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Asking the right questions:
interrogating the logic and
assumptions of paradigms used
to investigate interactions
between procedural and
declarative memory in category
learning
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Department of Psychology, Western Institute for Neuroscience, University of Western Ontario,

London, ON, Canada

In this mini-review, the methods used to investigate interactions between

procedural and declarative systems in category learning are considered. Methods

that were originally used to establish dissociations between memory systems

may be biased toward demonstrating competition between them. In contrast,

a modification of Jacoby’s Process Dissociation Procedure allows researchers

to consider the relative contributions of multiple processes involved in task

completion. The original PDP was designed to consider the contributions of

recall and familiarity to recognition, but the logic of the PDP can be applied to

the contributions of procedural and declarative processes in category learning.

Suggestions for improving the possibility of detecting cooperation between

systems using the PDP are given.
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At this point, the existence of multiple dissociable memory systems is widely

accepted on the basis of converging evidence from neuropsychological, neuroimaging, and

behavioral evidence (Cohen et al., 1985; Gabrieli, 1998; Squire, 2004; Zola-Morgan and

Squire, 1993). As a field, we can now turn to question such as how these systems may

or may not interact under normal circumstances (Ashby and Maddox, 2011; Freedberg

et al., 2020). This review is concerned with the potential forms of interaction between

two forms of memory in the context of human category learning: declarative and

procedural. Declarative memory is understood to require certain medial temporal lobe

(MTL) structures, including the hippocampus, to potentially take place quickly (such as

one-shot learning), and to often yield verbalizable knowledge. While there are several

forms of non-declarative memory, in this review I am focusing in particular on procedural

memory, which is understood to require certain basal ganglia structures (especially the

caudate nucleus in the dorsal striatum), to take place incrementally, and to yield actionable

but non-verbalizable knowledge. While the differences in necessary neural structures

established the distinctness of each system, given the other characteristics (e.g., slow vs.
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fast learning), we can infer that it is not only the implementational

level at which these systems for learning differ, but more than likely

the algorithmic and computational levels as well (Marr, 1982).

In other words, not only do these systems have different neural

substrates, but they are optimized for solving different kinds of

problems and in different ways.

Given these differences, it may seem surprising that there

are several domains of learning in which it appears that either

declarative or procedural learning could be used. These include

navigation (McDonald et al., 2004; McDonald and White, 1995;

White and McDonald, 2002), learning sequences (Robertson, 2022;

Song et al., 2007; Willingham et al., 2002; Willingham and Goedert-

Eschmann, 1999; Witt and Willingham, 2006), and learning rules

(Ullman, 2016). There have been several suggestions for how the

two systems may interact in these situations. One possibility is that

the two systems are simply redundant, encoding information in

parallel, but not interacting. Such redundancy can be useful in cases

where one system is impaired (for example by trauma to the brain),

and the remaining system can compensate (Hartley and Burgess,

2005; Moody et al., 2004). There are also suggestions that the

systems may compete during encoding, with some arbitrator in the

brain declaring the more effective system the “winner.” However,

there is also evidence from several real-world domains, including

language use (Ullman, 2004, 2016), and skilled tool use (Roy and

Park, 2010; Roy et al., 2015; Gregory et al., 2016), that the two

systemsmay act cooperatively. For example, in a study of predictors

of novel language learning, not only were both declarative and

procedural learning ability predictive, but in fact an interaction

between the two factors suggesting cooperation was also observed

(Pili-Moss, 2022).

Category learning is another domain in which either procedural

or declarative learning could be used: the encoding algorithm

for each system could provide, if not the optimal solution,

then at least a functional solution. However, in contrast to the

examples of co-operative interaction above, the dominant model of

interaction between procedural and declarative category learning is

competition, either at encoding or retrieval/application (Freedberg

et al., 2020; Poldrack and Packard, 2003). However, the dominance

of this model may come from a case of “looking where the light

is”: studies designed to highlight the separability of declarative

and procedural memory systems would naturally tend away from

demonstrating their interrelatedness. This may be an artifact of the

struggle to establish the existence of multiple systems for category

learning (that can be mapped to multiple memory systems) (Minda

et al., 2024; Ashby and O’Brien, 2005). On the other hand, if

we assume that both systems are contributing to categorization,

then rather than asking “which system is being used,” we should

ask “what is the contribution of each system [to categorization]”?

This is the question that Jacoby (1991) posed for the roles of

familiarity and recollection in recognition, and his solution, process

dissociation, can be fruitfully applied to the contributions of

declarative and procedural systems to category learning.

Briefly, the process-dissociation procedure first assumes that

both processes contribute to performance of the task, rather

than trying to establish the process purity of the task (which is

inherently problematic: see Dunn and Kirsner, 1989; Reingold and

Merikle, 1990). The task is then administered under facilitation

and interference conditions. In the facilitation condition, both

processes suggest the same response (Response = A + B). In the

interference condition, each process suggests a different response

(Response = A − B). The two conditions can then be compared

to determine the contributions of each process to the task (solve a

system of 2 equations to find two unknown variables) (Jacoby, 1991;

Yonelinas and Jacoby, 2012). The process-dissociation procedure

has been used beyond the original context to examine, for

example, automatic and controlled contributions in perception

and social psychology (Yonelinas and Jacoby, 2012); however, to

our knowledge, the process-dissociation procedure has not been

applied to examine the contribution of automatic (procedural) and

controlled (declarative) processes in categorization.

In this review, we will not attempt to review the extensive

literature on interaction between procedural and declarative

memory (for an excellent comprehensive review, see Freedberg

et al., 2020), but to specifically investigate the logic of the methods

that have been used to probe interactions between procedural

and declarative category learning, and to suggest where a process-

dissociation perspective could be helpful. In this way, we contribute

to integrating perspectives not only on declarative and procedural

memory, but how a paradigm from one area of memory research

can be applied to another, highlighting the need for dialogue within

memory research.

Types of category learning:
deterministic and probabilistic

Category learning paradigms may be deterministic or

probabilistic. In deterministic category learning, each stimulus

is associated with only one category, and the given feedback

is consistent regarding category membership. In contrast, in

probabilistic category learning tasks (also known as probabilistic

classification tasks aka PCT, such as the “Weather Prediction

Task”), the association between each cue and the outcome

(category) is probabilistic. Some cues are more consistent than

others (for example, consistent = predicting outcome/category

A 90% of the time and B 10% of the time; inconsistent = 55%

outcome A, 45% outcome B). Thus, the same combination of

cues may sometimes lead to one outcome (e.g., Category A) and

sometimes the other (e.g., Category B; Knowlton et al., 1994).

The probabilistic structure deters explicit hypothesis testing

and produces lower rates of explicit knowledge inference by

participants. Despite this difference in feedback consistency,

probabilistic and deterministic category learning have similar task

demands, and individual performance differences in these two

tasks are correlated, suggesting shared processes or mechanisms

(Kalra et al., 2019).

Optimal performance in a deterministic category learning

paradigm could depend on either declarative or procedural

learning mechanisms, depending on the configuration of stimulus

space and placement of the category boundary. The stimulus

space is often two-dimensional, such as the frequency and

orientation of sine wave gratings. For simple, verbalizable category

structures, such as those that require comparison along only

one dimension (often referred to as “Rule-Based” categories or

paradigms), declarative learning is efficient for reaching high levels

of accuracy. In contrast, complex deterministic category structures
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that cannot be easily verbalized, such as those requiring integrating

information across two dimensions simultaneously (“information-

integration” category structures) are more effectively learned

by an implicit, feedback-driven procedural approach Behavioral,

neuropsychological, and neuroimaging evidence suggest that rule-

based category learning depends on declarative processes, many

mediated by medial temporal lobe structures (Ashby et al., 1998;

Maddox et al., 2004; Waldron and Ashby, 2001; Zeithamova and

Maddox, 2006), while information-integration category learning

depends on procedural learning mechanisms that are mediated

primarily by the striatum (Ashby and Ennis, 2006; Filoteo et al.,

2005; Nomura et al., 2007).

In probabilistic category learning paradigms, cue combinations

and cue-outcome association probabilities are generally too

complex to be effectively learned through declarative methods

(such as memorizing particular cue-outcome pairs). Like

information-integration deterministic category learning,

probabilistic category learning depends on procedural learning

mechanisms that are mediated primarily by the striatum (Foerde

and Shohamy, 2011b; Knowlton et al., 1994, 1996a,b; Shohamy

et al., 2004; Squire et al., 1994).

Methods of investigating interactions:
logic, assumptions, and findings

Manipulation of task demands

A common strategy in behavioral category learning studies

has been manipulation of the stimulus space to favor one

system over the other. As discussed above, this is the rationale

for using unidimensional (rule-based) or bi/multi-dimensional

(information integration) category boundaries in deterministic

category learning. The optimal solution for unidimensional

category structures is more quickly reached by the declarative

system, but the declarative system is ill-suited to find the optimal

solution for bi/multi-dimensional category boundaries.

However, it is impossible to guarantee that participants will in

fact use the optimal strategy. As Jacoby (1991) cautioned, we must

not overidentify processes with the tasks used to measure them,

particularly because the tasks can rarely be process pure. This has

been a problem for interpretation of probabilistic classification task

(PCT) results. Despite the fact that procedural learning strategies

are optimal in this task, normal control participants do attempt to

learn declaratively at first, and by the end of training may have

gained some declarative knowledge of cue-outcome associations

(Gluck et al., 2002; Meeter et al., 2008; Shohamy et al., 2004).

One way to address this issue is post-hocmodeling of individual

participant strategies, which has been used in probabilistic

classification (e.g., Gluck et al., 2002; Knowlton et al., 1994; Meeter

et al., 2006, 2008; Shohamy et al., 2004) and category learning

(Ashby and Maddox, 1993; Maddox and Ashby, 1993). In this

type of modeling, the idealized response pattern for each strategy

is generated, then individual performance is compared to each

of these ideals and labeled according to which ideal most closely

matches the individual’s actual performance. This kind of modeling

can be used to confirm that participants are using the assumed

system to or to identify participants who are not (for example,

in II category learning, some participants tend to perseverate

with ineffective unidimensional rules). However, note that the

assumption of single-process contribution to response (within

a trial or block) is still in place. This type of modeling does

not include a way to discern contributions of dual (or multiple)

processes within a trial.

Lesion studies

The second method is selectively lesioning one system while

sparing the other. This is only feasible in animal studies or rare cases

of human tragedy, in which case the lesion may not be anatomically

and functionally specific. Temporary inhibition of areas on the

cortical surface can be induced with transcranial stimulation, but

the key necessary structures for each system are unfortunately not

on the cortical surface. If a task can be performed by patients with

amnesia, but not by patients with diseases of the basal ganglia

(Parkinson’s Disease, PD and Huntington’s Disease, HD), then we

infer that the task can be carried out by the procedural system alone

(and vice versa)—note that we cannot necessarily infer that this

would be the case under normal circumstances (i.e., no lesion, both

systems available). For example, probabilistic classification can be

performed at normal-like levels by amnesia patients, but not PD

and HD patients (Foerde and Shohamy, 2011b; Knowlton et al.,

1994, 1996a; Shohamy et al., 2004). In the case of category learning,

information-integration category learning has also followed this

pattern (Filoteo et al., 2001a,b; Filoteo and Maddox, 2014). Some

evidence for the opposite pattern (MTL-dependence) has been

found for rule-based categories (Janowsky et al., 1989; Leng and

Parkin, 1988; Filoteo et al., 2001a).

Note that the above inferences rest on the assumptions that the

processes do not normally interact, and that the tasks are process

pure. However, if we assume that under normal (non-lesion)

circumstances, the two processes both contribute to categorization

behavior, our interpretations might differ. For example, if the

systems were tightly interdependent, then one might expect to find

lower overall performance for a single “widowed” system. However,

if the remaining system thrives in the absence of the other, then

we might suspect that under normal (non-lesion) circumstances its

activity is somehow suppressed/inhibited by the availability of the

other system. There is also the possibility that the remaining system

is unaffected by the inactivation of its counterpart, which would

suggest that under normal circumstances they may not interact

at all.

Interestingly, although the amnesic patients eventually reach

normal-like performance on the PCT, they do show an initial

deficit (in the first 50 training trials). According to the logic above,

this suggests an interdependence. Poldrack et al. (2001) speculated

that this might be due to formation of representations by the

declarative system early in learning (“chunking”) that are then

used to track distributional information by the procedural system.

Similarly, PD patients sometimes struggle with rule-based category

learning, although their declarative systems (at least early in disease

progression) should be relatively intact (Filoteo et al., 2001b).

One possible interpretation of this finding is an interdependent

relationship between declarative and procedural learning, although

in this case the computational mechanism is not clear.
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Selective behavioral obstruction: dual-task
and delayed feedback conditions

Another way to shift the task demands to favor one system

or another is to add a condition that selectively disadvantages

one system. Dual-task learning conditions (learning while doing a

simultaneous distracting task) are often used to obstruct declarative

learning. Procedural learning depends on immediate feedback, so

using delayed feedback (for example, 1-back reinforcement, Smith

et al., 2018) has been a tactic to selectively hinder procedural

learning (Foerde and Shohamy, 2011a; Maddox et al., 2003;

Maddox and Ing, 2005; Smith et al., 2014). The logic of functional

obstruction is analogous to that of selective lesioning: can the task

be performed while one system is obstructed? How does the other

system respond?

Comparing performance and neural activity under single- and

dual-task conditions, Foerde et al. (2006) observed that PCT

performance and striatal activity associated with PCT performance

were not affected by a secondary task, while declarative cue-

outcome knowledge suffered in the dual-task condition. This fact

argues against several possible forms of interaction. If the two

systems were competing for resources, then the total metabolic

burden on declarative memory (due to the secondary task) might

have been higher, diverting resources from procedural memory,

in which case we would expect to see less striatal activity in

the dual-task phase. On the other hand, if competition between

systems resulted in inhibition of procedural learning by declarative

learning, then we might have expected to see greater striatal activity

because the procedural system is disinhibited when the declarative

system is suppressed. Neither difference was observed, suggesting

that, at least in this paradigm, neither competition for resources

nor disinhibition of a previously suppressed system occurred. The

authors suggest that competitionmay take place later, at retrieval or

use, rather than at encoding.

In the original use of the process-dissociation procedure,

divided attention (often using a simultaneous secondary task) was

used as a manipulation to hinder the contribution of recollection

(rather than familiarity) to recognition, much as it is in these

cases. However, to our knowledge no intervention exists to “block”

familiarity (automatic processes) (as delayed feedback can be

used to block procedural learning), so in this case studies of

interaction between procedural and declarative learning may have

an advantage. To leverage this advantage, studies of category

learning could compare performance during control (A+B), dual-

task (A only), and/or delayed feedback (B only) conditions.

Facilitation or interference: steps toward
process dissociation

Another behavioral method to investigate interactions between

memory systems is to overtly state the declarative solution

to participants and observe whether this affects procedural

learning. This is analogous to half of the process-dissociation

procedure, facilitation. Several demonstrations using this method

have suggested that the declarative information does not improve

performance in sequence learning (Sanchez and Reber, 2013;

Willingham and Goedert-Eschmann, 1999). To date, one study has

used this approach with category learning, finding that declarative

knowledge of the optimal strategy improved rule-based, but not

information-integration, category learning (Rosedahl et al., 2021).

Crossley and colleagues took a step closer to process-

dissociation by creating a stimulus space that would lead to

different responses from each system (i.e., putting the processes

in opposition to each other, creating an interference condition,

the second part of the PDP). Process purity is not a concern if

each systems suggests a different response. Crossley and colleagues

(Ashby and Crossley, 2010; Crossley and Ashby, 2015; Turner et al.,

2017) demonstrated that parallel encoding, leading to different

solutions by the procedural and declarative systems, can take

place, but that only the output of the declarative system was used

during training. They paired this with a “behavioral knockout”

of procedural learning using delayed feedback. When participants

were tested on a (non-trained) section of the stimulus space for

which only the procedural system could give the correct solution,

those who were trained with delayed feedback were not able to do

so, but those trained with immediate feedback were able to.1

A recent study has taken a further step toward using PDP in

category learning by directly contrasting an interference condition

with a facilitation condition. Kalra et al. (2024) created a stimulus

space in which the items could be classified according to a complex

but verbalizable rule based on the shapes of the items. Before

training, we told participants this rule overtly, verbally, and with

examples. However, the two categories differed probabilistically

in the distribution of colors, with one category having more

warm-colored items and the other having more cool-colored

items. In the test phase, participants were asked to classify

stimuli for which the shape and color information indicated the

same category (facilitation condition) or in which they indicated

opposite categories (interference condition). Reaction time was

significantly slower in the interference condition than in the

facilitation condition. We interpret these results as evidence that

information from both systems may contribute even at a late

stage (application/decision). Our results do not necessarily violate

an assumption of information encapsulation (Fodor, 1983) or

constitute “high-bandwidth leakage” (Robertson, 2022), but can

be understood as two modules contributing to a decision-making

or gate-keeping module. The gate-keeping module considers the

contributions from both the declarative and procedural model, but

may weight them differently.

Neuroimaging

What about neuroimaging? Because the neuropsychology data

established that the caudate nucleus is necessary for procedural

learning and the hippocampus is necessary for declarative learning,

the problem of reverse inference from neuroimaging data is

somewhat ameliorated. We cannot infer that procedural learning

is taking place based on caudate activity or that declarative learning

1 This could be compared to the “unmasking” of previously learned place

information in rats (McDonald et al., 2004; McDonald and White, 1995; White

and McDonald, 2002).
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is taking place based on MTL activity, but we can actually make

a modus tollens inference: ∼p :∼q. That is, lack of caudate

activity can be inferred as lack of procedural learning since the

caudate is necessary for procedural learning, and lack of MTL

activity can be inferred as lack of declarative learning since the

MTL is necessary for declarative learning. However, conventional

univariate fMRI analysis is based on contrasts in relative activity

between conditions, which can lead to the appearance of lack of

activity from one system.

More modern neuroimaging methods may be able to

add clarity. Functional connectivity studies have suggested a

cooperative relationship between procedural and declarative

category learning (Albouy et al., 2008, 2013; Dickerson et al.,

2011). To date, multivariate methods do not appear to have

been used to examine contributions of declarative and procedural

memory in category learning. Representational similarity analysis

(Kriegeskorte et al., 2008) paired with a process-dissociation

framework could be particularly informative. First, a stimulus space

in which declarative and procedural processes can be put into

either facilitative or interference conditions (as in Kalra et al.,

2024) would be needed. Then, theoretical matrices based on the

expected representations formed by procedural and declarative

learning, respectively, could be constructed. Finally, the empirical

multi-voxel patterns could be compared to each of the theoretical

matrices, as well as the combination of the theoretical matrices

using multiple regression. Fitted models could then reveal the

relative contributions of each process to categorization behavior,

which could vary across regions-of-interest.

Conclusion

The relative lack of evidence for cooperation between

procedural and declarativememory in category learningmay reflect

the fact that paradigms used to prove dissociation are sometimes

used to make inferences about interactions. Adaptation of the

process dissociation procedure to the study of procedural and

declarative learning allows us to ask “what is the contribution of

each system to performance” rather than assuming that tasks are

process-pure. Such adaptation requires the creation of paradigms

(such as stimulus spaces) in which procedural and declarative

processes can be placed in opposition (interference) or agreement

(facilitation). The study of interactions between procedural and

declarative contributions has an advantage over the original

recognition paradigm because procedural and declarative learning

can each be separately obstructed, using delayed feedback or dual-

task conditions, respectively. While traditional univariate fMRI

analysis may be well-suited for establishing the separability of

the systems, functional connectivity and representational similarity

analysis (particularly when paired with a PDP-compatible stimulus

space) may be better tools for examining their interaction.
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