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Introduction: Cognitive models have proposed that behavioral tasks can be
categorized along at least three dimensions: the sensory-motor modality of
the information, its representational format (e.g., location vs. identity), and the
cognitive processes that transform it (e.g., response selection). Moreover, we
can quickly and flexibly encode, represent, or manipulate information along
any of these dimensions. How is this flexibility in encoding such information
implemented in the cerebral cortex?

Methods: To address this question, we devised a series of functional magnetic
resonance imaging (fMRI) experiments in each of which participants performed
two distinct tasks that di�ered along one of the three dimensions.

Results: Using multivariate pattern analysis of the fMRI data, we were able
to decode between tasks along at least one task dimension within each of
the cortical regions activated by these tasks. Moreover, the multiple demand
network, a system of brain regions previously associated with flexible task
encoding, was largely composed of closely juxtaposed sets of voxels that were
specialized along each of the three tested task dimensions.

Discussion: These results suggest that flexible task encoding is primarily
achieved by the juxtaposition of specialized representations processing each task
dimension in the multiple demand network.

KEYWORDS

domain-general, cognitive resources, pattern analysis, MVPA, decoding, fMRI, multiple

demand network, task positive network

Introduction

Human behavior is flexible: memorized information and arbitrary rules are combined

with inputs from any sensory modality to yield behaviorally adaptive responses in any

motor modality. This cognitive flexibility reflects a combination of highly specified

peripheral sensory and representational systems with more flexible central systems in

frontal and parietal association cortex that integrate information across representations

(e.g., Bunge et al., 2000; Nystrom et al., 2000; Jiang and Kanwisher, 2003; Koechlin et al.,

2003; Badre and Wagner, 2004; Badre, 2008; Niendam et al., 2012; Power and Petersen,

2013; Tamber-Rosenau and Marois, 2016; Noyce et al., 2017). Flexible encoding of a wide

array of computations (Woolgar et al., 2011, 2016; Fedorenko et al., 2013; Erez andDuncan,

2015; Cole et al., 2016; Etzel et al., 2016; Shashidhara et al., 2020; Shashidhara and Erez,

2021) has been specifically attributed to a fronto-parietal task positive or multiple demand

Frontiers inCognition 01 frontiersin.org

https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org/journals/cognition#editorial-board
https://www.frontiersin.org/journals/cognition#editorial-board
https://www.frontiersin.org/journals/cognition#editorial-board
https://www.frontiersin.org/journals/cognition#editorial-board
https://doi.org/10.3389/fcogn.2024.1438390
http://crossmark.crossref.org/dialog/?doi=10.3389/fcogn.2024.1438390&domain=pdf&date_stamp=2024-07-24
mailto:bjtrbjtr@gmail.com
mailto:rene.marois@vanderbilt.edu
https://doi.org/10.3389/fcogn.2024.1438390
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcogn.2024.1438390/full
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Tamber-Rosenau et al. 10.3389/fcogn.2024.1438390

(MD) network (Duncan and Owen, 2000; Fox et al., 2005; Duncan,

2010; Assem et al., 2020, 2022, 2024), surrounded by neighboring

brain regions characterized by additional, weaker shared activity

(Assem et al., 2020). Generally, MD regions perform similarly

across tasks (Woolgar et al., 2011; Erez and Duncan, 2015; Assem

et al., 2024), fractionating into only two sub-networks operating

over distinct timescales (Dosenbach et al., 2008; Crittenden et al.,

2016). Correspondingly, multivariate pattern analysis (MVPA)

research has revealed flexible encoding of stimulus category (e.g.,

faces vs. houses), response identity (e.g., finger used for manual

response) as well as task and stimulus-response mapping rules

in MD regions (Woolgar et al., 2016; Assem et al., 2020, 2022,

2024). However, no single study has explored the systematic

representation of possible task dimensions not only in the MD

network but also throughout the cerebral cortex. To what extent

are task dimensions flexibly represented in the MD network and

the rest of the cerebral cortex, and is this flexibility a result of

a neural process that is truly functionally pluripotent, devoid

of any encoding preference or bias for any task dimensions?

Such a pluripotent process may not only be implied by the

notion of an MD network, but also by frequently invoked

concepts in the cognitive psychology literature such as domain-

general resources, central (or universal) bottlenecks, attentional

resources, or a general fluid intelligence factor, making it critical to

understand if pluripotency is a real property of systems within the

human brain.

To systematically assess flexible task information encoding,

we guided our experimental approach with inspiration from

Wickens (1980, 1984, 2002, 2008)’s multiple resources model of

cognitive processing. Modifying Wickens’s scheme to broaden

its applicability, tasks can be considered to vary along at

least three dimensions: sensorimotor modality, information

representational format, and cognitive process. Akin to the

factors in a factorial design, each task dimension has multiple

discrete levels (e.g., spatial, object, and verbal categories;

c.f., Nee et al., 2013). The dimensions together define a

multidimensional task matrix. Tasks are characterized by

the cell(s) they occupy in this matrix: for example, a visual-

manual sensorimotor modality task relying on the spatial

representational format and requiring the response selection

cognitive process.

In the present study, we used MVPA of fMRI data to compare

pairs of tasks that required distinct levels of each task dimension,

as MVPA allows identification of brain regions whose activation

patterns distinguish between task dimension categories, i.e., would

contain spatially segregated neural ensembles specialized for

distinct modalities, formats, or processes. Our analytical approach

hinges critically on what aspects of neural activity can drive

MVPA classification. Specifically, MVPA assesses the “information

content” (c.f., Kriegeskorte et al., 2006) of an entire ROI. When

overall differences in activation amplitude across conditions is

subtracted out in MVPA applied to a given ROI (as we did in the

present research; see Materials & Methods, Esterman et al., 2009;

Tamber-Rosenau et al., 2011), the results of the MVPA is driven

exclusively—for each participant—by differences in the spatial

distribution of activity within the ROI, thus revealing whether

any given brain region contains neural ensembles that distinctly

code each task condition. Such fine-scale spatial segregation can

be quite variable from person to person (c.f., Fedorenko et al.,

2010, 2012), making a tool that can detect segregation patterns

that are idiosyncratic to individual participants, such as MVPA,

particularly useful (Peelen and Downing, 2007; also see Peelen

et al., 2006; Tamber-Rosenau et al., 2013; Lee and McCarthy,

2014).

The crux of our study does not simply address the question

of whether the human brain shows domain generality—after all,

the impressive flexibility of our cognitive capacities demonstrates

as much—but more specifically, we investigate at what level

of organization such domain generality may arise. At one

extreme, domain-generality may be a brain- or cortex-wide

property, whereby any given individual brain region shows domain

specificity. At the other extreme, domain-generality could be

reflected in individual nerve cells or neural ensembles if those

are truly pluripotent and do not preferentially encode any one of

the task dimensions. It is also conceivable that domain generality

is an emergent property of a brain region, whose encoding

flexibility stems from the region containing multiple neural

ensembles each specialized for different dimensions. According

to the latter possibility, the entire ROI would exhibit domain-

generality by virtue of containing distinct neural ensembles

each functionally specialized for any given task dimension.

While it is clear that the cerebral cortex as a whole shows

at least some functional specificity (e.g., consider the distinct

functional properties of the primary visual and auditory cortex),

it is less clear whether brain regions in association cortex

show ROI-level or neuronal-level domain generality. Thus,

along with the novelty stemming from considering process,

format, and modality task dimensions in a single overarching

framework, our study is designed to distinguish between these

different scales of domain generality, which MVPA is well

suited to tease apart. In our view, while the identification

of domain-general, multiple demand, or task positive brain

networks in the support of human cognitive flexibility has

been a major step forward in our understanding of the neural

basis of human cognitive flexibility, this understanding is still

incomplete. It is also critical to consider how flexibility or

domain-generality in any given network or brain region is

achieved—whether by true pluripotency similar to the notion

of a domain-general cognitive resource from psychology, or

instead by the colocalization of multiple specialized resources or

neural structures.

To address these issues, here we took a two-pronged approach.

First, we used an ROI-based analysis to identify brain regions

that were activated by both tasks varying along a dimension

and then used MVPA to test for distinct voxel-based biases

or neural ensembles supporting the two tasks. Second, using

an exploratory “searchlight” analysis (Kriegeskorte et al., 2006),

we searched for brain regions that decoded along each of

the three task dimensions. Brain regions that are functionally

invariant to a particular task dimension should exhibit no MVPA

decoding between task levels along that dimension, meaning

that they should not contain segregated neural populations

supporting performance of tasks varying along the manipulated

dimension. A completely domain-general, pluripotent brain region
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then would be invariant to all three task dimensions1 (i.e., it

would not exhibit functional bias along any one of the three

task dimensions).

The present study (Figure 1) investigated tasks varying in

Process by comparing a response selection (RS) task and a response

inhibition (RI) task. For the Format experiment, we compared

object location and object shape working memory (WM) encoding.

Finally, for the Modality experiment, we reanalyzed visual-manual

(VM) and auditory-vocal (AV) stimulus-response mapping tasks

(Tombu et al., 2011; Tamber-Rosenau et al., 2013).

Materials and methods

Overview

In each experiment, subjects performed two distinct tasks

that loaded primarily on distinct processes (RS or RI), formats

(location or shape), or modalities (visual-manual or auditory-

vocal). In the Process and Format experiments, we defined ROIs

based on the univariate overlap of activation for the two tasks

within each experiment using standard general linearmodel (GLM)

analyses and open contrasts of each task vs. un-modeled baseline

(these liberal contrasts were employed to avoid discarding brain

regions thatmay exhibit task-invariant decoding) (Dux et al., 2006).

We subjected each ROI to MVPA to determine if it contained

neural ensembles or sub-regions that were specialized within the

tested dimension. A similar analysis of the Modality experiment

is reported in Tamber-Rosenau et al. (2013) and here extended to

the Process and Format ROIs. All MVPA was carried out using

support vector machine learning algorithms in LibSVM (Chang

and Lin, 2011) and standard leave-one-run-out procedures to

ensure independence of training and test data, accounting for mean

activation via mean-subtraction. MVPA classification rates in each

ROI were computed at a series of timepoints locked to the start of

each trial to obtain MVPA decoding timecourses, and we report

peak classification for each ROI including t-tests vs. chance (50%

correct classification).

We also subjected data from each experiment to “searchlight”

MVPA (Kriegeskorte et al., 2006) in which we collapsed trials

over time by fitting a GLM to each run and performed MVPA on

parameter (beta) weights from these GLMs. The searchlight MVPA

analysis is unlikely to be influenced by motion or other nuisance

1 A critique of the functional pluripotency account might be that a

population that responds similarly to all tasks does not actually encode

any information about the tasks. This is unlikely to be the case, as the ROI

localizer analysis isolates regions that are robustly activated by each task

prior to performing MVPA, all but ensuring that these regions encode some

task-relevant information. The key point investigated here is whether the

information that is encoded is stably segregated across neural ensembles

biased toward processing each task (as would be detected by MVPA if

the ROIs show functional specificity) or whether it is common across—

or instantly adaptive to—the tasks (i.e., exhibits functional pluripotency),

consistent with several classic psychological models that have proposed

such a generalized “resource” for cognition (Moray, 1967; Kahneman, 1973;

Tombu and Jolicoeur, 2003; Marois and Ivano�, 2005; Tombu et al., 2011;

Koch et al., 2018).

factors, including response time (at the level of single trials),

because we regressed out such variables prior to searchlight MVPA.

Searchlight results were projected onto an inflated brain surface

based on a Talairach-transformed COLIN27 brain (Holmes et al.,

1998) and thresholded using the false discovery rate procedure to

correct for multiple comparisons (Benjamini and Hochberg, 1995).

Participants

All experiments were carried out in accordance with a protocol

approved by the Vanderbilt University Institutional Review Board.

Each participant gave informed consent and passed a standard

safety screening.

The same set of 16 participants (8 males, 8 females, mean

age of 23.9 years, range 20–30 years) participated in both of

the new experiments (Process and Format). An additional two

subjects participated in only one of the new fMRI experiments

and thus were excluded from all analyses. Data for the Modality

experiment were drawn from a previous publication (Tombu et al.,

2011) and included 12 subjects (7 males, 5 females, 21–33 years of

age). Our data were drawn from two distinct sets of subjects and

collected on two scanners with different field strengths. However,

all statistical tests were performed within-experiment and the

only cross-experiment analyses examined overlap of activation or

decoding across experiments, making the use of distinct subject sets

and scanners unlikely to drive our results.

Cognitive process experiment:
experimental design and statistical analysis

Behavioral training
All participants performed an initial behavioral training

session in which they practiced the Process tasks (Figure 1A).

During this session (approximately 30min, excluding consent and

safety screening), each participant memorized the color-to-finger

response mapping for the Response Selection (RS) task and became

familiar with both the RS and response inhibition (RI) Go/No-Go

(GNG) tasks.

Tasks
Tasks in this and all other experiments were displayed using

Matlab with the Psychophysics Toolbox (Kleiner et al., 2007)

and custom code. The Process experiment contained two tasks

(Figure 1A): the RS task and the RI (GNG) task. Each of these

tasks was designed to load heavily on a distinct, widely-invoked

executive process—response selection for the RS task and response

inhibition for the RI task (Donders, 1868/1969; Welford, 1952;

Logan et al., 1984; Pashler, 1984, 1994; Logan, 1985; Miyake et al.,

2000; Aron, 2007)—while loading little or not at all on the opposing

process. The RS task consisted of an arbitrary six-alternative visual-

manual stimulus-response mapping. Each trial consisted of the

presentation of a colored disk at fixation (radius: 2.21 degrees of

visual angle) for 500ms, followed by a 1,500ms fixation period until

the beginning of the next trial. Subjects indicated the color of the
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FIGURE 1

Tasks. (A) Cognitive process. Each run of the Process experiment contained two tasks, the Response Selection (RS) task and the Go/No-Go (GNG)
task. Task identity was cued at the beginning of each 24-trial block via the phrases “Response Selection,” or “Go/No-Go,” presented visually. The
visual stimuli were identical for the two tasks (center column), but the appropriate response to each stimulus varied by task (left column: RS; right
column: GNG). On each trial, a central disk was presented in one of six colors. Disk presentation alternated with fixation periods. In the RS task, each
color instructed the participant to press a distinct button. In the Go/No-Go task, five “Go” colors instructed the participant to press a single button. A
sixth, “No-Go,” color instructed the participant to withhold any motor response to that trial, i.e., to inhibit the prepotent “Go” response. (B)
Representational format. Each run of the Format experiment contained two tasks, the Object Spatial Location task and the Object Shape task. At the
beginning of each trial, we presented a visual cue (the words “Space” or “Object” for the Location and Shape tasks, respectively) followed by the
sequential presentation of two sample items (the encoding period). Participants memorized the cued dimension of the samples, and maintained
them in memory over a 12 s delay. In the Location task, subjects maintained the spatial location of each sample item. In the Shape task, subjects
maintained the shape of each sample item. Sample items in both tasks were complex 16-sided polygons. At the end of the delay period, we
presented a single probe item and subjects indicated via button press if the probe was a match to one of the sample items on the cued dimension, or
a non-match (i.e., was di�erent from both sample items). (C) Sensorimotor modality. On each trial of the Modality experiment, we presented a
warning cue (enlarged fixation) followed by a visual (face) or auditory stimulus. Participants made a speeded arbitrary stimulus-response mapping
with 3 possible face-button mappings and three possible sound-speech mappings (see Materials and Methods). Task screens are not drawn to scale.

presented stimulus (blue, cyan, yellow, peach, purple, and brown)

by pressing one of six buttons using the index, middle, or ring finger

of each hand. Color-to-finger mappings were memorized prior to

scanning (see Behavioral Training below). Each of the six colors was

presented four times per block of 24 trials; these blocks alternated

with same-length blocks of RI trials.

The RI task was identical in visual and timing parameters to the

RS task. However, instead of each colored disk being associated with

a specific manual response, subjects performed a GNG decision

on each trial: 5 of the colors were associated with the same Go

response (right thumb) and one color was associated with the

withholding of all responses—a No-Go trial. The No-Go color was

varied from scanning run to scanning run such that each of the

six colors functioned as the No-Go color in one or two runs of the

Process experiment.

For both the RS and GNG tasks, the order of color presentation

was pseudo-randomized subject to the constraints that all colors

appeared an equal number of times in each block, and that the No-

Go color for that imaging run never appeared in the first 4 trials

of a block of either task. This latter constraint was applied to the

GNG task to allow time for prepotency of “Go” responses to build

at the start of each block. The same constraint was also applied to

the RS task to ensure that all stimulus visual attributes and timing

parameters were identical between GNG and RS tasks.

The task was cued prior to each block by visual presentation

of the words “RESPONSE SELECTION” for the RS task, or of

“GO/NO-GO:” to the left of the name of the No-Go color (e.g.,

“GO/NO-GO: RED”) for the RI task. The block task cue was

presented for 4 s and was followed by a 500ms fixation period

before block onset. The RS block cues were always presented in

black, and the GNG block cues were always presented in the No-

Go color. In addition, participants were instructed as to the No-

Go color at the beginning of each fMRI run. All stimuli in both

tasks were presented on a medium gray background, with a black
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fixation point in the center of the screen at all times except during

block cue presentation. Each task run consisted of alternating GNG

and RS blocks of 24 trials each, with 6 s cue periods before each

block (during which fixation was presented for 1.5 s, the cue was

presented for 4 s, and the remaining time consisted of a fixation

point), and with the task for the first block of a run alternating from

run to run. Though the RS and GNG tasks were blocked, we took

advantage of the fact that the timings of the No-Go color trial in

the GNG condition and of the corresponding color trial in the RS

condition were pseudo-randomized within their respective blocks

to resolve event-related activation to these trial types (Donaldson

et al., 2001; Braver et al., 2003). We thus used these event-related

activations for both univariate and multivariate analyses of the

Process experiment.

fMRI procedure
The Process experiment was carried out at the Vanderbilt

University Institute of Imaging Science using a Philips 7 Tesla

fMRI scanner and a 32-channel SENSE (parallel imaging) head coil.

For each subject, the process scanning session included a 1mm

isotropic resolution T1-weighted structural scan (174 1-mm sagittal

slices of 224 × 224 voxels, FOV 224 × 224mm, TR 4.3ms, TE

1.9ms, flip angle 7 degrees, SENSE factor 3) and a series of 3mm

isotropic resolution echo-planar imaging functional scans (35 3-

mm axial slices of 80 × 80 voxels, FOV 240 × 240mm, no gap,

TR 2.0 s, TE 25ms, flip angle 65 degrees, SENSE factor 3). Process

experiment sessions included 13.125 ± 1.025 runs (range 11–14),

each containing 171 volumes (duration 342 s). Each functional

scan was preceded by 10 dummy volumes. We chose to acquire

standard-resolution (3mm isotropic voxels, 2 s TR) images at 7

Tesla in order to maximize signal strength (see, e.g., Ogawa et al.,

1993; Gati et al., 1997) rather than spatial resolution.

fMRI preprocessing
All fMRI data were preprocessed using BrainVoyager QX or

using custom Matlab (MathWorks, Natick, Massachusetts, USA)

code except as noted below. Data were registered to the structural

MRI using standard procedures. Following registration, data were

corrected for slice acquisition time, corrected for motion, subjected

to linear trend removal and a temporal high-pass filter (3 cycles

per run) to remove slow drift components in the signal, and

transformed to Talairach and Tournoux (1988) template space.

Because preliminary analyses showed that spatial position

estimate outputs from BrainVoyager’s motion correction could

support above-chance decoding of task using MVPA, we turned

to ANTs software (Avants et al., 2011) for diffeomorphic motion

correction that does not assume rigid body motion. Non-rigid

motion correction may be justified at 7 Tesla due to increased

image distortions and field inhomogeneity compared to 3 Tesla

fMRI. ANTs motion correction was performed on the ACCRE

supercomputing cluster at Vanderbilt University and removed

nearly all detectable motion from the data. Though this procedure

eliminated a possible confound from our data, preliminary analyses

using BrainVoyager’s standard motion correction algorithms

yielded broadly similar results to our final results, demonstrating

that our findings cannot be explained by the use of diffeomorphic

motion correction.

Next, we removed nuisance components from the data using

a general linear model (GLM). Specifically, we used the NeuroElf

(Jochen Weber, Columbia University). Matlab toolbox functions

for interacting with BrainVoyager proprietary file formats, along

with custom Matlab code, to extract the z-transformed residuals

from a GLM that included only regressors for task block type

(convolved with a canonical HRF) and z-transformed motion

estimates from the initial BrainVoyager motion correction. These

residuals were then added to a constant (to make all values positive,

a requirement of the proprietary BrainVoyager VTC file format)

and used for subsequent analyses. Thus, block-level effects and

motion or position differences across blocks were removed from

our data prior to the main analyses, allowing us to conduct all

analyses based on event-related signals as detailed above.

Finally, we masked all data using a liberal anatomical mask.

Functional (3mm) voxels were included in the mask if they

contained at least one anatomical (1mm) voxel that was identified

as brain tissue in at least 8 of 16 subjects using BrainVoyager’s

automatic tissue segmentation function (or manual segmentation

when the automatic function failed to remove the skull).

Univariate fMRI analysis and functional region
definition

We analyzed the Process experiment using a conventional

group GLM (Friston et al., 1995) voxel-wise analysis, with subject

treated as a random effect, in which we estimated parameter

weights for a series of regressors convolved with a canonical

hemodynamic response function (Boynton et al., 1996). The

GLM included both block-level regressors to account for variance

explained by the block structure of the experiment, and event-

related regressors to account for variance explained by punctate

events (individual trials). The set of event-related regressors

included cue presentation epochs (separate regressors for each

task), Go trials (boxcar with duration equal to the trial-level

response time), No-Go trials (boxcar with duration equivalent to

the mean Go response time during that run), Response Selection

trials of the No-Go color (RS_NGC; boxcar with duration equal

to the trial-level response time), and Response Selection trials of

any other color (RS_Other; boxcar with duration equal to the trial-

level response time). We also included regressors for error trials,

separately for the GNG and RS tasks. We used regressor boxcars

with duration equal to response time in order to account for time-

on-task effects (Grinband et al., 2008). Though we estimated No-

Go “response times” by using mean Go response times, likely

representing an upper bound on No-Go processing times (Logan

and Cowan, 1984; Verbruggen and Logan, 2008;Matzke et al., 2013;

Logan et al., 2014), minor variations in regressor boxcar duration

do not negatively impact MVPA (Woolgar et al., 2014), the main

analysis of interest in this study.

We identified ROIs for later multivariate analysis via contrasts

between parameter weights from the univariate GLM. Specifically,

we used the conjunction of the open contrasts of the No-Go and

the RS_NGC regressors. Prior to taking the conjunction of the

open contrasts, each open contrast map was separately smoothed
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with a Gaussian kernel (FWHM = 3mm) to reduce any effects of

noise and to account forminor variations in spatial alignment. Note

that these open contrasts are liberal in that they are sensitive to

both task-specific demands and more general demands (e.g., neural

response to the presentation of a visual item regardless of task).

This choice of a liberal criterion to identify ROIs is with an eye

toward isolating all brain regions potentially engaged by both tasks,

and has previously been used successfully to examine modality-

sensitive and modality-invariant brain regions (Ivanoff et al., 2009;

Tamber-Rosenau et al., 2013).

GLM conjunction contrasts were thresholded at a voxelwise

alpha of 0.05 and then corrected for multiple comparisons using the

BrainVoyager Cluster-based Statistical Threshold Estimator plug-

in to achieve a familywise error rate of 0.05, yielding an extent

threshold of 42 functional voxels. The resulting contrast maps

were used to identify regions of interest: local maximum contrast

value voxels were identified in each activated brain region without

constraints. Once the local maxima were identified, we created

spherical ROIs (radius: 9mm, including a total of 123 functional

voxels) centered on these voxels. Following this procedure, in order

to remove highly redundant ROIs, we culled ROIs that overlapped

substantially with one another. The final set of Process ROIs is

described in Supplementary Table S1.

ROI-based multivariate pattern analysis
In each set of ROIs—the Process ROIs described above, the

Format andModality ROIs (see below), and in a set of MD network

ROIs based on previously published MD coordinates (Duncan,

2010) (see Supplementary Table S4)—we performed MVPA to test

for sensitivity to task identity. Specifically, we compared RS_NGC

trials to No-Go trials, in effect testing whether neural activity in

each ROI was sensitive to which process (RS vs. RI, respectively)

was demanded in otherwise matched trials.

All MVPA was carried out using LibSVM (Chang and Lin,

2011) and custom Matlab code. Support vector machine classifiers

were trained and tested using a leave-one-run-out approach. The

cost parameter was fixed at 1 as is standard practice for SVMs in

fMRI analysis. Classifiers were trained and tested on patterns of

activity at single points in time ranging from −6 to 16 s relative to

trial onset. Results were aggregated over leave-out folds, averaged

across subjects, and concatenated in time to yield event-related

MVPA timecourses, conceptually similar to conventional event-

related averages of BOLD signal. Such timecourses provide a built-

in control to ensure that sensitivity to task is not merely the result

of holding different task sets or other preparatory states across the

blocks of our experiments, as signal prior to trial onset should

reflect only this preparatory activity. To the extent that pattern

classification during the three sampled fMRI volumes prior to

trial onset (here, −6 to −2 s) is not significantly different from

chance, we need not be concerned with task block-level effects

contaminating our analysis.

Statistical significance of event-related MVPA timecourses was

evaluated at each timepoint using one-tailed t-tests vs. chance

performance (50%). We used one-tailed tests because our goal was

to identify regions with above-chance decoding, as there is no clear

interpretation of significantly below-chance decoding. All tests of

decoding performance were corrected for multiple comparisons via

Bonferroni correction for the number of regions of interest within

each ROI set, i.e., Process, Format, Modality, or MD ROIs. In each

ROI, we extracted peak decoding performance in the fMRI volumes

2–10 s after trial onset, which included the expected peak response

after considering hemodynamic lag.

Searchlight multivariate pattern analysis
In addition to the ROI-based pattern analyses described above,

we performed “searchlight” multivariate pattern analyses over the

entire (masked) brain volume (Kriegeskorte et al., 2006). Each

functional voxel was treated as the center of a new searchlight

locale (radius = 6mm, including 33 functional voxels). MVPA

procedures were identical to those described above for ROI-based

MVPA except that instead of calculating event-related timecourses,

we used a time-compression procedure to capitalize on signal

from the entire trial or task phase. Specifically, each individual

task run was subjected to a fixed-effects, single-run GLM using

regressors identical to those in the main GLM analysis described

above. Parameter weights for conditions of interest (RS_GNG vs.

No-Go) were extracted for each voxel in each locale. These run-

based parameter weights were then used as training and testing

data for MVPA using a leave-one-run-out approach, as above.

MVPA classification results were then projected into the three-

dimensional brain volume for each subject, averaging across leave-

one-run-out folds, to yield an MVPA performance map. These

maps were tested against chance using paired t-tests at each voxel

to yield groupmaps in which subject was treated as a random effect,

comparable to the statistical maps output by standard group GLM

analyses. All such maps were masked with the anatomical brain

mask used for the univariate analyses prior to being projected onto

a Talairach-transformed, inflated brain surface model derived from

the COLIN27 brain (Holmes et al., 1998) using BrainVoyager.

Representational format experiment:
experimental design and statistical analysis

Behavioral training
All participants performed an initial behavioral training session

(lasting approximately 30min) in which they practiced both tasks

of the Format experiment.

Task
The Format experiment contained two tasks (Figure 1B): the

Object Spatial Location task and the Object Shape task. In both

tasks, participants performed a series of working memory trials. A

white fixation point was presented on a black screen throughout

the experiment except when textual cues were provided at fixation.

Each trial began with a 1.8 s cue indicating the upcoming task,

i.e., the word “SPACE” (Location task) or “OBJECT” (Shape task)

displayed in white. After a 200ms fixation screen, two sample items

were sequentially presented for and encoding period of 1 s per item.

The encoding period was followed by a 12 s fixation-only delay,

which was followed by presentation of a probe item for 1 s and then
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a 3 s response interval. Participants indicated if the probe matched

either of the sample items (“Match” response, right index finger)

or did not match either item (“Nonmatch” response, right middle

finger). Each trial was followed by an 8 s inter-trial interval (ITI;

fixation only), yielding a total of 11 s from the offset of the probe

until the task cue that began the next trial. We designed the Format

experiment to use long ITIs so that we could to resolve event-

related activations for both univariate and multivariate analyses.

Trials were blocked by task, though as stated above we also cued the

task immediately before each trial to reduce memory requirements

because of the long ITI and delay period durations. Importantly,

the stimuli on each trial imposed demands on only one of the

formats. Specifically, in each trial of the Location task, only the

spatial location of stimuli was varied between items while item

shape was held constant for all items. In each trial of the Shape task,

only the item shape was varied between items while item location

was held constant for all items. By varying only the task-relevant

dimension on each trial, we made the task-irrelevant dimension

uninformative for response choice. This scheme reduced the chance

that participants would become confused about which task to

perform and would attempt to encode both task dimensions

instead of performing only the cued task. Moreover, by using

both bottom-up (i.e., presence of stimulus variation in the task-

relevant dimension only) and top-down (task instructions) cues for

distinguishing between Location and Shape trials, we increased the

distinctiveness of the Format tasks and hence the power of MVPA

in distinguishing between neural ensembles involved in each of

these tasks.

In each trial of both the Shape and Location tasks, we generated

three distinct stimuli. Two of these were randomly chosen as

sample items. On 50% of trials, the remaining item was used as

the probe (Non-match trials), while on the other (Match) trials, the

probe was identical to one of the sample items and we discarded

the third generated item. All stimulus and probe items consisted

of novel, randomly generated, irregular polygons positioned within

the viewable area of the projection screen in the 7 Tesla scanner

(approximate dimensions, 21.6 degrees of visual angle wide × 8.4

degrees of visual angle high). Stimuli were generated by drawing

a 16-sided polygon whose vertices were separated by 22.5 degrees

of rotational angle and were positioned at a random radius in

the range 0.66–1.33 degrees of visual angle, subjected to jitters

of 11.25 degrees of rotational angle, and then distorted further.

These final distortions were implemented by moving each point in

the polygon a set distance, controlled by the distortion parameter

(which was in turn controlled by the staircasing; see Staircasing

below), in a random direction. Item locations were generated as

follows: A randompoint within the viewable screen area was chosen

as the center of the original (non-distorted) polygon. A second

stimulus location (on Location trials) was chosen by moving a set

distance, controlled by the distance parameter (also controlled by

the staircasing; see Staircasing), in a random direction, subject to

the constraint that the chosen location had to be within the viewable

area of the display. A third stimulus location (to be used for non-

match trials) was generated identically, but with the additional

constraint that it had to be at least the set distance (controlled by

the same distance parameter) from each of the other locations on

that trial.

Staircasing
Both tasks were independently staircased to ensure that the

tasks were difficult enough that participants had an incentive to

attend selectively to the appropriate Location or Shape information.

Each time a subject reported four correct answers on four

successive trials of a task, the task-specific staircase parameter

was adjusted to make the task more difficult. Each time a subject

reported a single incorrect answer, the task-specific staircase

parameter was adjusted to make the task easier. For the Location

task, the staircased parameter was the distance parameter and was

constrained to be within the range 0–4.24 degrees of visual angle.

For the Shape task, the staircased parameter was the distortion

parameter and was constrained to be within the range 0.07–1.06

degrees of visual angle.

fMRI procedure and preprocessing
fMRI data collection and preprocessing were identical to

those of the Process experiment except as noted below. In the

Format experiment, we collected 10.500 ± 1.033 runs (range 9–

12), each containing 230 volumes (duration 460 s), from each

subject. Functional data were registered to the structural scans

from the Process experiment in order to place Format and Process

data in a common space. Unlike for the Process experiment, for

the Format experiment we performed motion correction using

BrainVoyager’s standard motion correction algorithm because

there was no evidence that position or motion contributed to

our decoding results in the Format experiment and because of

the substantial time and resources that would be necessary for

diffeomorphic motion correction.

Univariate fMRI analysis and functional region
definition

Univariate analysis methods for the Format experiment were

identical to those for the Process experiment except as noted below.

In the Format experiment, for each of the Location and Shape

trials, the set of event-related regressors included cue presentation

epochs (1.8 s boxcar), encoding periods (2 s), delay periods (12 s),

match-trial probes (duration of trial-based response time), and

non-match-trial probes (duration of trial-based response time).

We also included parallel regressors for error trial components,

separately for each task and trial phase.

We identified functional ROIs via the conjunction of the open

contrasts of the Location and Shape encoding period regressors

(see Multivariate pattern analysis below for justification of the

use of the encoding period). As in the Process experiment, prior

to taking the conjunction of the open contrasts, each individual

contrast map was smoothed with a Gaussian kernel (FWHM =

3mm) to reduce any effects of noise and to account for minor

variations in spatial alignment. GLM conjunction contrasts were

thresholded at a voxelwise alpha of 0.05 and then corrected

for multiple comparisons using the BrainVoyager Cluster-based

Statistical Threshold Estimator plug-in to achieve a familywise

error rate of 0.05, yielding an extent threshold of 93 functional

voxels. As in the Process experiment, the resulting contrast maps

were used to isolate regions of interest: local maximum contrast
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value voxels were identified in each activated brain region without

constraints. Once the local maxima were identified, we created

spherical ROIs (radius: 9mm, including a total of 123 functional

voxels) centered on these voxels. Following this procedure, in order

to remove highly redundant ROIs, we culled ROIs that overlapped

substantially with one another. The final set of Format ROIs is

described in Supplementary Table S2.

Multivariate pattern analysis
Except as noted below, ROI-based and searchlight MVPA

procedures for the Format experiment were identical to those for

the Process experiment. In the Format experiment, we compared

Location to Shape encoding periods in each Format ROI as well as

each Process (see above), Modality (see below) and MD (Duncan,

2010) ROI. In effect, we tested whether neural activity underlying

the encoding of visual items into internal perceptual or memory

representations was sensitive to the Format demanded by the

Location or Shape tasks. We focused on the encoding period rather

than the later trial phases of the Format experiment for three

reasons. First and foremost, we were interested in distinct Formats,

regardless of whether information was in working memory or was

represented using perceptual mechanisms; by using the encoding

period, we were able to capitalize on both bottom-up sensory

signals and top-down memory representation, increasing our

sensitivity (see above). Second, we did not observe statistically

significant decoding of Shape vs. Location during delay periods, an

unsurprising result given that even such “easy” decoding problems

as stimulus identity or orientation often show successful decoding

only in visual (and sometimes portions of parietal) cortex. Third,

the encoding period did not include motor responses, ruling out

one nuisance source of decoding in motor regions of the brain

during, for example, the probe/response period. In each ROI, we

extracted peak decoding performance in the fMRI volumes 4–

12 s after trial onset, which included the expected peak response

after considering hemodynamic lag and the 2 s cue period prior to

stimulus onset.

As in the Process experiment, we performed a searchlight

MVPA analysis of the Format data using a time-compression

procedure to capitalize on signal from the entire encoding period

on each trial. After we subjected each individual task run to a

fixed-effects, single-run GLM using regressors identical to those in

the main GLM analysis described above, we extracted parameter

weights for conditions of interest (Location encoding vs. Shape

encoding) in each voxel in each locale and submitted these

parameter estimates to searchlight MVPA.

Sensorimotor modality experiment:
experimental design and statistical analysis

The Modality experiment utilized 3-Tesla fMRI data originally

collected for Tombu et al. (2011) and reanalyzed in Tamber-

Rosenau et al. (2013). Briefly, the Modality experiment used 7–

9 runs per subject with 20 slices of 4.5mm thickness (0.5mm

gap), an in-plane resolution of 3.4375 × 3.4375mm, a TR of

1.2 s, and approximately 301 s per run. On each trial of the

Modality experiment, subjects performed either a visual-manual

(VM) or an auditory-vocal (AV) stimulus-response mapping task

(Figure 1C). TheModality experiment also included dual-task trials

that are not analyzed here. To obtain Modality experiment ROIs

(Supplementary Table S3), we used the ROIs originally defined

in Tamber-Rosenau et al. (2013), which were obtained using a

conjunction of open contrasts similar to that used for the Process

and Format experiments. We do not perform ROI-based MVPA of

the Modality experiment in the Modality (or MD) ROIs, as such

an analysis has already been published (Tamber-Rosenau et al.,

2013). However, for the present study we performed ROI-based

MVPA of modality in the Process and Format ROIs, using identical

procedures to the Process and Format experiments’ ROI-based

MVPA. In each ROI, we extracted peak decoding performance

in the fMRI volumes 3.6–9.6 s after trial onset, which included

the expected peak response after considering hemodynamic lag.

Furthermore, not considering signal prior to 3.6 s ensures that we

ignore any decoding that could have been driven by vocal artifact

(which does not follow the conventional fMRI hemodynamic lag).

We also carried out a searchlight MVPA analysis of the

Modality experiment. Prior to the searchlight MVPA analysis, we

preprocessed the Modality experiment data similarly to the Process

and Format data (for further details, see Tamber-Rosenau et al.,

2013’s Expt. 2), and then we regressed out motion estimates as well

as z-transformed BOLD signals from four ventricle regions. These

nuisance regressors were removed to account for signal artifacts

due to the presence of vocal responses in the AV, but not VM,

trials of the Modality data set. Taking this searchlight analysis of

the Modality experiment together with those of the Process and

Format experiments allowed us to examine the full space defined

by all three hypothesized resource dimensions (see Introduction).

Results

Cognitive process experiment

Behavior
The Process experiment used a 6-alternative stimulus-response

mapping task to load RS and a Go/No-Go (GNG) task to load

RI (Figure 1A). Behavioral performance was high for both tasks

(RS: accuracy = 92.09%, RT = 680ms; RI: accuracy = 95.28%).

As expected, in the RI task there was a significant reduction in

performance [t(15) = 9.1717, p = 1.5392 × 10−7] for No-Go

trials (accuracy: 83.13%) compared to Go trials (accuracy: 97.71%),

consistent with No-Go trials requiring inhibition of a prepotent Go

response (e.g., Verbruggen and Logan, 2008). Consistent with the

fact that RS demands, and thus response times, scale with choice

complexity (Karlin and Kestenbaum, 1968; Van Selst and Jolicoeur,

1997; Marois et al., 2006), we observed slowed responses in the RS

trials (680ms) compared to Go trials (391ms). Similarly, that the

Go response was withheld on most No-Go trials suggests that we

successfully evoked RI on No-Go trials.

Univariate fMRI analysis
The primary purpose of the univariate analysis was to identify

overlapping activation for RS and RI, as expected of brain regions
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that contain a common neural resource for these two distinct

processes. In turn, this overlap formed the basis of the Process

ROIs in which we later applied MVPA. We observed overlap

(Figure 2A, Supplementary Table S1) in regions broadly similar to

the MD network, consistent with previous descriptions of task-

invariant recruitment of MD regions (Duncan and Owen, 2000;

Duncan, 2010; Fedorenko et al., 2013). Occipital visual cortex also

survived the conjunction, presumably because both tasks relied on

visual stimuli.

ROI multivariate timecourses
We evaluated whether each ROI contained neural ensembles

that were specialized within the process dimension by using

MVPA to decode between stimulus-matched RS and No-Go

trials in a time-resolved fashion. All Process ROIs except a

subset of visual cortex exhibited above-chance decoding of RS

vs. RI (Supplementary Table S1). Process decoding argues against

a single-resource model because the very brain regions that are

recruited across multiple processes (based on univariate fMRI)

distinguish between these processes, as revealed by spatial patterns

of activation. Thus, MVPA yielded evidence against the process

invariance expected of a single pluripotent resource. The major

exception appeared to be in the occipital lobe, which is unsurprising

given the identical visual stimuli.

Representational format experiment

Behavior
The Format experiment used spatial location and object shape

WM tasks to load location and shape representational formats,

respectively (Figure 1B). Though staircasing kept task accuracies

from both ceiling and floor (location: 80.08%, shape: 77.00%),

accuracies [t(15) = 2.9426, p= 0.0101] and response times [location:

1,374ms, shape: 1,435ms, t(15) = −2.4495, p = 0.0271] differed

across tasks. We focused our MVPA on the stimulus encoding

period (approximately 13 seconds prior to responses), we only

analyzed correct trials, and we mean-centered all MVPA analyses

by removing region-based amplitude differences prior to MVPA

[mean-centering limits contributions of difficulty or response time

to decoding (Esterman et al., 2009; Tamber-Rosenau et al., 2011;

Woolgar et al., 2014)]. Thus, these behavioral effects are unlikely to

explain our MVPA results.

Univariate fMRI analysis
We identified overlapping activations for location and

shape WM encoding, which then served as the basis for the

Format ROIs. We focused on encoding because it produces

more robust activation than maintenance of items in WM

(see Materials & Methods). We observed overlap (Figure 2B,

Supplementary Table S2) in regions that were broadly similar

to the MD network and were more spatially extensive than the

Process conjunction activity.

ROI multivariate timecourses
All Format ROIs exhibited above-chance decoding during the

WM encoding period, except for regions of the right insula,

subcortical and cerebellar regions, and some visual cortical regions

(Supplementary Table S2). Based on the results of the Format

experiment alone, it may be concluded that the right insula, in

particular, could serve as a locus for a format-invariant resource,

although with these results we cannot discard the possibility that

portions of the visual cortex may also be format-invariant.

Modality experiment

As the ROI-based modality results have been previously

reported, we refer the reader to that publication’s Table 3 (Tamber-

Rosenau et al., 2013), where this experiment is discussed as

Experiment 2. Briefly, all association cortex ROIs that were

jointly activated across modalities in univariate analyses supported

decoding of modality except for the DLPFC and anterior insula.

Cross-experiment decoding of task
dimensions

Both the Process and Format experiments revealed decoding

of their respective dimensions in most cortical ROIs. Similarly,

a previous analysis of Modality ROIs (Tamber-Rosenau et al.,

2013) showed that most ROIs in that experiment supported

decoding of modality (see that paper’s Table 3). As explained

in the Introduction, ROIs that support decoding of a task

dimension do so because they contain specialized neural ensembles

for that dimension, and these ROIs therefore do not embody

single pluripotent neural populations. However, each experiment

yielded some cortical ROIs that failed to decode that experiment’s

dimension, i.e., that might include neural ensembles that are

invariant with respect to that experiment’s dimension: anterior

insula (AI) and dorsolateral prefrontal cortex (DLPFC) for

Modality, visual cortical areas for Process, and areas of the insula

and visual cortex for Format. The invariance of these ROIs to the

dimension tested in their respective experimentsmakes them prime

candidates to embody pluripotent flexible neural populations.

However, any ROI that truly embodies such a population should

be invariant to all theorized task dimensions, not just one of them.

Thus, we subjected the ROIs isolated from each experiment (e.g.,

Format) to decoding within the two other dimensions (e.g., Process

and Modality).

Most Process ROIs decoded format and modality

(Supplementary Table S1). Most importantly, each Process

ROI that failed to decode process (i.e., areas of visual cortex)

successfully decoded both other dimensions. Similarly, most

Format ROIs, including all Format ROIs that failed to decode

format (i.e., areas of the insula and visual cortex), decoded process

and modality (Supplementary Table S2). Finally, most Modality

ROIs decoded process and format (Supplementary Table S3) and

each Modality ROI that previously failed to decode modality (i.e.,

AI and DLPFC) successfully decoded at least one other dimension

(Supplementary Figures S1, S2). Thus, every ROI contained
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FIGURE 2

Functional ROIs. Results plotted on axial slices from the group-average Talairach-transformed brain. (A) Conjunction of open contrasts of No-Go
and RS trials with matching stimuli, corrected for family-wise error to p = 0.05 using a cluster threshold of 42 functional voxels. (B) Conjunction of
open contrasts of Location and Shape WM encoding, corrected for family-wise error to p = 0.05 using a cluster threshold of 93 functional voxels.
Results of analyses within these ROIs are presented in Supplementary Figures S1–S4 and Supplementary Tables S1–S4.

neural ensembles that were specialized within at least one of the

tested dimensions.

Because MD ROIs have been proposed to be domain-

general flexible processors (Fedorenko et al., 2013), we

repeated the MVPA in MD regions. Each MD ROI decoded

along at least one dimension (Supplementary Figures S3, S4,

Supplementary Table S4), suggesting that the domain-generality

of MD activations stems from neighboring but distinct neural

populations specialized for particular modalities, processes, or

formats. Though decoding of task variables within MD regions is

not novel (e.g., Woolgar et al., 2016), the present results extend this

decoding to a broader range of task dimensions (see Introduction)

and provide converging evidence that our task-based ROIs are

comparable to previously-identified MD ROIs.

Searchlight analysis of cognitive process,
representational format, and sensorimotor
modality

The ROI analysis provides only limited coverage of the

brain, thus limiting conclusions about the cortical topography of

decoding. Our ROI definition could have failed to detect some

activation foci due to the conservative nature of conjunction

analysis (Friston et al., 2005; Nichols et al., 2005), preventing the

application of MVPA to additional relevant brain regions. Thus,

we also performed whole-brain “searchlight” MVPA (Kriegeskorte

et al., 2006). While the searchlight is able to explore the brain

exhaustively, it uses smaller volumes of brain tissue for each

pattern analysis, potentially reducing sensitivity. The searchlight

analysis is also limited in its interpretative power in the case

of brain regions that would be involved in only one task, as

decoding in these regions could either mean that a single neural

population is involved in one task and largely uninvolved in the

other task, or that two neural populations are spatially segregated

and differentially involved in the two tasks. Given these caveats, the

searchlight analysis should be regarded as complementary to the

ROI-based analysis.

Decoding differed widely across task dimensions, both

in extent—decoding of Process encompassed most of the

cortical surface whereas decoding of Format was much more

circumscribed—and topography. Topographic differences

accorded with known functional specification: regions of early

visual cortex failed to decode between identical visual stimuli in

the Process experiment (Figure 3A; note absence of decoding near

occipital pole consistent with centrally-presented visual stimulus);

several frontal regions were invariant to modality (Figure 3C),

consistent with prior univariate work (e.g., Dux et al., 2006; Ivanoff

et al., 2009); and the Format experiment supported decoding

mainly in dorsal and lateral frontal areas, parietal cortex, and

ventral occipitotemporal areas (Figure 3B)—all thought to prefer

either location or object-property formats such as shape (Mishkin

et al., 1983; Goodale and Milner, 1992; Sala et al., 2003).

A notable result of the searchlight analysis was the extent of

decoding of cognitive process (Figure 3A). Process decoding was

observed in all four cortical lobes, and in fact in most of the

cerebral cortex. This result is especially surprising because process

decoding was exclusively performed between trials with identical

stimulus conditions, subjected to the same data analysis, and thus

could not have been driven by anything other than the process

carried out in each of the two tasks. The lone difference between
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FIGURE 3

Searchlight decoding of individual dimensions. Results projected onto the inflated surface of the Talairach-transformed COLIN27 brain. Each
experiment is thresholded at false discovery rate q < 0.05. (A) Process (response inhibition vs. response selection). (B) Format (location vs. shape
encoding). (C) Modality (visual-manual vs. auditory-vocal response selection).

conditions aside from process was the presence of a button press

for RS, but not No-Go, trials; this response difference is unlikely to

have driven our results because we applied non-rigid-body motion

correction, subsequently regressed out estimates of motion, and

applied mean subtraction prior toMVPA (seeMethods). Moreover,

time-resolved ROI MVPA (Supplementary Figure S3) shows no

evidence of motion-related signals, which would be expected to

lead to spikes in decoding immediately after the response instead

of following the canonical BOLD response delay.

The extensive process decoding we observed may not be that

surprising, however, if information processing in the brain relies

on the concerted efforts of many networks, resulting in widespread

changes in brain states—coordinated by frontoparietal cortex (Cole

et al., 2013)—across task conditions (Cole et al., 2014; Godwin et al.,

2015). In accord with this view, performance of distinct cognitive

tasks has been associated not only with traditional task-positive

(Fox et al., 2005) or MD (Duncan and Owen, 2000; Duncan, 2010;

Fedorenko et al., 2013) networks, but also with networks that were

once thought to be related to rest, default, or “task-negative” states

(Buckner et al., 2008; Andrews-Hanna et al., 2010; Passingham

et al., 2010; Spreng et al., 2010, 2014; Gerlach et al., 2011; Leech

et al., 2011; Mantini and Vanduffel, 2013) and with additional,

topographically segregated, cortical networks (Dosenbach et al.,

2006; Seeley et al., 2007; Vincent et al., 2008; Goulden et al., 2014).

Consistent with this notion, a recent study has shown widespread,

unselective recordings of task-relevant information across many

regions of the mouse brain, spanning sensory cortex and much of

the forebrain (Stringer et al., 2019). Taking these various findings

together, much of cortex may be associated with task information

processing, which could explain widespread process decoding. It is

also possible, however, that large swathes of cortex may be involved

exclusively with only one or the other process task, which would

also lead to extremely widespread decoding in brain regions that

did not pass the univariate conjunction analysis we used to define

ROIs. Thus, we reiterate that significant decoding in this and other

analyses should be used only to reject the hypothesis that the same

neural populations or sub-regions are similarly engaged for the two

conditions compared with MVPA.

The widespread decoding patterns for each task dimensions

notwithstanding, it is the analysis of the overlap of these patterns

that is particularly enlightening. For one, this analysis revealed that

decoding was observed for at least one task dimension in virtually

all regions of cortex (Figure 4), ruling out the possibility that

pluripotent neural ensembles underlie domain-general activation

of any cortical area. The only notable exception to this result was

orbitofrontal cortex near the rostral prefrontal MD ROIs, where

proximity to sinus cavities reduces fMRI signal and requires special

imaging sequences to compensate (e.g., Deichmann et al., 2003;

Weiskopf et al., 2007). In support of this account, we observed no

univariate conjunction activation, nor any single-task activation,
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within the rostral prefrontal MD ROIs except for an activation

driven by the Location task of the Format experiment that partially

overlapped the right rostral prefrontal MD ROI.

More importantly, the overlap analysis revealed that the regions

that classify all three tested dimensions (Figure 4, brown) strongly

overlapped with the MD network [Figure 4, white outlines, derived

from Fedorenko et al. (2013), their Figure 1, and from http://

imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem]. Calculated on

the cortical surface, 55.2% of the area subtended by regions

decoding each of the three task dimensions overlapped with the

MD network. Furthermore, most remaining cortex that decoded all

three task dimensions is adjacent to MD cortex (compare Figure 4

brown to Figure 4 white outlines) and may correspond to the

MD penumbra regions that show weaker co-activations (Assem

et al., 2020). These findings are striking because they indicate

recruitment of specialized neural populations in MD regions for

distinct modalities, formats, and processes.

Discussion

This research evaluated functional specification throughout the

human cerebral cortex for pairs of tasks that varied along a multi-

dimensional task space comprised of modalities, formats, and

processes (c.f., Wickens, 1980, 2008). For each of these dimensions,

we observed with univariate analyses several brain regions that

were jointly engaged by two distinct tasks that varied along a

single dimension. However, the multivariate analyses revealed that

each of these cortical ROIs supported decoding of at least one

task dimension, consistent with the notion that distinct functional

domains—specialized sub-regions or neural ensembles (Kamitani

and Tong, 2005, 2006; Peelen and Downing, 2007; Kamitani

and Sawahata, 2010; Op de Beeck, 2010a,b; Lee and McCarthy,

2014)—can underlie univariate activation overlap across tasks. The

same findings were obtained with searchlight MVPA; all cortical

areas supported MVPA decoding of at least one task dimension.

Together, these results constrain the extent of the flexibility of

neural populations in the cerebral cortex to encode arbitrary

categories within distinct task dimensions. Indeed, our results

suggest that brain regions that are involved in a wide variety of

tasks are mosaics of neural populations or sub-regions that are

preferentially recruited for tasks varying along the dimensions

of a classically-inspired matrix describing all cognitive tasks (c.f.,

Wickens, 1980, 1984, 2002, 2008). Thus, we suggest that even while

these brain regions might be thought of as “domain general” at

the scale of the larger ROI, they may be subdivided into spatially

segregated neural populations or sub-regions that exhibit biases

for particular modalities, processes, or formats. This is consistent

with univariate findings of activation preferences for different task

categories in association cortex (Assem et al., 2020, 2022, 2024).

The set of regions that classified all tested dimensions closely

overlaps the MD network, which has been proposed to reflect

flexible, domain-general cognition (Fedorenko et al., 2013). Our

results suggest that functionally pluripotent neural populations

equally capable to encode all three task dimensions may not

underlie the ubiquitous MD activation observed in tasks that

vary in modalities, processes, and formats because if identical

populations encoded information without regard to changes along

these task dimensions, spatial patterns of mean-centered fMRI

signal in the MD network would not have allowed decoding

between tasks (Tamber-Rosenau et al., 2013; Lee and McCarthy,

2014). Instead, adjacent or interleaved (e.g., Fedorenko et al., 2010,

2012;Michalka et al., 2015) functional domains or neural ensembles

in the MD network underlie representations of distinct modalities,

processes, and formats. The remarkable localization of decoding

of all three multiple-resources dimensions to MD regions is likely

to be meaningful because interleaved representations within a

brain region facilitate functional interactions at similar scales

of abstraction (e.g., Roe et al., 2009, 2012). Thus, even though

our results found no evidence of functionally equipotent neural

populations, they paradoxically reinforce the idea that MD regions

serve multiple purposes because they are the primary cortical foci

in which encoding of multiple task dimensions converges.

As noted above, previous studies have demonstrated decoding

of task variables with MVPA in similar fronto-parietal MD regions

to those we identified as supporting decoding of all task dimensions

(see Woolgar et al., 2016 for review and meta-analysis). Our

focus on a set of tasks with systematically varying modalities,

formats, and processes addresses a distinct theoretical concept

from these prior studies. Specifically, prior studies have focused

on decoding sensory content within a single sensory modality,

motor performance within a single motor modality, or task rule

representations (e.g., specific rules that all shared a common if-

then format) to assess whether specific representations are stored

in these regions. These are important topics of investigation, but

they investigate a narrower construct of flexibility compared to

the present systematic study of encoding of task dimensions.

In addition, our conceptualization of task dimensions provides

ready integration between the present results and a decades-long

psychology and human factors literature on information processing

that validates the application of such conceptualization (e.g., Navon

and Gopher, 1979; Wickens, 1980; Navon and Miller, 2002; Tombu

and Jolicoeur, 2003; Boles et al., 2007; Salvucci and Taatgen, 2008;

Proctor and Vu, 2010; Martins, 2016).

Limitations and alternative explanations

Our results could be framed under a rapid adaptive coding

framework—the idea that brain regions embodying flexibility

contain pluripotent neural populations that represent immediately

task-relevant information (Duncan, 2001, 2010). According to this

framework, ensembles of neurons in a given flexible region may be

initially functionally pluripotent but momentarily adopt a specific

information code so that they represent a specific task dimension.

However, to the degree that these codes are stable over the timescale

of our experiments (i.e., hours)—a necessity for decoding, given

the leave-one-run-out MVPA procedures—such codes are like

any other population distinction within a broader brain region

and constitute specialization of neural ensembles. Additionally, if

rapid adaptive coding explained our results, such coding should

be observed throughout the MD network because of the minimal

functional distinction among MD regions (Woolgar et al., 2011;

Erez and Duncan, 2015). However, we observed that MD regions

are heterogeneous in the degree to which they represent different
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FIGURE 4

Overlap of searchlight decoding of process, format, and modality. Results projected onto the inflated surface of the Talairach-transformed COLIN27
brain. Each experiment is thresholded at false discovery rate q < 0.05. White outlines represent the MD network. We emphasize that the brown color
represents areas of overlap of all dimensions of decoding; meaning that these locations had distinct decoding patterns (as detected via searchlight
MVPA) for the di�erent conditions of each task dimension: process, format, or modality. In other words, these regions contain the greatest
heterogeneity of information decoding across the tested dimensions. These maps are best understood as complementary to those in Figure 3, which
depict decoding for each individual dimension.

task variables, and that such heterogeneity generally reflects well-

established organization of the cerebral cortex (e.g., modality-

specific representations in posterior regions). Thus, we conclude

that our results are unlikely to be solely explained by rapid

adaptive coding within pluripotent neural populations. We do

not mean to reject adaptive coding, as it is a likely mechanism

by which arbitrary tasks can be encoded in a given cortical

region. Rather, we suggest that adaptive coding is built on broad

functional biases in neurons (analogous, for example, to orientation

tuning in visual cortex) that lead to different neural populations

representing distinct task dimensions for at least the duration of

task performance.

The spatial resolution limitations of fMRI and MVPA prevent

us from ruling out single pluripotent neurons. It is possible, for

example, that two tasks varying along a given dimension recruit a

common subset of neurons (see, e.g., Rao et al., 1997; Cromer et al.,

2010) and that the pattern differences we observe using MVPA

are driven by a small pool of neighboring but non-overlapping

neurons recruited by each task. This account is unlikely, however,

because MVPA is most sensitive to macroscopic patterns of neural
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populations on the scale of voxels (Op de Beeck, 2010a,b). Thus,

if there are neurons that are truly pluripotent, they are most likely

rare compared to those that show greater specificity.

We also cannot rule out the contribution of “mixed selectivity”

to our signal. Mixed selectivity is the notion that neural populations

can encode information that cannot be unambiguously extracted

from single neurons’ activity because each neuron’s information

content is highly dependent on the context of neighboring

neurons’ activity (Rigotti et al., 2013; Fusi et al., 2016). A similar

consideration may apply at the scale of regions (vs. neural

populations) and voxels (vs. single neurons or neural circuits).

However, even if mixed selectivity is a property of the signals

we report, it is not clear how it would relate to spatial decoding

at the scale of voxels, especially since we removed ROI- or

searchlight-wide BOLD amplitude differences. Thus, while mixed

selectivity may exist, it does so orthogonally to our findings, which

require spatial segregation of biases in large- (voxel-) scale neural

populations or sub-regions to decode information.

Our decoding, even when significant, was not near 100%. First,

we note that the decoding we observed is well within the range

typically evaluated as meaningful in this literature; for example,

significant decoding in similar brain regions in past studies is

generally below 60% (e.g., Woolgar et al., 2011) and is often

as low as 52% (e.g., Reverberi et al., 2011; Erez and Duncan,

2015). Moreover, there are a number of possible accounts to

explain decoding levels well below 100%. For one, numerically

low decoding may reflect the absence of model optimization (e.g.,

feature selection of voxels considered the most informative, c.f.,

Esterman et al., 2009; or, cost-parameter optimization, c.f. Tamber-

Rosenau et al., 2011); studies that apply such optimizations often

observe comparatively high MVPA performance (e.g., Kamitani

and Tong, 2005; Polyn et al., 2005). Low decoding levels could

also reflect the degree of spatial segregation of task-specific neural

populations in each brain region; the more overlap between such

neural populations the lesser the power to discriminate between

their activity. That said, we note that our conclusions are primarily

qualitative in nature; i.e., do we find significant evidence of

segregation of function or not? Consistent with this viewpoint,

meta-analysis of MVPA in the MD network has considered the

localization of significant decoding, rather than its magnitude, as

the yardstick for attributing specific task encoding to distinct brain

regions (e.g., Woolgar et al., 2016).

Finally, while we focused on the cerebral cortex, we did

not observe decoding of task dimensions in several subcortical

areas. First, subcortical regions generally suffer from lower signal-

to-noise ratio using standard fMRI imaging sequences, perhaps

undermining our ability to decode in these regions. Second, the

notion that MVPA mainly detects large-scale patterns (Op de

Beeck, 2010a,b) may explain why several subcortical nuclei did

not consistently support decoding in the present study: many

subcortical structures are small and our methodology lacked the

spatial resolution to distinguish separate neural populations in

them because they contain too few functional voxels. Indeed,

MVPA inherently requires the use of comparatively large volumes

of tissue in each test because of the multi-voxel nature of the

patterns it considers. ROIs at this scale most likely encompass

multiple subcortical structures, reducing our sensitivity and

specificity in these regions. Higher-resolution imaging could

address these shortcomings in future studies. It is worth noting that

the fact that subcortical regions do not support broad decoding

of Process in particular provides further reassurance that the

widespread decoding of this dimension cannot be attributed to, e.g.,

uncorrected motion or other volume-wide spurious causes.

Conclusions

We examined tasks varying in three dimensions theorized

by classic cognitive models and found that all regions of

cortex contain spatially segregated neural populations that are

functionally distinct for different categorical levels of at least one

of these task dimensions. Thus, there are no uniformly functionally

pluripotent neural ensembles in the human cerebral cortex that

are measurable by MVPA applied to fMRI data. This finding

constrains how brain regions with adaptive coding properties

implement flexible cognition. In particular, these findings suggest

that domain-general resources or bottlenecks postulated by classic

psychological models are not likely to stem from truly domain-

general neural resource pools. Paradoxically, these results also

explain why a consistent cortical network underlies performance

in a wide range of tasks (Fox et al., 2005; Duncan, 2010)—

these are the very brain regions that contain closely juxtaposed

neural ensembles specialized within all three task dimensions. We

speculate that such proximity of specialized neural populationsmay

facilitate neural interactions across these dimensions to efficiently

encode task-relevant information in order to rapidly implement

adaptive behavior.
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