rate parameters,

despite there being only three visual stimuli. This effectively

allowed the neural transmission rates for each target to vary

based on the luminance level of its paired stimulus. The need

to relax the assumption that transmission rates remain invariant

across different pairings may indicate the influence of adaptation

processes in the visual pathway, whereby sensory messages are

either strengthened or attenuated depending on stimulus pairing.

For example, a 30-candela stimulus might be associated with

relatively short IATs when paired with a 3 candela stimulus,

but with rather long IATs when paired with a 300 candela

stimulus. Evidence from both behavioral psychophysics and

sensory physiology supports the notion that brightness coding in

the visual pathway exhibits these types of contextual dependencies

(Stevens and Stevens, 1963; Yeh et al., 1996).

Although the model incorporated pairing-specific transmission

rates, the fit between observed and predicted RT CDFs was not

perfect. One discrepancy was that the model predicted heavy-

tailed RT distributions for all response categories, whereas observed

CDFs for incorrect responses sometimes exhibited mild skew. This

may be due to the limited data available for estimating the extreme

quantiles of incorrect RT distributions, as noisy tail estimates

could have influenced the fitting procedure. However, this is not

necessarily a flaw. Instead, it indicates that the model is particularly

well-suited for accommodating distributions with heavy tails, as

typically observed for incorrect RT distributions when more data

are available (Rieger and Miller, 2020; Ratcliff, 1979).

A more serious concern arises from the predicted error rates,

which systematically deviated from observed error rates. This is

clearly shown in the right panel of Figure 3. While the overall

predicted error rates for each stimulus pairing were generally close

to empirical values, discrepancies emerge when comparing the

error rates for individual stimuli. For example, in the 3 vs. 30

cd/m2 condition, the average predicted error rate was 9.0%, in

close agreement with the observed 8.0%. However, for the dim

stimulus, the model predicted a 2.7% error rate, although the

observed rate was 8.0%. For the bright stimulus, the observed

error rate was again 8.0%, but the predicted rate was notably

higher at 15.5%. A similar appeal can be made to the other

two conditions. This discrepancy is a direct consequence of the

bias parameter, µs, which was incorporated to better capture

CDFs for incorrect RTs. The negative sign of the µs estimates

across all three experimental conditions indicates a consistent

bias toward responding ‘dim’, which introduced an asymmetry

in the decision-making process and skewed predicted error rates

for the two visual stimuli. Two potential solutions to this ordeal

seem worthwhile exploring: First, incorporating error rates into

the fitting procedure’s cost function, alongside RT quantiles, could

help strike a better balance between fitting RT distributions and

error rates. However, how to manage the trade-off between the two

does not appear straightforward. Second, allowing the absorption

barriers,A and B, to be free parameters might improve the Poisson-

SLRT model’s ability to account for both incorrect RT distributions

and error proportions at the expense of greatly increased

model flexibility.

In interim summary, Experiment 1 assessed whether the

Poisson-SLRTmodel captures human performance in a two-choice

brightness identification task. Strong alignment between empirical

and theoretical RT CDFs lends some merit to the advanced

framework, but incorrect RTs sometimes had a notable impact on

fit. Noisy estimates of extreme RT quantiles reflecting distributional

tail ends may have contributed to this mismatch. Predicted error

rates systematically diverged from observed values due to the

model’s incorporation of decision bias. This issue could potentially

be addressed by factoring error rates into the cost function or by

allowing absorption barriers to be free parameters. Empirically,

the experiment demonstrated that RTs are shorter for bright

stimuli compared to dim stimuli in intensity identification tasks,

as predicted by the model.

Experiment 2: Loudness identification

Experiment 1 aimed to shed new light on the time course

of human information processing in an intensity identification

task with visual stimuli. However, a fundamental assumption

of the proposed model is that the mechanisms underlying

intensity identification performance should be modality-general.

This follows from the Poisson approximation of intensity coding,

which states that all sensory modalities encode the physical

intensity of the stimulus monotonically through the firing rates

of dedicated single units. It therefore seemed worthwhile to

examine whether the mechanisms underlying perceptual decision-

making in intensity identification tasks remain invariant for seeing

and hearing, since visual and auditory modalities fundamentally

convey similar information about stimulus intensity to the

brain. Experiment 2 addressed this question by gauging human

performance in a two-choice loudness identification task. Notably,

neural spike trains in auditory fibers differ from their visual

counterparts in that they are phase-locked to the acoustic frequency

of the stimulus for sound frequencies below 5 kHz (Pickles,

1988), resulting in an approximately geometric distribution of

IATs (Luce, 1993). However, since the geometric distribution

is simply the discrete analog of the exponential distribution,

it seemed justified to ask whether the proposed model could

also effectively account for behavioral loudness identification

data.

To foreshadow, a key distinction between Experiments 1 and 2

lay in the nature of the error RTs. In Experiment 1, the brightness

identification task produced shorter error RTs than correct

responses, whereas in Experiment 2, the loudness identification

task yielded slower error RTs. This difference prompted us to

reconsider our data-fitting approach for the loudness identification

task. Within the broader context of stochastic choice RT models,

it is well established that fast errors often necessitate incorporating

starting point variability, while slow errors are better captured by

introducing variability in the stimulus representation. In the drift-

diffusion model, for example, this is typically achieved by allowing

the drift rate to fluctuate across trials (Ratcliff, 2013). Adapting this

idea within the Poisson-SLRT framework, we drew on an analogous

concept from Poisson models of temporal discrimination, which

posit that the transduction rate varies across trials (e.g., Ulrich

et al., 2022). To formalize this notion, we fitted a hypersaturated

model (Mθ+) where trial-wise variability in transduction rate was
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TABLE 2 Comparison of model fits for Experiment 2.

Model Adaptation Decision bias Start variability Rate variability k χ2 BIC

M0 3 443 456

M−θ X 7 417 462

Mµ X X 10 141 454

Mσ X X 10 440 463

Mθ X X X 13 151 457

Mθ+ X X X X 16 86 410

parameterized as a Gaussian random variable with a mean of 1 and

a standard deviation of σr .
4

Methods

Participants
Again, thirty participants (5 males, 3 left-handed) with a mean

age of 21.9 years (age range: 19–33 years) were recruited from

the same student pool as Experiment 1. They all reported normal

hearing and were reimbursed for their participation in a single

45-min session with either a 10e monetary reward or mandatory

course credit. Each participant completed the entire session.

Apparatus and stimuli
Auditory stimuli were 220 Hz pure sinusoids presented at three

distinct acoustic sound pressure levels: 50, 60, and 70 dB(A). The

tones were delivered binaurally through loudspeakers (PowerMax

80/2, TEAC, Tokyo) which flanked the computer monitor at

approximately 30 cm distance from the center of the screen.

Auditory stimulus amplitudes were calibrated using a CEL-275

sonometer (Casella CEL Instruments Ltd., Hitchin).

Procedure
The only procedural difference between Experiments 1

and 2 was the change of sensory modality from vision to

audition. Other than this modification, the experiments were

conceptually identical.

Data analysis
Again, individual outlier responses were addressed by

excluding RTs ≤ 200 ms as anticipations and RTs ≥ 2, 000 ms

as misses. Error rates and mean correct RTs were entered into

separate 2 × 3 repeated-measures ANOVAs to assess main and

interaction effects of stimulus intensity and stimulus pairing.

Finally, each model listed in Table 2 was fitted to empirical RT

CDFs in a grid search over t0 using a χ2 loss function within the

simplex routine. Relative fit was again compared using the BIC.

In all respects, the analysis mirrored that of Experiment 1, except

we simulated twice as many RTs per condition (40,000) to assure

4 For completeness, this hypersaturatedmodel was also fit to the data from

Experiment 1, but it yielded no meaningful improvements (compare Mθ and

Mθ+ in Table 1). Estimates of σr were so small that transduction rates were

essentially always positive.

that difficulties encountered fitting error RTs were not artifacts

of Monte Carlo noise. Data and analysis code are available as

supplementary material online.5

Results

Very few responses were too fast (0.08%) or too slow (0.1%).

The ANOVA for error rates revealed a main effect of stimulus

pairing [F(2, 58) = 26.45, p < 0.001, η2G = 0.096] but no main effect

of intensity and no pairing × intensity interaction (all p > 0.05).

With regard to mean RTs, there was also a main effect of stimulus

pairing [F(2, 58) = 25.24, p < 0.001, η2G = 0.042] but again no main

effect of intensity (p < 0.05). There was, however, an interaction

between stimulus pairing and stimulus intensity on mean RTs

[F(2, 58) = 8.42, p < 0.001, η2G = 0.002]. Post-hoc contrasts using

paired t-tests did not support a main effect of intensity within any

stimulus pairing conditions, however (all p’s > 0.05). Error rates

and mean RTs are depicted with their associated within-subjects

confidence intervals in Figure 4.

Poisson-SLRT Model: The hypersaturated modelMθ+ provided

the best account of RT CDFs for all three stimulus pairing

conditions (compare BIC values listed in Table 2). Estimated rate,

bias, and variability parameters for the 50 vs. 70 dB(A) pairing data

were λ̂50 = 40 Hz, λ̂60 = 80 Hz, µ̂s = −1.03, σ̂s = 0.12, and σ̂r =

0.07. For the 50 vs. 70 dB(A) pairing, their corresponding values

were λ̂50 = 43 Hz, λ̂70 = 104 Hz, µ̂s = −1.14, σ̂s = 0.80, and

σ̂r = 0.19. Finally, fitting the 60 vs. 70 dB(A) pairing data yielded

λ̂50 = 40 Hz, λ̂70 = 85 Hz, µ̂s = −0.75, σ̂s = 0.14, and σ̂r =

0.10. Non-decision time was t̂0 = 390. These 16 free parameters

provided an aggregated fit of χ2 = 86.4 to the entire set of 60 RT

quantiles. The goodness-of-fit for the hypersaturated Poisson-SLRT

model is illustrated in Figure 5 in terms of observed and predicted

CDFs for all twelve RT distributions. Visual inspection reveals that,

again, much discrepancy between model and data can be attributed

to the extreme quantiles of the error RT distributions which carried

particular leverage. Dashed lines in Figure 3 depict predicted mean

RTs and error rates.

Discussion

Again, it was necessary to allow the rate parameters of the

Poisson-SLRT model to vary with the intensity of the paired

stimulus in the loudness identification task. This suggests that the

5 https://osf.io/8df64/
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FIGURE 4

Results from Experiment 2 depicted in terms of mean RTs (a) and error rates (b) for stimulus pairings 50 vs. 60 (connected orange squares), 50 vs. 70
(connected blue circles), and 60 vs. 70 (connected violet triangles) dB(A) SPL, respectively. Translucent dashed lines conveys the predictions of the
hypersaturated model Mθ+. Error bars again signify the 95% CIs.

FIGURE 5

Results Experiment 2 depicted in terms of the fit between empirical data (black circles) and the Poisson-SLRT model (colored lines). The orange row
(a–d) depicts data from the 50 vs. 60 dB(A) condition. The blue (e–h) and violet rows (i–l) depict data from the 50 vs. 70 and the 60 vs. 70 dB(A)
conditions, respectively. The y-axes are RTs in units of ms, and the x-axes are the quantile values of the RT CDFs. Black error bars again denote the
95% CIs.

Frontiers inCognition 10 frontiersin.org

https://doi.org/10.3389/fcogn.2025.1561842
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Johansson and Ulrich 10.3389/fcogn.2025.1561842

adaptation effects on transmission rates observed in Experiment

1 for visual stimuli were similarly present in Experiment 2 for

auditory stimuli. More specifically, our model-driven analysis

found that the transmission rate for a given stimulus slowed

when paired with a relatively loud sound, while it sped up when

paired with a softer sound. This pattern indicates that sensory

representations of loudness in the auditory pathway are malleable

and can be influenced by induced contrast effects.

A difference between Experiments 1 and 2 was the presence of

intensity effects on mean RTs in the brightness identification task,

which did not emerge in the loudness identification task. It remains

unclear why this directional main effect of intensity was absent in

the loudness identification task.6 One possible explanation lies in

the significant interaction between stimulus intensity and stimulus

pairing on mean RTs. As shown in Figure 4, this interaction

suggests a qualitative crossover effect: RTs were shorter for loud

targets in the 50 vs. 70 and 60 vs. 70 dB(A) conditions but longer

in the 50 vs. 60 dB(A) condition. Yet, post-hoc contrasts of mean

RTs within did not statistically confirm this pattern, leaving further

interpretation of the interaction inconclusive. The hypersaturated

Poisson-SLRT model accommodated the crossover effect on mean

RTs, likely through an interaction between estimated decision bias

and rate parameters.

Another notable difference was the considerably longer RTs

observed in the loudness identification task compared to the

brightness identification task. This discrepancy could plausibly

be attributed to differences in task difficulty between the two

experiments. However, the fact that the estimated residual time t0
was 50 milliseconds longer in the auditory task challenges a simple

task difficulty explanation, because effects of task difficulty would

not typically influence residual processes like transmission latency

and motor time, which are encompassed in t0. One speculative

hypothesis is that the difference inmean RTs for visual and auditory

stimuli may be related to the error rates, which were about half as

frequent in the loudness identification task (4.4%) compared to the

brightness identification task (8.4%). This suggests that participants

might have managed the trade-off between speed and accuracy

differently across the two tasks, prioritizing accuracy more in the

auditory task and speed more in the visual task.

Errors were generally slower than correct responses in the

loudness identification task, whereas the opposite pattern held

true for the brightness identification task where errors were faster

(compare Figures 3, 4). To account for slow errors, it was necessary

to introduce trial-wise variability in the transduction rate within

the Poisson-SLRT framework. This adjustment helped explain

the ordering of mean RTs for correct vs. incorrect responses

in Experiment 2, but resulted in a substantial total of 16 free

parameters across all three stimulus pairing conditions. It remains

unclear why transduction rate variability was necessary for fitting

the auditory data but not the visual. Despite this uncertainty, the

model-driven analysis of the data strongly supports this conclusion,

even though a clear theoretical explanation is lacking.

6 Notably, a similar crossover e�ect of intensity and stimulus modality was

reported by Johansson and Ulrich (2025) in a bimodal identification paradigm

with redundant auditory-visual stimuli.

Finally, the problematic shifts in predicted error rates for

the brightness identification task were similarly reflected in the

auditory task, most clearly for the 50 vs. 60 and 60 vs. 70 dB(A)

pairings (see Figure 3b). However, a new discrepancy arose when

examining the predicted error rates for the 50 vs. 70 dB(A) pairing.

Here, the model not only produced asymmetrical shifts around the

observed values but also substantially overestimated error rates,

increasing the mean from 2.9% to 6.4%. This poor prediction likely

stems from an excessively large estimated value of σ̂ , presumably

to accommodate the particularly short error RTs in this condition.

A straightforward solution would be to impose an upper bound on

σ̂ , or alternatively, reduce t0 across all three conditions to reduce

the pull from the shortest correct RT quantiles in panels e and g of

Figure 5. However, as error rates were not formally weighted into

our fitting routine we opted against such post-hoc adjustments in

the present case.

General discussion

A Poisson model of sensory transduction was fused with a

Waldian decision algorithm to account for choice RT and response

probability in speeded two-choice intensity identification tasks.

Akin to related stochastic evidence accrual models of choice RT,

the Poisson-SLRT model necessitated several post hoc assumptions

about the decision process, such as bias and starting variability,

to account for the distribution of error RTs in the brightness

identification task (Experiment 1). However, these additional

assumptions also introduced undesirable consequences, notably

mild asymmetries in error probabilities for dim and bright visual

stimuli, despite empirical evidence suggesting these probabilities

were equal. Despite this limitation, the model demonstrated

admirable fit to the CDFs of RTs for both correct and incorrect

responses in Experiment 1. Moreover, as expected, RTs were

shorter for bright targets than for dim targets, lending a source of

qualitative support for the proposed framework.

Fitting the loudness identification data from Experiment 2

necessitated an additional assumption: variability in transduction

rate across trials. Even with this additional free parameter, the

model struggled to accommodate the longer RTs observed for error

responses compared to correct responses in the auditory task, as

reflected in a larger χ2 compared to Experiment 1. Additionally,

analysis of mean RTs revealed a crossover effect, where responses

to loud auditory stimuli did not yield shorter RTs in the 50 vs.

60 dB(A) pairing condition. This crossover effect was qualitatively

captured by the hypersaturated Poisson-SLRT model.

Overall, these findings indicate that the Poisson-SLRT model

suffers under a curse bestowed upon many stochastic models of

choice RT: the need for numerous post hoc assumptions in the form

of free parameters to accurately capture error RT distributions. This

reliance on additional parameters complicates theory testing, as it

becomes difficult to ascertain whether a qualitative prediction stems

from the model’s core assumptions or from the added flexibility

provided by post hocmodifications. For instance, while main effects

of stimulus intensity on mean RTs naturally emerge from the

assumption that transduction rates are faster for more intense

stimuli, the model’s ability to fit error CDFs depended entirely on

additional assumptions embodied in µs, σs, and σr .
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One straightforward approach to circumvent this issue would

be to refrain from fitting error RT distributions altogether since

this would eliminate the need for variability and bias in starting

point and so forth. However, error RTs provide valuable insights

into the mechanisms of perceptual decision-making, making their

exclusion disappointing. A more constructive approach would

involve addressing the psychological reality of parameters such as

starting point bias and variability in research paradigms tailored

to selectively influence one of the parameters without affecting the

other. For example, manipulating a priori stimulus probabilities

could be expected to significantly influence starting point bias while

having negligible effects on starting point variability. The effects of

implementing reward structures that prioritize accuracy over speed

should similarly be captured without altering σs. Further research

is warranted to properly settle these issues.

A virtue of the Poisson-SLRT model for two-choice intensity

identification tasks is its natural extendability to many-choice tasks

using the generalization of the SLRT proposed by Sobel and Wald

(1949). The Sobel-Wald test replaces the binary random walk with

a multidimensional SLRT, where evidence accumulation occurs

along multiple decision axes, each corresponding to a pairwise

comparison. For a three-choice task, for example, the Sobel-Wald

procedure must distinguish among three hypotheses (H1, H2, and

H3) requiring two independent comparisons: one between H1 and

H2, and one between H2 and H3. Assuming that the observer waits

for each pairwise comparison to terminate before responding, it

follows that reaction time should increase as the set size grows,

as additional pairwise comparisons are required. Similarly, as the

stimulus set size increases, error rates are expected to rise, as each

hypothesis in the Sobel-Wald test becomes confusable with a larger

number of alternatives.

Another strength of the Poisson-SLRT model becomes evident

when compared to the commonly used drift-diffusion model

(DDM) of two-choice decision-making tasks. A reviewer noted that

under conditions of high input intensities, the SLRT procedure

approximates Brownian motion with drift, illustrating a formal

connection between the two models. However, a crucial difference

lies in their assumptions about the evidence accumulation process.

While the DDM allows for relatively flexible drift and diffusion

parameters, the Poisson-SLRT model constrains these terms

based on its derivation from likelihood ratio computations for

exponentially distributed IATs. Furthermore, in the SLRT model,

the levels of decision barriers are determined by response errors,

whereas in the DDM, these levels remain unconstrained and

are treated as free parameters. The constraints of the Poisson-

SLRT model, based on an optimal statistical decision framework,

enhancing theoretical rigor by limiting the model’s ability to

accommodate a wide range of empirical patterns. In contrast,

DDM’s greater flexibility often permits more adaptable data fitting

at the expense of weaker theoretical constraints. As philosophers

of science have pointed out, well-constrained models tend to

contribute more empirical content by generating stronger, more

falsifiable predictions (Popper, 1962/2014). Similar sentiments

regarding psychological theory testing have been expressed by

Roberts and Pashler (2000).

In closing, a brief comment on the possible physiological

implementation of the proposed decision-making mechanism

seems warranted. Neurons exhibiting non-monotonic tuning

curves to stimulus intensity have been identified in both the visual

and auditory pathways (e.g., Peirce, 2007; Schreiner and Malone,

2015). These neurons show heightened responses to stimuli near

a preferred intensity level, with firing rates diminishing as the

discrepancy between preferred value and current input increases. In

this regard, they could be viewed as computing likelihood estimates

for transmission rates. Consequently, it is conceivable that their

activity might contribute to the sequential decision-making process

posited by the Poisson-SLRTmodel.While this connection remains

speculative, it represents an promising avenue for future research

that could advance our understanding of the neurobiological

mechanisms underlying perceptual decision-making in intensity

identification tasks.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://osf.io/p4d23/.

Ethics statement

Ethical approval was not required for the studies involving

humans because the study did not involve identifiable human

data or procedures necessitating Ethics Committee review. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.

Author contributions

RJ: Writing – original draft, Writing – review & editing. RU:

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research received

funding by the Deutsche Forschungsgemeinschaft (DFG; Project

381713393) as part of research unit FOR 2718: Modal and Amodal

Cognition.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Frontiers inCognition 12 frontiersin.org

https://doi.org/10.3389/fcogn.2025.1561842
https://osf.io/p4d23/
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Johansson and Ulrich 10.3389/fcogn.2025.1561842

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alluisi, E. A. (1957). Conditions affecting the amount of information in absolute
judgments. Psychol. Rev. 64, 97–103. doi: 10.1037/h0045500

Ashby, F. (1983). A biased random walk model for two choice reaction times. J.
Math. Psychol. 27, 277–297. doi: 10.1016/0022-2496(83)90011-1

Audley, R. J., and Pike, A. R. (1965). Some alternative stochastic models of choice.
Br. J. Math. Stat. Psychol. 18, 207–225. doi: 10.1111/j.2044-8317.1965.tb00342.x

Barlow, H. (1961). “Possible principles underlying the transformations of sensory
messages,” in Sensory Communication, ed.W. Rosenblith (Cambridge,MA:MIT Press),
217–234.

Beebe-Center, J. G., Rogers, M. S., and O’connell, D. N. (1955). Transmission of
information about sucrose and saline solutions through the sense of taste. J. Psychol.
39, 157–160. doi: 10.1080/00223980.1955.9916166

Bevan, W., and Avant, L. L. (1968). Response latency, response uncertainty,
information transmitted and the number of available judgmental categories. J. Exp.
Psychol. 76:394. doi: 10.1037/h0025524

Blurton, S. P., Kyllingsbæk, S., Nielsen, C. S., and Bundesen, C. (2020). A
poison random walk model of response times. Psychol. Rev. 127 3, 362–411.
doi: 10.1037/rev0000179

Braida, L. D., and Durlach, N. I. (1972). Intensity perception. II. Resolution in
one-interval paradigms. J. Acoust. Soc. Am. 51, 483–502. doi: 10.1121/1.1912868

Brown, S., Marley, A. A. J., Donkin, C., and Heathcote, A. (2008). An integrated
model of choices and response times in absolute identification. Psychol. Rev. 115,
396–425. doi: 10.1037/0033-295X.115.2.396

Brown, S. D., and Heathcote, A. (2005). A ballistic model of choice response time.
Psychol. Rev. 112 1, 117–128. doi: 10.1037/0033-295X.112.1.117

Catell, J. M. (1886). The influence of the intensity of the stimulus on the length of
the reaction time. Brain 8, 512–515. doi: 10.1093/brain/8.4.512

Creelman, C. D. (1962). Human discrimination of auditory duration. J. Acoust. Soc.
Am. 34, 582–593. doi: 10.1121/1.1918172

Doherty, M. E. (1968). Information and discriminability as determinants of absolute
judgment choice reaction time. Percept. Psychophys. 3, 1–4. doi: 10.3758/BF032
12702

Durlach, N. I., and Braida, L. D. (1969). Intensity perception. I. Preliminary theory
of intensity resolution. J. Acoust. Soc. Am. 46, 372–383. doi: 10.1121/1.1911699

Engen, T., and Pfaffmann, C. (1959). Absolute judgments of odor intensity. J. Exp.
Psychol. 58, 23–26. doi: 10.1037/h0040080

Eriksen, C. W. (1953). Object location in a complex perceptual field. J. Exp. Psychol.
45, 126–132. doi: 10.1037/h0058018

Fechner, G. (1860). Elemente der Psykophysik. Leipzig: Breitkopf and Härtel.

Garner, W. R. (1953). An informational analysis of absolute judgments of loudness.
J. Exp. Psychol. 46, 373–380. doi: 10.1037/h0063212

Gibbon, J. (1992). Ubiquity of scalar timing with a Poisson clock. J. Math. Psychol.
36, 283–293. doi: 10.1016/0022-2496(92)90041-5

Green, D. M., and Swets, J. (1966). Signal Detection Theory and Psychophysics. New
York: John Wiley.

Harrell, F. E., and Davis, C. E. (1982). A new distribution-free quantile estimator.
Biometrika 69, 635–640. doi: 10.1093/biomet/69.3.635

Hawkes, G. R., and Warm, J. S. (1960). Maximum It for absolute
identification of cutaneous electrical intensity level. J. Psychol. 49, 279–288.
doi: 10.1080/00223980.1960.9916410

Heath, R. A. (1981). A tandem random walk model for
psychological discrimination. Br. J. Math. Stat. Psychol. 34, 76–92.
doi: 10.1111/j.2044-8317.1981.tb00619.x

Hecht, S., Shlaer, S., and Pirenne,M. H. (1942). Energy, quanta and vision. J. General
Physiol. 25, 819–840. doi: 10.1085/jgp.25.6.819

Hildreth, J. (1979). Bloch’s law and a Poisson counting model for simple reaction
time to light. Percept. Psychophys. 26, 153–162. doi: 10.3758/BF03208309

Holland,M. K., and Lockhead, G. R. (1968). Sequential effects in absolute judgments
of loudness. Percept. Psychophys. 3, 409–414. doi: 10.3758/BF03205747

Johansson, R. C. G., and Ulrich, R. (2025). Redundancy gains in absolute
judgments of loudness and brightness. Comput. Brain Behav. 2025, 1–12.
doi: 10.1007/s42113-025-00236-w

Kent, C., and Lamberts, K. (2005). An exemplar account of the bow
and set-size effects in absolute identification. J. Exper. Psychol. 31, 289–305.
doi: 10.1037/0278-7393.31.2.289

Lachs, G., and Teich, M. (1981). A neural-counting model incorporating
refractoriness and spread of excitation. II. Application to loudness estimation. J. Acoust.
Soc. Am. 69:774. doi: 10.1121/1.385578

Lacouture, Y., and Marley, A. (1991). A connectionist model of choice and reaction
time in absolute identification. Conn. Sci. 3, 401–433. doi: 10.1080/09540099108946595

Lacouture, Y., and Marley, A. A. J. (2004). Choice and response time processes in
the identification and categorization of unidimensional stimuli. Percept. Psychophys.
66, 1206–1226. doi: 10.3758/BF03196847

Laming, D. (1968). Information Theory of Choice-Reaction Times. Cambridge, MA:
Academic Press.

Laming, D. R. J. (1979). A critical comparison of two random-walk models for two-
choice reaction time. Acta Psychol. 43, 431–453. doi: 10.1016/0001-6918(79)90001-5

Landau, S. G., Buchsbaum, M. S., Coppola, R., and Sihvonen, M. (1974).
Individual differences and reliability of information transmission in absolute
judgments of loudness, brightness and line lengths. Percept. Mot. Skills 39, 239–246.
doi: 10.2466/pms.1974.39.1.239

Link, S. W. (1992). The Wave Theory of Difference and Similarity. London:
Routledge.

Link, S. W., and Heath, R. (1975). A sequential theory of psychological
discrimination. Psychometrika 40, 77–105. doi: 10.1007/BF02291481

Loftus, G. R., and Masson, M. E. J. (1994). Using confidence intervals in within-
subject designs. Psychon. Bull. Rev. 1, 476–490. doi: 10.3758/BF03210951

Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental
Organization. New York: Oxford University Press.

Luce, R. D. (1993). Sound Hearing: A Conceptual Introduction. New York: Lawrence
Erlbaum Associates.

Luce, R. D., and Green, D. M. (1972). A neural timing theory for response times and
the psychophysics of intensity. Psychol. Rev. 79, 14–57. doi: 10.1037/h0031867

Luce, R. D., Green, D. M., and Weber, D. L. (1976). Attention bands in absolute
identification. Percept. Psychophys. 20, 49–54. doi: 10.3758/BF03198705

Luce, R. D., and Nosofsky, R. M. (1984). “Attention, stimulus range,
and identification of loudness,” in Preparatory States and Processes, eds. S.
Kornblum, J. Requin (Hillsdale, NJ: Lawrence Erlbaum Associates), 3–24.
doi: 10.4324/9781315792385-1

Luce, R. D., Nosofsky, R. M., Green, D. M., and Smith, A. F. (1982). The bow
and sequential effects in absolute identification. Percept. Psychophys. 32, 397–408.
doi: 10.3758/BF03202769

Maanen, L., Katsimpokis, D., and van Campen, D. (2018). Fast and slow errors:
logistic regression to identify patterns in accuracy-response time relationships. Behav.
Res. Methods 51, 2378–2389. doi: 10.3758/s13428-018-1110-z

Miller, G. A. (1956). The magical number seven plus or minus two: some limits on
our capacity for processing information. Psychol. Rev. 63, 81–97. doi: 10.1037/h0043158

Morey, R. (2008). Confidence intervals from normalized data: a
correction to Cousineau (2005). Tutor. Quant. Methods Psychol. 4, 61–64.
doi: 10.20982/tqmp.04.2.p061

Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization.
Comput. J. 7, 308–313. doi: 10.1093/comjnl/7.4.308

Nosofsky, R. M. (1983a). Information integration and the identification of stimulus
noise and criterial noise in absolute judgment. J. Exper. Psychol. 9, 299–309.
doi: 10.1037//0096-1523.9.2.299

Nosofsky, R. M. (1983b). Shifts of attention in the identification and discrimination
of intensity. Percept. Psychophys. 33, 103–112. doi: 10.3758/BF03202827

Nosofsky, R. M. (1997). “An exemplar-based random-walk model of speeded
categorization and absolute judgment,” in Choice, Decision, and Measurement: Essays

Frontiers inCognition 13 frontiersin.org

https://doi.org/10.3389/fcogn.2025.1561842
https://doi.org/10.1037/h0045500
https://doi.org/10.1016/0022-2496(83)90011-1
https://doi.org/10.1111/j.2044-8317.1965.tb00342.x
https://doi.org/10.1080/00223980.1955.9916166
https://doi.org/10.1037/h0025524
https://doi.org/10.1037/rev0000179
https://doi.org/10.1121/1.1912868
https://doi.org/10.1037/0033-295X.115.2.396
https://doi.org/10.1037/0033-295X.112.1.117
https://doi.org/10.1093/brain/8.4.512
https://doi.org/10.1121/1.1918172
https://doi.org/10.3758/BF03212702
https://doi.org/10.1121/1.1911699
https://doi.org/10.1037/h0040080
https://doi.org/10.1037/h0058018
https://doi.org/10.1037/h0063212
https://doi.org/10.1016/0022-2496(92)90041-5
https://doi.org/10.1093/biomet/69.3.635
https://doi.org/10.1080/00223980.1960.9916410
https://doi.org/10.1111/j.2044-8317.1981.tb00619.x
https://doi.org/10.1085/jgp.25.6.819
https://doi.org/10.3758/BF03208309
https://doi.org/10.3758/BF03205747
https://doi.org/10.1007/s42113-025-00236-w
https://doi.org/10.1037/0278-7393.31.2.289
https://doi.org/10.1121/1.385578
https://doi.org/10.1080/09540099108946595
https://doi.org/10.3758/BF03196847
https://doi.org/10.1016/0001-6918(79)90001-5
https://doi.org/10.2466/pms.1974.39.1.239
https://doi.org/10.1007/BF02291481
https://doi.org/10.3758/BF03210951
https://doi.org/10.1037/h0031867
https://doi.org/10.3758/BF03198705
https://doi.org/10.4324/9781315792385-1
https://doi.org/10.3758/BF03202769
https://doi.org/10.3758/s13428-018-1110-z
https://doi.org/10.1037/h0043158
https://doi.org/10.20982/tqmp.04.2.p061
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1037//0096-1523.9.2.299
https://doi.org/10.3758/BF03202827
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Johansson and Ulrich 10.3389/fcogn.2025.1561842

in Honor of R. Duncan Luce, ed. A. A. J. Marley (London: Routledge), 347–367.
doi: 10.4324/9781315789408-21

Pachella, R. G., and Fisher, D. (1972). Hick’s law and the speed-accuracy trade-off in
absolute judgment. J. Exp. Psychol. 92, 378–384. doi: 10.1037/h0032369

Peirce, J. (2007). The potential importance of saturating and supersaturating
contrast response functions in visual cortex. J. Vis. 7, 1–10. doi: 10.1167/7.6.13

Peirce, J., Gray, J., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., et
al. (2019). PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51,
195–203. doi: 10.3758/s13428-018-01193-y

Pickles, J. O. (1988). An Introduction to the Physiology of Hearing. San Francisco:
Academic Press.

Piéron, H. (1920). Nouvelles recherches sur l’analyse du temps de latence sensorielle
et sur la loi qui relie ce temps á l’intensité de l’excitation. L’Année Psychol. 22, 58–142.
doi: 10.3406/psy.1920.4403

Pins, D., and Bonnet, C. (1996). On the relation between stimulus intensity and
processing time: Piéron’s law and choice reaction time. Attention Percept. Psychophys.
58, 390–400. doi: 10.3758/BF03206815

Plant, R. R. (2016). A reminder on millisecond timing accuracy and potential
replication failure in computer-based psychology experiments: an open letter. Behav.
Res. Methods 48, 408–411. doi: 10.3758/s13428-015-0577-0

Pollack, I. (1952). The information of elementary auditory displays. J. Acoust. Soc.
Am. 24, 449–449. doi: 10.1121/1.1917486

Popper, K. (1962/2014). Conjectures and Refutations: The Growth of Scientific
Knowledge. London: Routledge. doi: 10.4324/9780203538074

Purks, S. R., Callahan, D. J., Braida, L. D., and Durlach, N. I. (1980). Intensity
perception. X. Effect of preceding stimulus on identification performance. J. Acoust.
Soc. Am. 67, 634–637. doi: 10.1121/1.383887

Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution
statistics. Psychol. Bull. 86, 446–461. doi: 10.1037/0033-2909.86.3.446

Ratcliff, R. (2013). Parameter variability and distributional assumptions in the
diffusion model. Psychol. Rev. 120, 281–292. doi: 10.1037/a0030775

Rieger, T., and Miller, J. (2020). Are model parameters linked to processing stages?
An empirical investigation for the ex-Gaussian, ex-Wald, and EZ diffusion models.
Psychol. Res. 84, 1–17. doi: 10.1007/s00426-019-01176-4

Roberts, S., and Pashler, H. (2000). How persuasive is a good fit? A comment on
theory testing. Psychol. Rev. 107:358. doi: 10.1037//0033-295X.107.2.358

Rouder, J. N. (1996). Premature sampling in random walks. J. Math. Psychol. 40,
287–296. doi: 10.1006/jmps.1996.0030

Sagi, E., D’Alessandro, L. M., and Norwich, K. H. (2007). Identification variability
as a measure of loudness: an application to gender differences. Canad. J. Exper. Psychol.
61, 64–70. doi: 10.1037/cjep2007007

Schreiner, C., and Malone, B. (2015). Representation of loudness
in the auditory cortex. Handb. Clin. Neurol. (2015) 129, 73–84.
doi: 10.1016/B978-0-444-62630-1.00004-4

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.
doi: 10.1214/aos/1176344136

Sobel, M., and Wald, A. (1949). A sequential decision procedure for choosing one
of three hypotheses concerning the unknown mean of a normal distribution. Ann.
Mathem. Stat. 20, 502–522. doi: 10.1214/aoms/1177729944

Stevens, J. C., and Stevens, S. S. (1963). Brightness function: effects of adaptation. J.
Opt. Soc. Am. 53, 375–385. doi: 10.1364/JOSA.53.000375

Stevens, S. S. (1957). On the psychophysical law. Psychol. Rev. 64, 153–181.
doi: 10.1037/h0046162

Stewart, N., Brown, G., and Chater, N. (2005). Absolute identification by relative
judgment. Psychol. Rev. 112, 881–911. doi: 10.1037/0033-295X.112.4.881

Stone, M. (1960). Models for choice-reaction time. Psychometrika 25, 251–260.
doi: 10.1007/BF02289729

Swensson, R. G., and Green, D. M. (1977). On the relations between random
walk models for two-choice response times. J. Math. Psychol. 15, 282–291.
doi: 10.1016/0022-2496(77)90034-7

Teich, M. C., Matin, L., and Cantor, B. I. (1978). Refractoriness in the
maintained discharge of the cat’s retinal ganglion cell. J. Opt. Soc. Am. 68, 386–402.
doi: 10.1364/JOSA.68.000386

Thomas, E. (1975). A note on the sequential probability ratio test. Psychometrika 40,
107–111. doi: 10.1007/BF02291482

Treisman, M. (1964). Noise and Weber’s law: the discrimination of brightness and
other dimensions. Psychol. Rev. 71, 314–330. doi: 10.1037/h0042445

Treisman, M. (1966). A statistical decision model for sensory discrimination which
predicts Weber’s law and other sensory laws: Some results of a computer simulation.
Percept. Psychophys. 1, 203–230. doi: 10.3758/BF03207384

Ulrich, R., Bausenhart, K., and Wearden, J. H. (2022). Weber’s law for timing
and time perception: reconciling the Poisson clock with Scalar Expectancy
Theory (SET). Timing Time Percept. 11, 1–31. doi: 10.1163/22134468-bja
10055

Ulrich, R., Schröter, H., Leuthold, H., and Birngruber, T. (2015). Automatic and
controlled stimulus processing in conflict tasks: superimposed diffusion processes and
delta functions. Cogn. Psychol. 78, 148–174. doi: 10.1016/j.cogpsych.2015.02.005

Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Mathem. Stat. 16,
117–186. doi: 10.1214/aoms/1177731118

Wald, A. (1947). Sequential Analysis. New York: John Wiley Sons.

Wald, A., andWolfowitz, J. (1948). Optimum character of the sequential probability
ratio test. Ann. Mathem. Stat. 19, 326–339. doi: 10.1214/aoms/1177730197

Warden, C. J., and Rowley, J. B. (1929). The discrimination of absolute versus
relative brightness in the ring dove, Turtur risorius. J. Comp. Psychol. 9, 317–337.
doi: 10.1037/h0074077

Wever, E. G., and Zener, K. E. (1928). The method of absolute judgment in
psychophysics. Psychol. Rev. 35, 466–493. doi: 10.1037/h0075311

Wolfle, D. L. (1937). Absolute brightness discrimination in the white rat. J. Comp.
Psychol. 24, 59–71. doi: 10.1037/h0063230

Yeh, T., Lee, B., and Kremers, J. (1996). The time course of adaptation in
macaque retinal ganglion cells. Vision Res. 36, 913–931. doi: 10.1016/0042-6989(95)
00332-0

Frontiers inCognition 14 frontiersin.org

https://doi.org/10.3389/fcogn.2025.1561842
https://doi.org/10.4324/9781315789408-21
https://doi.org/10.1037/h0032369
https://doi.org/10.1167/7.6.13
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3406/psy.1920.4403
https://doi.org/10.3758/BF03206815
https://doi.org/10.3758/s13428-015-0577-0
https://doi.org/10.1121/1.1917486
https://doi.org/10.4324/9780203538074
https://doi.org/10.1121/1.383887
https://doi.org/10.1037/0033-2909.86.3.446
https://doi.org/10.1037/a0030775
https://doi.org/10.1007/s00426-019-01176-4
https://doi.org/10.1037//0033-295X.107.2.358
https://doi.org/10.1006/jmps.1996.0030
https://doi.org/10.1037/cjep2007007
https://doi.org/10.1016/B978-0-444-62630-1.00004-4
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aoms/1177729944
https://doi.org/10.1364/JOSA.53.000375
https://doi.org/10.1037/h0046162
https://doi.org/10.1037/0033-295X.112.4.881
https://doi.org/10.1007/BF02289729
https://doi.org/10.1016/0022-2496(77)90034-7
https://doi.org/10.1364/JOSA.68.000386
https://doi.org/10.1007/BF02291482
https://doi.org/10.1037/h0042445
https://doi.org/10.3758/BF03207384
https://doi.org/10.1163/22134468-bja10055
https://doi.org/10.1016/j.cogpsych.2015.02.005
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1214/aoms/1177730197
https://doi.org/10.1037/h0074077
https://doi.org/10.1037/h0075311
https://doi.org/10.1037/h0063230
https://doi.org/10.1016/0042-6989(95)00332-0
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org

	A sequential model of two-choice intensity identification
	Introduction
	Brief sketch of intensity identification
	Poisson transduction in sensory pathways
	Sequential stimulus identification
	Novel features of the Poisson-SLRT model
	Response bias and starting variability

	Experiment 1: Brightness identification
	Method
	Participants
	Apparatus and stimuli
	Design and procedure
	Data analysis

	Results
	Discussion

	Experiment 2: Loudness identification
	Methods
	Participants
	Apparatus and stimuli
	Procedure
	Data analysis

	Results
	Discussion

	General discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


