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Our ability to share memories constitutes a social foundation of our world.

When exposed to another person’smemory, individuals canmentally reconstruct

the events described, even if they were not present during the related events.

However, the extent to which the neuronal connectivity patterns elicited by

the mental reconstruction of an event mirror those present in the brains of

individuals who experienced the original event remains unclear. Through two

independent fMRI experiments, we explore the Functional Connectivity (FC)

patterns at di�erent timescales associated with these cognitive processes using

the innovative Multiscale Functional Connectivity (MFC) technique. This study

aims to shed light on how our brains construct mental representations of

scenes in a movie compared to the verbal transmission of the same scenes.

Our results demonstrated that the Default Mode Network (DMN) plays a crucial

role in these experiments and exhibits unique FC patterns across di�erent

timescales, yet remarkably consistent among participants. In addition, we found

significant connectivity patterns within the temporal cortex, including significant

contributions of the temporal pole and the fusiform gyrus, which exhibited a

pivotal role in cooperation with the DMN in both experiments.

KEYWORDS

Multivariate Variational Mode Decomposition (MVMD), fMRI, Default Mode Network

(DMN), temporal pole, episodic memory (EM)

1 Introduction

Humans can mentally reconstruct events when exposed to another person’s memory,

even if they were not physically present during the related events. Although this

seemingly effortless skill is inherently private, personal, and prone to errors (Carpenter

et al., 2021), it is also vital for sustaining our human societies (Wang, 2021). By

sharing memories, we can empathize and form strong bonds with others. In turn, this

helps us to build relationships, foster a sense of cultural identity, and comprehend

our past (Schacter and Coyle, 1995). At the individual level, episodic memories shape

our identity, drive how we set our goals, and help us make decisions (Schacter

and Coyle, 1995). Furthermore, they play a fundamental role in several neurological

disorders (Dere et al., 2010). For instance, the deficit of episodic memories stands

as a recognized cognitive feature associated with depression (James et al., 2021).
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These reasons make exploring how we form and transmit

episodic memories an area of great interest, which bears profound

implications for neuroscience, psychology, sociology, and even

artificial intelligence (Martin et al., 2022). Understanding how

memory works is relevant for gaining a better knowledge of

human behavior and, at the same time, for advancing the research

for developing effective neurological treatments. Nevertheless,

studying the neurophysiological mechanisms that underlie episodic

memories is challenging in practice. The human brain is a complex

dynamic system constantly fluctuating at distinctive timescales,

making analyzing brain signals profoundly challenging (Bolton

et al., 2020).

For decades, researchers have used several neuroimaging

techniques to investigate the human brain. One commonly used

neuroimaging technique for this purpose is functional Magnetic

Resonance Imaging (fMRI), which allows researchers to detect

changes in brain activity by indirectly measuring the Blood Oxygen

Level Dependent (BOLD) effect (Power et al., 2011; Morante et al.,

2021). By analyzing fMRI data, researchers can infer the underlying

Functional Connectivity (FC) patterns associated with the brain

activity elicited during the scanner session.

Among other research areas of interest, linguist

communication (Dronkers et al., 2007; Geranmayeh et al.,

2014; Novén et al., 2021), and episodic memory (Fuster, 2009;

Yoo et al., 2021) have been widely studied using fMRI techniques.

Nonetheless, Zadbood et al. (2017) stands as the first fMRI study

that simultaneously studied the full communication circle, i.e.,

how episodic memories are verbally transmitted and whether the

active neuronal networks involved are similar to the activation

patterns that appear when experiencing the same original event.

To this aim, the authors studied how real-life episodic memories

are encoded and transmitted to naive listeners using fMRI data.

These results evidenced that similar neuronal activation patterns

appear consistently during the encoding and reconstructing of an

episodic event.

Conventional methods for analyzing fMRI data encounter

several limitations that hinder the analysis and interpretation of

brain activity (Bolton et al., 2020; Lurie et al., 2020). For example,

even after preprocessing, fMRI data may contain significant

information beyond neuronal activity patterns (Bianciardi et al.,

2009), some of which resemble brain activity. Furthermore, it

remains unclear if current preprocessing strategies accurately

remove physiological cofounds, given their insidious similarity to

neuronal response, as recently discussed by Chen et al. (2020).

Moreover, accumulating evidence in recent years has revealed that

the actual activation patterns within the brain present complex

dynamic behavior at different timescales (Bolton et al., 2020),

eliciting complex spatio-temporal patters (Ge et al., 2019; Iraji et al.,

2020), as well as nonlinear (Morioka et al., 2020) and nonstationary

neuronal dynamics.

Recently, Morante et al. (2024) proposed an alternative

approach for extracting FC information from fMRI data referred

to as Multiscale Functional Connectivity (MFC). This novel

approach relies on a signal mode decomposition algorithm

known as Multivariate Variational Mode Decomposition (MVMD)

proposed by Rehman and Aftab (2019), which decomposes

fMRI data in terms of their inherent oscillations, referred to

as intrinsic modes (IMs) (Yuen et al., 2019; Morante et al.,

2024). This process occurs in a data-driven way without user-

defined filters or alternative inaccurate preprocessing steps.

Then, we can use those intrinsic modes to uncover the FC

at different timescales, providing a multiscale representation

of fMRI activity. This novel approach contrasts with other

conventional FC alternatives, which perform a static evaluation

of the FC or try to extract relevant changes in the fMRI

dynamics through specific dynamic models, e.g., using a sliding

window (Lurie et al., 2020).

In this study, we built upon the study conducted by Zadbood

et al. (2017), who investigated the underlying neuronal activation

patterns elicited during encoding and transmission of episodic

memories. In line with Zadbood et al. (2017), we aim to

explore the hypothesis that the same neuronal activation patterns

underlie the encoding and reconstruction of a given event.

However, in this original study, we go a step further by examining

the FC patterns using MFC, a novel approach introduced by

Morante et al. (2024) that allowed us to analyze the FC patterns

at different timescales. Our findings demonstrated that the

Default Mode Network (DMN) plays a critical role in episodic

memory, exhibiting distinct FC patterns across different timescales.

In addition, we found significant connectivity patterns within

the temporal cortex, including significant contributions of the

temporal pole and the fusiform gyrus, which exhibited a pivotal

role in cooperation with the DMN in both experiments. Through

comparisons among experiments, our results indicate significant

similarities between the connectivity patterns involved in memory

encoding and event construction with remarkable consistency

among individuals.

2 Materials and methods

2.1 Experiment description and fMRI data

In this study, we further investigate the transmission

of episodic memories utilizing fMRI data. To this end,

we leveraged the same fMRI experiment from Zadbood

et al. (2017). In this section, we provide a concise

overview of their study, including a brief description of the

primary experiment and the essential details regarding the

fMRI data.

Put succinctly, Zadbood et al. (2017) conducted an fMRI

experiment to investigate how neural patterns associated with

viewing specific scenes in a movie are encoded, recalled, and

transferred to others via verbal communication. Their goal

was to understand the extent to which the neural patterns

elicited by mental construction in listeners resemble those

found in the brains of the persons who experienced the

original events.

As detailed by Zadbood et al. (2017), the experiment involved

three main stages, covering the full communication circle:

watching, recalling, and listening. In the watching stage, they

selected a group of participants to watch a movie (watchers),

while undergoing fMRI scanning. Separately, another participant

watched the movie (speaker) and was instructed to recall the movie

inside the scanner without any external cues. This spoken recall
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was recorded as an audio file. Finally, another group of participants

(listeners), who had never seen the movie, listened to the audio

recording of the speaker’s verbal recall while undergoing an fMRI

scanner. The result was two different fMRI groups: one group with

individuals who watched the movie (watching group) and a second

group with participants who listened only to the verbal recollection

(listening group).

To ensure the robustness, Zadbood et al. (2017) replicated

the experiment using two separate movies. Specifically, they

utilized excerpts from the first episodes of the BBC television

series Sherlock (24 minutes) and Merlin (28 minutes).

Our study adopted the same methodology; we used the

Sherlock movie for the parameter selection and general

evaluation of the fMRI data, and then , once completed

the study of Sherlock, we replicated the results from the

Merlin movie.

Similarly to Zadbood et al. (2017), we examined the cognitive

processes involved in experiencing a new episodic event;

“watching” a movie and subsequently recalling/reconstructing

the same event based on a verbal description provided by

the speaker, i.e., “listening” to the speaker’s recollection of

the movie. Our goal for this study was to further explore

and expand the results from Zadbood et al. (2017) using

MFC, to examine the FC patterns elicited during episodic

memory encoding and reconstruction at different time

scales. Finally, we identified significant activation patterns

associated with episodic memory encoding and reconstruction,

by comparing those patterns with the FC elicited at rest,

following a similar procedure as described by Romanello et al.

(2022).

Selected networks and regions of interest
For this study, we used Glasser brain atlas (Glasser et al.,

2016), a cortical multimodal-based brain atlas that divides

the brain into 360 regions of interest (ROIs). While the

Glasser atlas includes numerous cortical areas, not all are

equally relevant to the experiments under study. Therefore,

we focused on networks that play a relevant or critical role

in episodic memory processing. Therefore, we selected ROIs

based on this criterion, guided by the findings from the

original experiment conducted by Zadbood et al. (2017) and

related literature.

Firstly, among all of them, the Default Mode Network

(DMN) holds particular interest, given the findings of Zadbood

et al. (2017) and the nature of our experiments. Similarly,

although it was beyond the primary scope of their original

study, Zadbood et al. (2017) also provided evidence of

substantial contributions to the Temporal Cortex (TpC).

For instance, the authors demonstrated significant activity

in the Fusiform Gyrus, which plays a role in face and

emotion recognition (Chatzichristos et al., 2020). Moreover,

we selected other critical areas within the temporal cortex,

such as the auditory cortex and the temporal pole, e.g., Yoo

et al. (2021); Wen et al. (2019), and the visual areas

within the occipital cortex. Additionally, we incorporated

TABLE 1 Selected ROIs from the Glasser atlas and their main

corresponding network of interest.

Index Label Network

30 Area 7m DMN Default Mode

Network
33 Area ventral 23 a+b

34 Area dorsal 23 a+b

61 Area a24

62 Area dorsal 32

64 Area p32

65 Area 10r

69 Area 9 middle

72 Area 10d

149 Area PFm complex

150 Area PGi

161 Area 31pd

162 Area 31a

74 Area 44 Lng Language

75 Area 45

80 Area IFJp

81 Area IFSp

129 Area STSd posterior

18 Fusiform face complex M&E Memory and

emotion processing
111 Anterior ventral insular

area

120 Hippocampus

124 ParaBelt complex

136 Area TE2 posterior

8 Primary motor cortex SMN Somatomotor

network
9 Primary sensory cortex

12 Area 55b

51 Area 1

54 Dorsal area 6

55 Area 6mp

130 Area STSv posterior TpC Temporal cortex

131 Area TG dorsal

172 Area TG ventral

177 Area TE1 middle

1 Primary visual cortex Vis Primary visual

cortex

For simplicity, the table only shows the labels associated with the left hemisphere. The study

included the ROIs from both hemispheres, rendering 68 ROIs.

some of the most common areas related to language and

memory-related areas (Tobyne et al., 2017). These selections

yielded 68 ROIs out of the 360 in the Glasser atlas. Table 1

summarizes the selected ROIs and their corresponding main

network organization.
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fMRI data and preprocessing
We utilized the same dataset collected by Zadbood et al. (2017),

which is freely available on OpenNeuro1. The dataset comprises

36 participants aged 18 to 45, all right-handed native English

speakers with normal or corrected-to-normal vision. Participants

were randomly assigned to watch either Sherlock (n = 18) orMerlin

(n = 18). The fMRI data were acquired using a 3T scanner with

a repetition time (TR) of 1500 ms, with detailed acquisition and

processing parameters reported by Zadbood et al. (2017).

Preprocessing was conducted following a standard

preprocessing pipeline, including slice timing correction, followed

by corregistration and spatial normalization to the MNI space. We

also performed motion correction followed by spatial smoothing

of each volume with a 4-mm FWHM Gaussian kernel. For ROI

extraction, we used the Glasser atlas. All these steps were conducted

using AFNI toolbox 2.

In addition, we employed resting-state data from the WU-

Minn Human Connectome Project (HCP) (Van Essen et al., 2013)

to obtain significant connectivity patterns from the task-related

experiments of interest. Specifically, we randomly selected 20

healthy participants (9 females, aged 22–35 years) from the HCP

repository. The fMRI data were collected using a 3T scanner with

a repetition time (TR) of 720 ms, with acquisition parameters

detailed in the HCP imaging protocols3. For this study, we used

the dataset already preprocessed, which includes some minimal

preprocessing steps and normalization over the MNI space. In

addition to the standard preprocessing steps conducted by the HCP,

we performed spatial smoothing of each volume with a 4-mm

FWHM Gaussian kernel. For the additional spatial smoothing and

ROI extraction, we used the Nilearn toolbox .4

2.2 Overview of multiscale functional
connectivity

Multiscale Functional Connectivity (MFC) is a novel approach

for analyzing FC in fMRI, recently introduced by Morante et al.

(2024). This technique extracts FC patterns among different

timescales while, at the same time, it separates them from other

interfering components.

The core idea behind MFC is to use MVMD5 to extract

the natural oscillations in fMRI data associated with neuronal

activity from different timescales. In summary, MVMD is a

fully data-driven algorithm that decomposes a multivariate signal

in terms of its natural intrinsic oscillations. Those intrinsic

oscillations, often referred to as intrinsic mode functions in the

literature (Dragomiretskiy and Zosso, 2014), consist of a particular

1 OpenNeuro dataset: https://openneuro.org/datasets/ds001110/

versions/00003.

2 AFNI: https://afni.nimh.nih.gov/.

3 HCP 3T Imaging Protocol Overview: http://protocols.

humanconnectome.org/HCP/3T/imaging-protocols.html.

4 Nilearn: https://nilearn.github.io/stable/index.html.

5 The code for MVMD is openly available on the MATLAB file exchange:

https://se.mathworks.com/matlabcentral/fileexchange/72814-multivariate-

variational-mode-decomposition-mvmd.

family of amplitude- and frequency-modulated functions with a

well-defined instant frequency at any given time instance (Huang

et al., 1998; Dragomiretskiy and Zosso, 2014). In other words, those

natural oscillations behave similarly to modulated harmonics that

remain relatively close to a particular frequency (Daubechies et al.,

2011). Yet, they are flexible enough to accommodate nonlinear and

nonstationary fluctuations in the data (Dragomiretskiy and Zosso,

2014).

Similarly, MVMD offers several advantages compared to

alternative signal mode decomposition approaches as discussed

by Morante et al. (2024). Firstly, MVMD offers an entirely data-

driven approach to decomposing fMRI data in terms of their

inherent oscillations, alleviating the need to apply fixed and

supervised preprocessing steps to the fMRI data. Second, MVMD is

a multivariate algorithm that matches frequency content obtained

from multiple brain areas, enabling information matching across

multiple spatial and temporal scales. Then, as described byMorante

et al. (2024), we can use these IMs to separate neurophysiological

brain activity from other interfering components. We can do this

by analyzing the central frequencies associated with each mode.

Finally, we can use the time signals related to each mode to obtain

their corresponding FC activation patterns. In summary, MFC

exploits the data-driven nature of MVMD to unveil the natural IMs

present in fMRI and then obtain their corresponding FC patterns.

Natural frequency components of fMRI data
Understanding the frequency organization of the fMRI signal

and brain activity dynamics is crucial for MFC. While studies

that focus on frequency-related aspects of fMRI are relatively rare,

primarily due to the low temporal resolution inherent to fMRI

data, existing research offers valuable insight into the frequency

organization of the fMRI signal and brain activity dynamics. For

instance, Cordes et al. (2001) demonstrates that the frequency

contribution to the correlation patterns spans across various

frequency bands. Similarly, Yuen et al. (2019) investigated the

inherent frequency components across different brain locations,

yielding similar findings.

Nonetheless, unlike other commonly used alternative

neuroimaging techniques such as Electroencephalography (EEG)

or Magnetoencephalography (MEG) (Koshev et al., 2021), in

fMRI, neuronal activity is indirectly measured through the Blood

Oxygen Level Dependent (BOLD) effect (Power et al., 2011), which

limits the observable neuronal activation dynamics of the brain to

lower frequencies (Preti et al., 2017). Similarly, the relatively low

sampling ratio utilized by fMRI scanners also imposes a challenge

when studying the frequency contributions to fMRI signals (Power

et al., 2011), as it restricts the maximum potential accessible

frequencies and, at the same time, can introduce aliasing with

physiological components.

Despite all the limitations discussed above, fMRI frequency

components comprise a rich spectrum that covers several relevant

frequency bands. First, very low-frequency oscillations, lower than

10 mHz (Power et al., 2011), correspond to trends, scanner

instabilities, and motion residuals. Neurophysiological activation

patterns resulting from neuronal activity appear within the range

of 10–200 mHz, e.g., Yuen et al. (2019) and Cordes et al. (2001)
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emphasizing the significant contribution of this frequency band to

fluctuations related to brain activity, which correspond with the

natural band dominated by the BOLD response.

Additionally, fundamental respiratory oscillations usually

occur around 250 mHz, while the first harmonic of respiration

appears around 500 mHz. Contributions from blood vessels and

cerebrospinal fluid pulsations fall within 400 to 800 mHz. They also

noted their relevance to correlations between several brain areas

and even aliasing with other frequencies. Those high-frequency

interfering frequencies are primarily driven by cardiac pulsations,

and their effects can introduce significant changes in the lower

bands due to aliasing (Cordes et al., 2001).

2.3 Data analysis and parameter selection

For each individual, we initially extracted the time

series from the fMRI data using the Glasser atlas for the

selected ROIs, as detailed in Table 1. Subsequently, we

removed the average value among the ROIs. Following the

extraction of the time series associated with the ROIs and

adhering to the methodology proposed by Morante et al.

(2024), we decomposed the time activations patterns among

all the rows—in a multivariate fashion—using MVMD

into their fundamental oscillatory components, i.e., their

intrinsic modes.

We estimated the FC patterns associated with each IM.

This process involved estimating Pearson’s correlation among the

selected ROIs over the modes within the natural frequency band,

i.e., the one that corresponds to where neuronal-related activation

patterns are anticipated. While it is feasible to examine FC among

all the IMs (Morante et al. (2024)), we focused solely on those

carrying neurophysiological information, namely, those whose

main oscillatory component appears within the expected natural

neurophysiological band.

Significant activation patterns
After obtaining the FC patterns associated with each IM, we

performed several statistical tests to unveil relevant significant

information. In particular, following the procedure reported

by Romanello et al. (2022), we perform a statistical test using the

obtained FC patterns from the different task-related experiments

and the FC associated with the resting-state. We resorted to the use

of resting-sate from the HCP because Zadbood et al. (2017) only

conducted task-related experiments.

The goal is to unveil the activation patterns specific to the

task of interest. To this aim, we first estimated the FC associated

with resting-state data following the same procedure as described

by Morante et al. (2024), who have already studied this data. Then,

we aligned the central frequencies and obtained IMs associated

with the resting state, and, finally, we assessed significant activation

patterns using a permutation-based T-test corrected with a false

discovery rate adjusted to p ≤ 0.05, as used by Romanello et al.

(2022).

Parameter selection
Concerning the selection of the parameters for the MFC

analysis and following the suggestions from Morante et al. (2024),

only two parameters need to be selected: the number of intrinsic

modes (K) and the parameter α from MVMD. Using the fMRI

data only from the Sherlock experiment, we conducted a small

parameter evaluation with varying values. We observed that the

parameter α exhibited minimal sensitivity, and we set it to 1000 for

simplicity. Furthermore, it was determined that setting the number

of modes to K = 6 yielded optimal decomposition. For the resting

state data from the HCP, we used the same parameter step up as

described by Morante et al. (2024).

3 Results

This section presents the results of our study employing MFC,

as delineated in Section 2. Consistent with the approach outlined

by Morante et al. (2024), firstly, we assessed the frequency

and energy distribution of the IMs. Then, we determined their

corresponding FC patterns and evaluated their reliability among

participants. Finally, after selecting the relevant neurological

modes, we examined their correlation patterns and assessed

significant activation patterns compared to the resting state fMRI

data.

3.1 Intrinsic mode decomposition

Frequency and energy distribution
Figure 1 shows the corresponding frequency and energy

associated with each mode among all participants. Overall, we

observed that high-energy modes corresponded to low-frequency

(IMs 1, 2, 3), whereas modes with lower relative energy exhibited

high-frequency (IMs 4, 5, 6). For instance, the first mode contains

most of the signal’s energy, which diminishes with increasing

frequency.

Similarly, when comparing both experimental conditions, we

observed great consistency. However, a closer inspection of the

results revealed that modes 4 and 5 exhibited lower central

frequencies than those associated with watching. Additionally,

mode 1, for listening, exhibited consistently lower energy, whereas

modes 2 and 3 showed consistently higher energy than the same

modes associated with watching.

Reliability among participants
After obtaining the different IMs, we can determine the

FC patterns associated with each mode, which encapsulates a

distinct FC pattern. To verify the reliability and neurophysiological

relevance of the modes, we systematically assessed similarity in

terms of correlation between the FC patterns across all pairs of

individuals. Figure 2 illustrates the similarity of the FC patterns

obtained for each mode, displaying correlation values among FC

for all the individual pair comparisons. Notably, the first and

last modes exhibited the lowest similarity among individuals. In

contrast, modes 3 and 4 consistently showed higher similarity.
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A B

FIGURE 1

Frequency (A) and energy (B) distributions associated with each IM across the two studied experimental conditions: watching (blue) and listening

(orange). Intense colors represent results from the Sherlock movie, while lighter colors denote those from the Merlin movie. The boxplots show the

corresponding outcomes aggregated across all participants involved in the study, for K = 6 modes. The shadowed area highlights the modes that fell

within the natural neurophysiological band.

FIGURE 2

Reliability of the FC patterns associated with each IM among all participants for watching (blue) and listening (orange). The boxplots depict the

Pearson correlation values obtained from all individual pair comparisons.

3.2 Multiscale functional connectivity

After analyzing the frequency distribution and reliability of the

different IMs, we concentrated on modes 2, 3, and 4. Although

mode 5 fell within the potential neurophysiological range, we

excluded it from the study because it may contain some interfering

components or potential cofounds, as shown in the large variance

in the central frequency shown in Figure 1 and its proximity to the

maximum observable frequency.

Figures 3, 4 depict average FC patterns for each mode. We

obtained those FC maps by averaging the individual FC patterns

across all participants in the Sherlock and Merlin experiments.

Each column corresponds to a particular mode, and each row

contains different comparisons: the first row refers to the watching

experiment, the second corresponds to listening, and the last

depicts the results common to watching and listening.

For all the comparisons, we performed a statistical test

with respect to resting-state data to identify connectivity pattern

that appeared significantly activated in contrast to the resting

state, to reveal the FC patterns associated with the experimental

tasks, following a similar approach as described by Romanello

et al. (2022). Pearson’s correlation coefficients were Fisher-Z

transformed. The lower diagonal part displays average correlation

coefficients, while the upper diagonal shows only significant
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FIGURE 3

FC patterns of the modes 2, 3, and 4 and group comparison for Sherlock experiment. Mean static FC matrices were computed by averaging across all

participants within each group. Pearson correlation coe�cients were Fisher-Z transformed. The lower diagonal part shows the average correlation

coe�cients. The upper diagonal only displays the group comparison’s significant activation coe�cients with respect to the resting-state results from

the relevant permutation-based T-test corrected with a false discovery rate adjusted to p ≤ 0.05.

activation coefficients compared to the resting-state results derived

from permutation-based T-tests corrected with a false discovery

rate adjusted to p ≤ 0.05.

For simplicity, we arrange the ROIs per leading network of

interest from the left hemisphere in the first place and then from

the right, following the order reported in Table 1. We examined

these different networks individually to simplify the reporting

process. Note that we focused on the results corresponding to the

connectivity patterns common to both watching and listening for

both studies since they are our study’s primary goal.

Default Mode Network (DMN)
Upon examination of the results from Figures 3, 4, the

connectivity within the DMN demonstrated a consistent

correlation among all the obtained modes. However, we observed

some significant differences between connectivity patterns among

these modes.

The standard DMN connectivity pattern appeared to

be separated into various modes. On the one hand, in

mode 2, the medial prefrontal area exhibited significant

connectivity with additional frontal areas and regions
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FIGURE 4

FC patterns of the modes 2, 3, and 4 and group comparison for Merlin experiment. Mean static FC matrices were computed by averaging across all

participants within each group. Pearson correlation coe�cients were Fisher-Z transformed. The lower diagonal part shows the average correlation

coe�cients. The upper diagonal only displays the group comparison’s significant activation coe�cients with respect to the resting-state results from

the relevant permutation-based T-test corrected with a false discovery rate adjusted to p ≤ 0.05.

of the parietal cortex. In contrast, it lacked significant

connectivity between the medial prefrontal regions and the

ROIs within the precuneus. On the other hand, mode 4

displayed significant connectivity between the precuneus

and medial frontal regions. However, it lacked the same

connectivity patterns as mode 2 between the frontal and

parietal cortex.

Furthermore, it is worth noticing that the connectivity patterns

observed exhibited strong lateralization. Specifically, we observed

that the right regions within the DMN appear more densely and

consistently correlated among all the modes than the same areas in

the left hemisphere.

Temporal cortex
We observed that the temporal cortex exhibits significant

connectivity with some ROIs from the DMN. Mode 2 exhibited

significant connectivity between the prefrontal cortex and the

temporal pole, while modes 2 and 3 demonstrated notable

connectivity between the temporal pole from both hemispheres and
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the angular gyrus. Mode 4 displayed fewer significant connectivity

patterns, with the most relevant being between the medial and

superior temporal cortex. Furthermore, these regions of the

temporal cortex that exhibit significant connectivity with the

DMN’s ROIs are also found to be significantly correlated with

language areas.

Memory and emotion regulation networks
We observed distinct behaviors related to episodic memory

and emotion regulation networks across the different modes. Mode

2 and 3 displayed significant connectivity patterns between the

prefrontal and somatomotor cortex and temporal areas. These areas

included the fusiform gyrus, the temporal pole, and the precuneus.

Mode 4 displayed fewer connections, with the most relevant in the

temporal cortex.

Interestingly, we also observed a significant correlation between

the fusiform area and the visual cortex among all the modes.

Despite significant correlations in both hemispheres, the left

fusiform area displayed a dominating role.

Language
We observed that most areas commonly associated with

language significantly contribute to observed connectivity patterns.

For instance, mode 4 exhibited significant connectivity between

the medial temporal and inferior frontal areas within the right

hemisphere. Also, mode 2 displayed significant connectivity within

the inferior frontal regions, exhibiting lateralization. Furthermore,

our analysis revealed that the connectivity patterns also consistently

involved Broca’s area, which showed strong correlations with the

frontal regions of the default mode network (DMN). Interestingly,

Broca’s area exhibited a significant lateralization.

Somatomotor network (SMN)
Finally, we observed significant correlations within the

somatosensory cortex in modes 2, 3, and 4. Mode 2 displayed a

distinctive connection between the right and left regions within the

DMN and exhibited strong lateralization, when observing the ROIs

associated with the language area. However, these patterns were

not present in modes 3 and 4, which appeared more homogeneous

in terms of connectivity within the somatosensory cortex.

4 Discussion

Our study further investigated the mechanisms underlying

episodic memory transmission. Specifically, we focused on

analyzing the connectivity patterns of brain networks associated

with processing episodic memories. We assessed whether similar

neuronal mechanisms underlie the encoding and reconstruction

of a given scene. To this end, we used the novel MFC technique

proposed by Morante et al. (2024), which allowed us to explore the

encoding of functional connectivity patterns at various timescales.

Regarding the MFC performance, our results are in line with

the behavior reported by Morante et al. (2024); the energy and

frequency distributionmatch the expected behavior and bandwidth

for this experimental setup. Further scrutiny of Figure 1 allowed

us to determine the neurophysiological relevance of each mode.

Specifically, modes 2, 3, and 4 fell within the expected frequency

range associated with natural neuronal activations (Cordes et al.,

2001), which appeared centered around 19, 47, and 85 mHz.

Conversely, mode 1 only contained trends and low-frequency

residuals unrelated to neuronal activation, and mode 6, whose

average frequency appeared around 254 mHz, is likely to contain

respiration and other high-frequency interfering components.

Mode 5, which has an average central frequency of 145 mHz,

constitutes a particular case; although it exhibited a central

frequency within the natural neurophysiological band, the high

TR of this experiment may introduce additional interfering

components, which seems to be reflected in the large variance of

the central frequency associated with this IM in Figure 1. Therefore,

although it may contain relevant information, we excluded it from

our FC analysis to avoid potential bias.

The comparison of the FC patterns associated with each

mode revealed notable consistency among participants for the IMs

that carry the most significant neurophysiological information, as

shown in Figure 2. Similarly, despite the relatively low number

of participants, the consistent results among participants and the

two different movies support the validity of MVMD for extracting

functional connectivity patterns among individuals and are in line

with the expected behavior reported in Morante et al. (2024). Of

particular interest is mode 3, which emerged as the most consistent

across the experimental conditions studied.

Conversely, mode 1 displayed the lowest correlation

consistency among participants but the highest relative energy.

The reason for this result is that mode 1 mainly contained trends,

motion residuals, and other low-frequency drifts that affect the

whole brain, yet carry no neurophysiological information. This

observation also complies with the expected behavior for this

mode as reported by Morante et al. (2024). Mode 6, which lies

outside the bandwidth of interest, also showed low consistency

among participants. However, it exhibited higher consistency

among individuals than the first mode. As detailed in Morante

et al. (2024), the reason is the presence of high-frequency structural

noise from other physiological signals, e.g., heart-beat changes

and respiratory variations, which often mimic neurophysiological

signals and are relatively common among participants (Chen et al.,

2020).

The analysis of the corresponding FC patterns associated

with the neurophysiological IMs (see Figures 3, 4) revealed some

interesting results. Firstly, we observed that the DMN played a

crucial role in these experiments and exhibited distinct FC patterns

across different timescales, yet is remarkably consistent across

participants. This finding is consistent with the results reported

in the original study by Zadbood et al. (2017), who highlighted

the role of the DMN. However, unlike the original study, the MFC

allowed us to further unveil the patterns of connectivity at different

timescales within the DMN, as well as the participation of other

relevant networks .

As depicted in Figures 3, 4, we observed that each mode

reflected a distinct contribution to overall DMN activation.

For instance, mode 2, which contains low-frequency responses,

exhibited significant activity between the frontal and parietal areas

of the DMN. Still, no significant correlations appeared between
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the frontal regions and the precuneus in this mode. Conversely,

mode 4 showed significant connections between the frontal regions

and the precuneus. As shown in Figure 1, we observed that the

mean frequency associated with mode 4 is considerably larger than

that of mode 2. Therefore, frontal and precuneus activity is more

dynamic and strongly correlated as it is dominantly correlated at

high frequencies. In contrast, the parietal areas of the DMN are

unrelated to the precuneus as they primarily correlate with frontal

regions at lower frequencies.

As briefly explained in Section 2.1, areas within the temporal

cortex should also play a critical role and actively engage with

the DMN (Tobyne et al., 2017; Wen et al., 2019). Interestingly,

our results support this evidence. For instance, mode 2 showed

connectivity within the auditory cortex and frontal areas, reflecting

the participant’s engagement with auditory stimuli. Mode 3

revealed correlations between the fusiform gyrus, precuneus, and

temporal pole, possibly indicating retrieval of relevant content,

imagination, and emotional processing. These results suggest that,

in addition to the DMN, the temporal cortex play a crucial role

in cooperating with the DMN in both experiments, including a

significant contribution from the temporal pole and the fusiform

gyrus.

The correlation between the fusiform area and the visual cortex

suggests that the fusiform area is involved in visual processing,

particularly in the recognition and perception of faces and other

complex visual stimuli (Chatzichristos et al., 2020). This finding

highlights the importance of the fusiform area in our ability

to identify and distinguish visual information. Moreover, the

connectivity between the temporal cortex and the angular gyrus

suggests a potential involvement of these brain regions in language

processing and semantic integration.

Additionally, our analysis revealed significant correlations

between the language-related and temporal cortex and some

memory and emotional processing areas, including the

hippocampus. These findings suggest that the temporal cortex,

along with the hippocampus, plays a crucial role in memory

processing and emotional experiences (Bird and Burgess, 2008).

The correlations between language-related regions and memory

areas further support the idea that language and memory are

closely intertwined (Yoo et al., 2021).

Modes 2 and 3 showed significant correlations between the

temporal pole and several ROIs of the DMN, suggesting that the

temporal pole and the DMN work collaboratively. As shown in

Figures 3, 4, we observed similar patterns in both watching and

listening tasks (as well as in the joint analysis), which suggests

that the same neural networks actively participate in both tasks,

despite their entirely different nature, which further supports the

hypothesis that the same networks can engage in similar yet

different tasks.

Finally, we want to emphasize that MFC has enabled us to gain

a more comprehensive understanding of the different dynamics

interactions within the DMN and their interactions with other

networks at several timescales. As detailed above, MFC has been

the key to studying the interactions of several networks at different

frequencies, and it highlights the complex nature of memory

encoding and retrieval of episodic memories.

Limitations and future work

This fMRI study focused on investigating the multiscale FC of

two different fMRI experiments associated with the reconstruction

of episodic memories. However, as with any experiment, there are

some limitations.

Firstly, the number of participants is relatively small. We

acknowledge that this limited sample size can affect the FC

study, compromise the robustness of statistical tests performed

in this study, and may hinder the generality of some of these

findings. Nonetheless, the excellent consistency of the FC among

participants indicates that the observed results generalize well

among all individuals (see Figure 2). Of course, conducting further

experiments with additional participants may enhance the reported

results of this study.

Secondly, this study explored two specific scenarios within

the information cycle, i.e., watching and listening to two different

movies. As also acknowledged by Zadbood et al. (2017), how

these findings may generalize to other real-world situations

remains unclear. Similarly, further exploration of other episodic

memory reconstruction-related scenarios could also benefit the

understanding of how we transmit episodic memories.

Finally, data were collected using a 3T scanner, which provides

higher TR than more advanced scanners with higher static

magnetic fields. This posed a substantial limitation, restricting

the accessible frequencies during the analysis and the number of

modes that we could safely explore, e.g., mode 5. Therefore, data

collected with a higher static magnetic field scanner may offer

further insights; see, for example Morante et al. (2024).

5 Conclusions

In this study, we provide an overview and extend the findings

by Zadbood et al. (2017), shedding light on how our brain processes

episodic memories. Through the decomposition of fMRI activity

into distinct intrinsic modes using MFC, we unveiled interesting

connectivity patterns in several neuronal networks across different

timescales. Overall, the study of the connectivity patterns associated

with neurophysiological modes exhibited remarkable consistency

among all studied participants and provided further evidence

supporting the hypothesis that similar neuronal patterns underlie

both episodic memory encoding and reconstruction. Consistent

with prior research, our results further highlight the role of

the DMN, while uncovering its dynamic nature among different

timescales. Additionally, they also shed light on the intertwined

role of the temporal cortex, particularly the temporal pole and the

fusiform gyrus, which displayed a pivotal role in coordination with

the DMN.
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