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Classifying musical reading
expertise by eye-movement
analysis using machine learning
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Bénédicte Poulin-Charronnat, Joris Perra and Thierry Baccino

Laboratoire d’Étude de l’Apprentissage et du Développement, LEAD – CNRS UMR5022, Université de
Bourgogne, Dijon, France

Music reading is the key to literacy for musicians in the Western music
tradition. This high-level activity requires an e�cient extraction of the visual
information from the score to the current needs of the execution. Di�erences
in eye movements between expert and non-expert musicians during music
reading have been shown. The present study goes further, using a machine
learning approach to classify musicians according to their level of expertise
in analyzing their eye movements and performance during sight-reading. We
used a support vector machine (SVM) technique to (a) investigate whether the
underlying expertise in musical reading could be reliably inferred from eye
movements, performance, and subjective measures collected across five levels
of expertise and (b) determine the best predictors for classifying expertise from
24 visual measures (e.g., the number of progressive fixations, the number of
regressive fixations, pupil size, first-pass fixations, and second-pass fixations),
10 performance measures (e.g., eye–hand span, velocity, latency, play duration,
tempo, and false notes), and 4 subjective measures (perceived complexity and
cognitive skills). Eye movements from 68 pianists at five di�erent levels of
music expertise (according to their level in the conservatory of music—from
first cycle to professional) were co-registered with their piano performance
via a Musical Instrument Digital Interface, while they sight-read classical and
contemporary music scores. Results revealed relevant classifications based on
the SVM analysis. The model optimally classified the lower levels of expertise
(1 and 2) compared to the higher levels (3, 4, and 5) and the medium level (3)
compared to higher levels (4 and 5). Furthermore, across a total of 38 measures,
the model identified the four best predictors of the level of expertise: the sum of
fixations by note, the number of blinks, the number of fixations, and the average
fixation duration. Thus, e�ciently classifying musical reading expertise from
musicians’ eye movements and performance using SVM is possible. The results
have important theoretical and practical implications for music cognition and
pedagogy, enhancing the specialized eye and performance behaviors required
for an expert music reading.
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Introduction

Music reading requires extracting visual information from the

musical score, tailored to the immediate demands of performance,

and is the hallmark of expert musicians. In particular, music sight-

reading is a highly demanding cognitive task, as it consists of

reading and performing a piece of music at first sight or after

very little preparation, coordinating visual, auditory, and motor

processing while respecting the temporal constraints inherent

to the composition. During sight-reading, visuospatial symbols

(notes and codification placed on the staff) are translated into

sounds, attention is continuously directed toward the forthcoming

notes (Rayner, 1998), and an integrative multimodal information

processing is required to efficiently process information from

auditory, visual, and motor modalities (Drai-Zerbib and Baccino,

2005, 2014, 2018; Stewart et al., 2003). Moreover, the effective

reading of various musical scores in the tonal music tradition,

commonly associated with classical music, is a skill mastered

by expert musicians. This process involves prioritizing several

musical elements from the score, such as notes, rhythm, harmony,

tonal rules, dynamics, and musical form, within the context of

the musical style. Acquiring expertise in reading and interpreting

musical notation is foundational to attaining expertise in music.

Understanding the development of a young musician’s cognitive

system over the years of learning to achieve expertise in their

discipline is a scientific and pedagogical challenge. Whether

musicians are composers, singers, instrumentalists, or conductors,

their activity involves deciphering, reading, writing, composing,

transcribing musical phrases, interpreting musical language, and

musical reading. These activities engage knowledge related to

the written code and its reference framework (such as period,

style, musical form, composer, etc.). Generally, reading, an activity

not genetically programmed, must find its place in the reader’s

brain. While language naturally establishes itself during the early

years of a neurotypical child, reading requires intensive learning

and practice. Once established, reading leaves an anatomical

signature in the brain of the expert reader, inducing cerebral

structural modifications (Carreiras et al., 2009). Musical reading,

as text reading, necessitates learning and practice to become an

expert skill. Therefore, elucidating how the cultural object of

musical reading is integrated into the cognitive system is crucial

in facilitating the efficient real-time processing of multimodal

information to achieve a high level of sight-reading performance.

Comparing different levels of musicians and highlighting the key

behaviors that reflect the development of musical expertise over the

years of learning is a perfect way to understand the construction of

this expertise and its fundamental cognitive markers. Identifying

the most relevant ocular and behavioral indicators of expertise

levels is essential in this endeavor.

Using an eye-tracking method to investigate the cognitive

processes underlying music reading has revealed significant inter-

individual differences associated with musical expertise (Drai-

Zerbib and Baccino, 2014; Drai-Zerbib et al., 2012; Perra et al.,

2022). Many studies in this field have examined such differences

through the lens of distinct memory encoding and retrieval

strategies (Drai-Zerbib, 2016; Drai-Zerbib and Baccino, 2018)

related to developing an expert memory, such as the chunking

theory (Chase and Simon, 1973; Ericsson and Chase, 1982;

Maturi and Sheridan, 2020; Waters et al., 1998) and the long-

term working memory (Ericsson and Kintsch, 1995) applied in

the domain of music reading (Drai-Zerbib and Baccino, 2005,

2014, 2018; Williamon and Valentine, 2002). In line with the

principles characteristic of expert memory, expertise in music

reading results in structural information processing involving

meaningful encoding (organizing information), retrieval structures

previously built in long-term memory (LTM), and an acceleration

of information encoding and retrieval with practice. Therefore,

expert memory empowers musicians to leverage an expanded

working memory within LTM via retrieval cues. Their network of

knowledge in LTM enables them to efficiently recognize frequent

patterns or a chunk of notes, chords, arpeggios, or rhythms

(Sheridan et al., 2020; Waters et al., 1997) and benefit from higher

level processing, hierarchically linking elements to the musical

structure of a score (Aiello, 2001; Drai-Zerbib, 2016; Drai-Zerbib

and Baccino, 2005; Perra et al., 2024; Williamon and Valentine,

2002). As a result, the expert draws on prior knowledge to encode

the presented elements in a meaningful way and store them by

grouping them into LTM. This is what enables expert musicians

to exhibit shorter fixation durations (Drai-Zerbib and Baccino,

2005, 2014, 2018; Drai-Zerbib et al., 2012; Goolsby, 1994; Penttinen

et al., 2013; Perra et al., 2022; Waters and Underwood, 1998;

Waters et al., 1997), fewer number of fixations (Drai-Zerbib and

Baccino, 2014; Waters et al., 1997), and an increase in eye–hand

span (EHS; Furneaux and Land, 1999; Penttinen et al., 2015; Perra

et al., 2021; Sloboda, 1974; Truitt et al., 1997) compared to non-

experts. Thus, sight-reading expertise involves a higher processing

speed and amore effective extraction of information from the score.

Eye movements can therefore indicate differences in expertise. In

addition, eye movements reveal the progression of music reading

skills in novice musicians, who gradually reduce the duration of

their fixations on a score with training (Penttinen and Huovinen,

2011). The musical performance itself is evolving with expertise,

with an increase in accuracy and chosen tempo when sight-reading

(Drake and Palmer, 2000; Truitt et al., 1997; Zhukov et al., 2019).

Comparing expert and non-expert musicians, previous studies

have shown that eye movements in sight-reading evolve with the

development of musical expertise and may reflect the degree of

elaboration of expert memory structures developed over years of

learning and practice (Drai-Zerbib and Baccino, 2018; Penttinen

and Huovinen, 2011; Perra et al., 2024). Our present study aims

to go further by using an advanced machine learning technique to

classify musicians according to their level of expertise by analyzing

their eye movements synchronized with their playing behavior

during a score sight-reading. This classification is a supervised

learning process, as the machine learning process is based on a

set of observations that have previously been correctly identified.

The principle is to train the algorithm (the machine) to perform

a specific task using a substantial amount of provided examples

(previously collected data) belonging to one or more categories to

subsequently categorize and separate the data into multiple classes.

A variety of multivariate pattern analysis (MVPA) techniques,

such as support vector machines (SVMs), naïve Bayes, or k-

nearest neighbors, are capable of classifying different profiles.

These techniques establish classification procedures and are part
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of machine learning methods used to identify to which category

(subpopulation) a new observation belongs, based on a data set

containing observations whose category membership is known.

The SVM (Cortes and Vapnik, 1995) has been extensively studied,

is one of the most reliable classification techniques (Guyon et al.,

2002) and is being used more and more in cognition. The SVM is a

supervised linear classification algorithm. Its primary function is to

separate data using a hyperplane to maximize the distance between

points belonging to different classes. Consequently, SVM divides a

data set into several classes or groups based on their defining values,

ensuring that the distance between distinct groups of data and

that the margins between them are maximized. SVMs have been

shown to be one of the best supervised learning methods in various

applications (Cervantes et al., 2020). SVM has been successfully

applied to eye movements, for instance, to predict a reader’s literacy

level by analyzing their eye movements during text reading (Lou

et al., 2017), classify scan paths in reading, predict a reading and

text comprehension profile (Makowski et al., 2019), and infer the

tasks (pseudo-reading, scene search, and scene memorization) that

viewers were engaged in Henderson et al. (2013). In an exploratory

study, MVPAs were successfully used to classify expert and non-

expert musicians based on their visual performance (e.g., fixation

duration, saccade amplitude, and pupil dilation) while reading a

musical score (Baccino and Drai-Zerbib, 2015). However, to the

best of our knowledge, so far, no study has used SVM techniques

to identify musicians’ reading levels across five levels of expertise

based on their eye movements and performance during sight-

reading of music.

Using SVM analysis, the current study aims to (a) investigate

the extent to which the level of expertise in reading music notation

can be reliably inferred from eye movements, performance,

and subjective measures across five levels of expertise and (b)

identify the most relevant predictors for classifying levels/groups

of expertise from visual measures (e.g., number of progressive

fixations, number of regressive fixations, pupil size, first-pass

fixations, and second-pass fixations), performance measures [e.g.,

EHS, percentage of incorrect notes per area of interest (AOI),

tempo, play duration, and velocity], and subjective measures

(perceived complexity and cognitive skills).

Method

Participants

In total, 68 participants, including students, teachers, and

professional musicians from French music conservatories, were

recruited for the study. They were categorized into five groups

based on their musical training at the music conservatory: 15

participants were students in the first cycle (Mage = 11.47 years,

SD = 1.69), 15 were in the second cycle (Mage = 14.00 years, SD

= 3.14), 14 were in the third cycle (Mage = 20.14 years, SD =

3.63), eight were from the Classe Préparatoire à l’Enseignement

Supérieur (CPES) equivalent to a college level in the international

system (Mage = 21.63 years, SD = 6.80), and 16 were from

the Conservatoire National Supérieur de Musique (CNSM) or

professional musicians (Mage = 38.44 years, SD = 12.74). Those

different levels of expertise will be thereafter, respectively, named

levels 1, 2, 3, 4, and 5. Noteworthy is that the CPES group (level 4

of expertise) had only eight participants, in contrast to the other

levels, which had at least 14 participants, as the CPES pianist

population was rather difficult to recruit. However, we previously

conducted statistical analyses to investigate the relevance of the

five experimental groups. k-means analyses based on the number

of fixations and the chosen tempo revealed that the 68 musicians

could be classified into five distinct expertise groups, F(4,63) =

41.701, p < 0.001. The results indicated also that the CNSM

students, who were at the end of their study in this higher

education institution for musicians (already semi-professionals)

and professional musicians could be considered to belong to the

same group (level 5). Participants had to be pianists completing

a music conservatory cycle or professional to be included in the

experiment. All participants had normal or corrected-to-normal

vision. Incentives for participation included a gift card worth e15.

Material

The material comprised 68 dual-staff excerpts, each consisting

of four bars, extracted from piano compositions. The excerpts

were carefully selected at different difficulty levels and types of

musical texture to represent the ecological scores encountered in

the participants’ regular practice routines (see Appendix 1). This

selection ensured that the scores were adapted to the students’ levels

and were sufficiently challenging for more advanced musicians. We

sought to train our SVM on classical and contemporary scores.

As contemporary scores are less practiced during music education

and more demanding (in terms of mental workload, in particular

for lower levels), we decided to include a reduced number of

contemporary scores compared to classical scores. Thus, 43 of the

selected excerpts were in the classical music style, respecting the

rules of theWestern tonal system, and 25 were in the contemporary

music style, from the atonal music repertoire (Figures 1, 2). The

full material (68 excerpts) was presented to the higher levels (levels

3–5), whereas 34 excerpts (23 composed in the classical music

style and 11 composed in the contemporary music style) were

presented to lower levels (1–2). All excerpts were generated using

the FinalTM music software. They were displayed on a 17
′′

screen

with a resolution of 1920 × 1080 pixels. The presentation order of

the excerpts was randomized across the participants.

Apparatus

Eye movements were recorded during sight-reading with

an EyeLink Portable Duo 1000 eye tracker (SR ResearchTM).

Participants sat 60 cm away from the monitor. The experiment

was controlled with Experiment Builder software (SR Research).

Both eyes were tracked with a sampling rate of 1,000Hz. To

make the experimental conditions as ecological as possible, the

musicians were not constrained by a chin strap, as this type of

eye tracker allowed for free head movement. To ensure the best

tracking quality of the pupil diameter, measurements were taken

under constant luminance (light coming from the monitor) and

illuminance (artificial ambient illumination; Benedetto et al., 2014).
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FIGURE 1

Example of a classical score.

FIGURE 2

Example of a contemporary score.

Moreover, all the stimuli (fourmeasures) were constantly presented

at the center of the screen; after gazing, a cross of fixation was

presented at the location of the stimulus), avoiding any important

rotation of the musicians’ eyes. Thus, any potential concern of the

pupil size measures was minimal. The recording of eye movements

was synchronized with the recorded piano performance using a

Musical Instrument Digital Interface (MIDI), whereby the input

from the piano (KAWAI VPC1 with an RM3 Grand II with

wooden key action) was transmitted to ReaperTM software on

a separate computer. The transmission of the trigger from the

experiment builder software to the reaper software (MIDI file) and

the eye recording (.evs file) occurred without any potential delay

between the signals. On this basis, analyzing the EHS is possible by

comparing the position of the ocular fixation and the note played at

a given time. The experimental setup is presented in Figure 3.

Pretests

To evaluate the different psychological abilities of the

musicians and include those subjective measures into the SVM,

three cognitive pretests were individually administered to the

participants to assess their working memory and processing

speed capacities. The Wechsler Intelligence Scale for Children

(WISC-V) or Weschler Adult Intelligence Scale (WAIS-IV) Digit

Span subtest, with digit span forward, digit span backward,

and sequencing (ascending order) tests, assessed auditory recall,

short-term memory, and working memory (auditory–verbal

workingmemory); the Coding subtest assessed psychomotor speed,

visuomotor speed, capacity to process a new code (processing

speed); and the Corsi Block tapping test with right-side-down tests

assessed visuospatial working memory.

Posttests

As expertise in music reading is associated with an improved

ability to handle complexity (Perra et al., 2024), the perceived

complexity assessment was collected to be included in the SVM.

After sight-reading each score, the musicians were required to

assess the perceived complexity of the musical score on a Likert

scale ranging from 1 (very easy) to 5 (very difficult). The musicians

were also instructed to assess whether they already knew the

score to ensure that they were not familiar with the proposed

material. In addition to providing crucial subjective data, these

two questions enabled the participant to reflect on their previous

sight-reading score.

Procedure

The data acquisition was conducted in three music

conservatories, each time using the same experimental setup

in a quiet room of the music conservatory. After the written

instructions were presented, the participants completed a

questionnaire regarding their musical background and underwent

cognitive pretests. Then, the participants settled comfortably to

the piano to be ready to play in front of the eye tracker. They were

instructed to engage in self-paced sight-reading at their chosen

tempo. Participants at higher levels (levels 3–5) were presented

with the full material (68 excerpts), while participants at lower

levels (levels 1–2) were presented with their level-related 34

excerpts (23 in the classical music style and 11 in the contemporary

music style) related to their level of expertise in reading. A

9-point calibration procedure was conducted at the outset of the
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FIGURE 3

Experimental setup.

experiment. An average spatial error of up to 0.5◦ was deemed

acceptable with a maximum allowable spatial error set to 1◦ of

visual angle. After a training trial, eye movements were recorded.

Before each excerpt, the participant had to fixate on a cross

corresponding to the location of the treble clef on the next staff.

When the staff appeared, the participant started sight-reading the

score immediately. Despite being advised to refrain from repeating

notes when making mistakes, participants were permitted to play

in a natural manner. After playing each excerpt, the participant

indicated the level of perceived complexity of the musical score on

a Likert scale ranging from 1 (very easy) to 5 (very difficult) and

whether they already knew the excerpt or not by tapping 1 (YES) or

2 (NO) on a button box designed for the experiment. On average,

the whole session lasted between 45 and 60 min.

Results

Data preparation

To ensure that the task aligned with a typical sight-reading task,

we verified that the musicians were only familiar with a limited

number of musical scores. On average, the musicians were familiar

with 3.19 excerpts out of 68 (SD = 3.54), which is <5% of the

scores. Given this the low rate of familiar scores, data analysis did

not exclude any trials associated with a familiar musical piece.

To ensure that the scores were adapted to the students’ levels

and were sufficiently challenging for more advanced musicians,

we verified the level of the perceived complexity. The musicians

perceived globally a medium complexity of the excerpts as shown

in Table 1.

TABLE 1 Mean (and standard deviation) perceived complexity according

to the level of expertise and the type of score (CL = Classical Music

Scores; CO = Contemporary Music Scores; ALL).

Perceived complexity

Level CL CO ALL

N1 2.40 (1.12) 3.07 (1.15) 2.62 (1.17)

N2 1.79 (0.82) 2.59 (1.03) 2.05 (0.97)

N3 2.09 (0.92) 3.75 (1.11) 2.52 (1.14)

N4 1.74 (0.81) 3.02 (1.06) 2.21 (1.10)

N5 1.67 (0.84) 2.77 (1.21) 2.08 (1.12)

For collecting the eye-tracking variables from the score (at a

threshold of 80ms considered as an eye fixation), each score was

divided into areas of interest (AOIs). An initial AOI included key

signatures, time signatures, and further AOIs were related to events

(i.e., notes, chords, or rests; Figure 4). The criterion employed

for designing different AOIs was that all notes occurring visually

simultaneously were included in the same AOI.

Eye-movement measures

Twenty-four visual measures (Table 2) were extracted (e.g.,

number of progressive fixations, number of regressive fixations,

pupil size, blinks, first-pass fixations, second-pass fixations) from

Data Viewer (EyeLinkTM) for each of the 68 excerpts. The detection

of those visual measures, including blinks, was made by the

detection methods of Data Viewer software.
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FIGURE 4

Example of a score with areas of interest.

TABLE 2 Indicators collected from eye tracking (visual measures), performance (performance measures), and pre- and posttest (subjective measures) to

train the SVM.

Visual measures Performance measures Subjective measures

AVERAGE_FIXATION_DURATION EHS COD

FIRST_PASS_FIX_TOTAL PLAY_DURATION CORSI

FIRST_PASS_FIXATION PLAY_DURATION_NOTE DIGIT_SPAN_AVERAGE

FIRST_PASS_FIXATION_by_AOI TEMPO_BPM PERCEIVED_COMPLEXITY

FIRST_PASS_FIXATION_NOTE VELOCITY

FIXATIONS_DURATION_by_note NUMBER_AOI_CORRECT_TOTAL

NUMBER_OF_BLINK %_CORRECT_AOI

NUMBER_OF_BLINK_NOTE %_ERRONEOUS_AOI

NUMBER_OF_FIXATIONS LATENCY

NUMBER_OF_FIXATIONS_NOTE NUMBER_NOTES_WRONG_TOTAL

NUMBER_OF_PROGRESSIVE_FIXATIONS

NUMBER_OF_PROGRESSIVE_FIXATIONS_NOTE

NUMBER_OF_REFIXATIONS

%_OF_REFIXATIONS

NUMBER_OF_REFIXATIONS_NOTE

NUMBER_OF_REGRESSIVE_FIXATIONS

NUMBER_OF_REGRESSIVE_FIXATIONS_NOTE

PUPIL_VARIATION

SECOND_PASS_FIX_TOTAL

SECOND_PASS_FIXATION

SECOND_PASS_FIXATION_by_AOI

SECOND_PASS_FIXATION_NOTE

SUM_OF_FIXATIONS

SUM_OF_FIXATIONS_NOTE

Performance measures

Ten performance measures (Table 2) were collected from

ReaperT software as, for example, play duration (total time to play

the score), velocity, latency (before playing the first note), play

duration by note, or computed from the data as, for example, EHS,

percentage of incorrect AOIs (false notes), and tempo (chosen by

the participant). Sight-reading accuracy was evaluated as follows:

An AOI was considered correct when all its component elements

were correctly played. The proportion of correct and incorrect

Frontiers inCognition 06 frontiersin.org

https://doi.org/10.3389/fcogn.2024.1417011
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Drai-Zerbib et al. 10.3389/fcogn.2024.1417011

AOIs played was measured for each score. The sight-reading tempo

was evaluated. In the present study, pianists performed without

tempo constraint, and the global tempo chosen by the participant

was quantified in beats per minute (bpm) for each score. The

tempo was quantified with the ratio of the time taken to play

the score in milliseconds and the number of beats for each score.

Then, by dividing 60,000 by this value, we obtained the chosen

tempo in bpm. EHS, the distance between the eye fixating a note

on the score and the note played on the piano, was measured

using the distance-in-music-unit method (Perra et al., 2021). The

EHS has a multimodal dimension and can be used to evaluate

the performance aspect of sight-reading (Truitt et al., 1997). It

should be noted that, although the EHS encompasses a strong

visual aspect, we have chosen to use it as a performance measure

here. Nevertheless, this choice does not affect the analysis as all the

measures will be computed together by the SVM.

Subjective measures

Four subjective measures (Table 2) were collected from the

cognitive pretests (Digit Span subtest, Coding subtest, and Corsi

Block tapping test) as well as the assessment of the perceived

complexity following each musical score execution on piano.

All variables were computed independently of their belonging

to a specific subgroup. Thus, the diverse attributes of the musicians

were taken into account and included in the SVM, along with

the eye-tracking variables. Consequently, we trained our SVM on

the 38 measures: 24 visual measures, 10 performance measures,

and four subjective measures collected while musicians sight-

read classical and contemporary music scores. Those measures are

detailed in Table 2. Although some measures may be redundant or

correlated, we included all of them because the aim of this study

is precisely to find out which of the numerous measures collected

are the most relevant for distinguishing between the five levels of

expertise. The operational definition of each variable is presented

Appendix 2.

SVM implementation

We used the Python machine learning module scikit-learn II

to implement the SVM. As the 38 measures had different scales

of values, we normalized the data with StandardScaler() function,

which applied the equation Z = (x – u)/s.

In the present study, our objective was to classify 68 pianists

into five levels ranging from 1 to 5 (Level 1 = first cycle; Level 2

= second cycle; Level 3 = third cycle; Level 4 = CPES, and Level

5 = CNSM or professional musicians). This hierarchical ranking

necessitated using binary classifiers to address ordinal classification

problems, where classes are ordered and hierarchical (Frank and

Hall, 2001). In this regard, the model was trained to predict shifts

between classes rather than specific classes. Therefore, we applied

this method by dividing our prediction process into four similar

steps: predicting levels 1 and 2 against levels 3, 4, and 5; then

refining predictions by comparing level 1 against level 2 and level

3 against levels 4 and 5; and so forth. To evaluate the predictive

ability of our model, we divided the participants into two groups

for the two phases of our algorithm (learning and testing).

To mitigate overfitting, which occurs when a model overly

adapts to the training data, we allocated separate participants

for the training and testing phases of the algorithm. Specifically,

participants included in the training phase were excluded from the

testing phase. In our study, participants were divided such that 70%

(48 participants) were used for training and 30% (20 participants)

were used for testing.

To maximize the model, we tested its generalization ability

to make accurate predictions on new data (rather than on

the data it was trained on). As the data were collected

during the performance of classical and contemporary music

scores, we trained our model on data derived from the

performance of classical scores, contemporary scores, and a

mix of both types. This provided us with three distinct data

sets for training. We also used these combinations for the

testing phase. Thus, we obtained nine different combinations

to assess the generalization capacity of our model (Table 3).

We got three performance indices for each of the four

classification phases of our model applied to the nine possible

data intersections.

To evaluate the effectiveness of our model we used the accuracy

(ACC) and the area under the Receiver Operating Characteristic

(ROC) curve (AUC) indicators. The ACC represents the ratio of

correct predictions to the total number of predictions. Therefore,

the higher this ratio, the better the precision, theoretically

indicating better model performance. The AUC involves the

concepts of true positives and false positives. A prediction is

considered a true positive when the expected result is 1 and

the prediction is also 1 and a true negative when the expected

result is 0 and the prediction is also 0. False positives and false

negatives occur when the prediction differs from the expected

result. By adjusting the decision threshold, we can calculate

several ratios based on the rates of true and false predictions,

enabling us to plot the ROC curve. The AUC represents the

area under this curve and is used as a performance indicator.

These characteristics serve to define the predictive capabilities

of our model. The closer these indicators are to 1, the more

accurate our model’s predictions will be, while values closer

to 0.5 indicate poorer performance. An AUC value below 0.5

suggests that random guessing would statistically yield better

results. Although less common, the AUC is a more revealing

indicator of a model’s performance, as it reflects not only the

accuracy of the predicted labels but also the confidence of the

algorithm while making these predictions. This is particularly

true when participants are not evenly distributed across classes.

Therefore, we use the AUC values as indicators to comment on

our results.

As we can see (Table 3), regardless of the types of scores

[classical [CL], contemporary [CO], all together [ALL]] used for the

training and testing phases, we consistently achieve a minimum of

0.89 for classification levels 1 and 2 vs. levels 3, 4, and 5. Similarly,

the performance ranges from 0.73 to 0.78 for classification level 3

vs. levels 4 and 5. However, the model’s performance is notably

low, ranging from 0.45 to 0.54 for classification level 1 vs. 2 and

0.43 to 0.56 for classification level 4 vs. level 5. Figure 5 presents

the average AUC related to those classifications across five levels
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TABLE 3 Results from the data sets used for the training and testing phases with accuracy (ACC) and the area under the ROC curve (AUC) indicators (in

bold values corresponding to the probability threshold >0.70).

{1–2} vs. {3–5} 1 vs. 2 3 vs. {4–5} 4 vs. 5

AUC ACC AUC ACC AUC ACC AUC ACC

All/All 0.89 0.79 0.49 0.5 0.75 0.71 0.52 0.48

All/CL 0.89 0.82 0.49 0.5 0.75 0.68 0.48 0.43

All/CO 0.89 0.79 0.48 0.5 0.73 0.68 0.58 0.48

CL/CL 0.9 0.79 0.47 0.5 0.79 0.74 0.43 0.43

CL/CO 0.89 0.76 0.45 0.5 0.78 0.68 0.52 0.65

CL/All 0.9 0.76 0.48 0.5 0.78 0.76 0.46 0.48

CO/CL 0.89 0.82 0.52 53 0.74 0.68 0.44 0.35

CO/CO 0.89 0.79 0.54 0.47 0.73 0.71 0.56 0.52

CO/All 0.89 0.85 0.52 0.53 0.74 0.68 0.51 0.35

These results demonstrate the performance of the model across five levels and different combinations of training and testing data sets, providing insights into its generalization capabilities.

CL/CL, Training: Classical Music Scores, Testing: Classical Music Scores; CO/CO, Training: Contemporary Music Scores, Testing: Contemporary Music Scores; ALL/ALL, Training: Mixed

Classical and Contemporary Music Scores, Testing: Mixed Classical and Contemporary Music Scores; CL/CO, Training: Classical Music Scores, Testing: Contemporary Music Scores; CL/ALL,

Training: Classical Music Scores, Testing: Mixed Classical and Contemporary Music Scores; CO/CL, Training: Contemporary Music Scores, Testing: Classical Music Scores; CO/ALL, Training:

Contemporary Music Scores, Testing: Mixed Classical and Contemporary Music Scores; ALL/CL, Training: Mixed Classical and Contemporary Music Scores, Testing: Classical Music Scores;

ALL/CO, Training: Mixed Classical and Contemporary Music Scores, Testing: Contemporary Music Scores.

and nine training/testing data sets (classical, contemporary, and

all together).

In this first step, SVM used 38 measures (decision variables)

to learn and predict the level of 68 pianists across five levels.

Our second aim was to find out which of these measures may

be crucial in revealing the level of expertise and determining

the best predictors for classifying expertise during sight-reading

of scores. For this purpose, we created (a) a UnivariateSVM()

function to execute the classification process using a single decision

variable, iteration after iteration, for each of the variables, which

allowed us to obtain a performance index for each variable,

and (b) a RecursiveFeatureElimination() function to remove one

decision variable at each iteration. The variable removed was

the least useful variable for prediction, determined by comparing

the SVM feature coefficients. Therefore, at the end of the

execution, we obtained a single variable, the most useful variable

for prediction.

Running UnivariateSVM() function on a cross section of

classical music scores for learning and testing (Table 4) allowed the

identification of the performance index for each variable.

For predicting the level of expertise successfully (with a

probability threshold > 0.70) between groups 1, 2 vs. 3, 4, 5, the

model identified 24 among 38 variables. Within these variables,

18 were related to visual measures. Notably, among the visual

measures identified, eye movements, such as fixation duration by

note, the second-pass fixations total, the sum of fixations, the sum

of fixations by note, number of blinks, the number of blinks by

note, the number of fixations, the number of refixations, and the

average fixation duration, exhibited an AUC value exceeding 0.80,

indicating a robust performance indicator to classify levels 1 and

2 vs. levels 3, 4, and 5. Additionally, four performance measures

were identified: play duration, play duration by note, number of

false notes total, tempo (bpm), and latency. Interestingly, none of

the subjective measures was identified as a significant predictor in

the model.

For predicting the level of expertise successfully between level

1 vs. 2, the univariate model identified 13 among 38 variables (with

a probability threshold >0.70). Among these variables, only nine

were related to visual measures. Notably, the fixation duration by

note, the second-pass fixation total, the second-pass fixation by

note, and the sum of fixation exhibited an AUC value exceeding

0.74, indicating a good performance indicator to classify level 1 vs.

level 2. Additionally, three performance measures were identified:

play duration, play duration by note, and latency and one subjective

measure, the Corsi Block tapping test.

For predicting the level of expertise successfully between level

3 vs. levels 4 and 5, the model identified 13 among 38 variables

(with a probability threshold >0.70). Within these variables, 11

were related to visual measures. Notably, among those visual

measures identified, eye movements such as number of fixations,

number of fixations by note, fixation duration by note, number

of regressive fixations by note, sum of fixations, sum of fixations

by note, exhibited an AUC value exceeding 0.75 indicating a

good performance indicator to classify level 3 vs. levels 4 and

5. Additionally, two performance measures were identified: play

duration and play duration by note. No subjective measure

was identified.

For predicting the level of expertise successfully between

level 4 vs. level 5, the model identified only one variable, the

number of blinks by note, among 38 variables (with a probability

threshold >0.70).

Running RecursiveFeatureElimination() function enabled the

systematic removal of one decision variable for each iteration,

targeting the least informative variable for prediction. The feature

selection was performed in a recursive way. We performed

prediction on the full matrix, using all features, outputting the

coefficient for each SVM (one SVM per split and per binary

classification). We took the absolute value of the coefficients

averaged across split and then took the maximum across the

prediction task to obtain an importance measure for each
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FIGURE 5

Average area under the curve (AUC) across five levels and di�erent combinations of training and testing data sets.

coefficient. The feature with the smallest importance measure was

removed, and the prediction was performed once again without this

feature. The features were removed iteratively using this procedure

until only one feature remained. The removed features and the

corresponding AUC are given (Table A1). The variables at the top

were the first ones to be removed and can be considered the least
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TABLE 4 Performance index (AUC value) for each variable after execution of UnivariateSVM() function on classical data (in bold values corresponding to

the probability threshold > 0.70).

Measures {1–2} vs. {3–5} 1 vs. 2 3 vs. {4–5} 4 vs. 5

%_CORRECT_AOI 0.58 (0.09) 0.52 (0.14) 0.55 (0.14) 0.57 (0.08)

%_ERRONEOUS_AOI 0.66 (0.05) 0.52 (0.14) 0.49 (0.06) 0.60 (0.08)

%_OF_REFIXATIONS 0.82 (0.06) 0.69 (0.12) 0.63 (0.19) 0.46 (0.10)

AVERAGE_FIXATION_DURATION 0.80 (0.08) 0.72 (0.08) 0.55 (0.16) 0.42 (0.12)

COD 0.48 (0.12) 0.37 (0.16) 0.49 (0.18) 0.42 (0.11)

CORSI 0.50 (0.13) 0.73 (0.15) 0.66 (0.14) 0.39 (0.16)

DIGIT_SPAN_AVERAGE 0.53 (0.16) 0.59 (0.25) 0.40 (0.10) 0.47 (0.12)

EHS 0.57 (0.08) 0.49 (0.07) 0.53 (0.08) 0.48 (0.07)

FIRST_PASS_FIX_TOTAL 0.69 (0.08) 0.46 (0.12) 0.67 (0.10) 0.37 (0.12)

FIRST_PASS_FIXATION 0.55 (0.14) 0.47 (0.10) 0.46 (0.05) 0.51 (0.10)

FIRST_PASS_FIXATION_by_AOI 0.69 (0.08) 0.41 (0.11) 0.68 (0.10) 0.37 (0.12)

FIRST_PASS_FIXATION_NOTE 0.60 (0.13) 0.50 (0.11) 0.49 (0.09) 0.50 (0.12)

FIXATIONS_DURATION_by_note 0.86 (0.06) 0.74 (0.11) 0.75 (0.13) 0.39 (0.12)

LATENCY 0.73 (0.06) 0.78 (0.10) 0.60 (0.17) 0.56 (0.15)

NUMBER_AOI_CORRECT_TOTAL 0.56 (0.08) 0.52 (0.13) 0.59 (0.08) 0.59 (0.06)

NUMBER_NOTES_WRONG_TOTAL 0.77 (0.05) 0.47 (0.16) 0.63 (0.04) 0.61 (0.06)

NUMBER_OF_BLINK 0.84 (0.04) 0.71 (0.12) 0.47 (0.09) 0.60 (0.10)

NUMBER_OF_BLINK_NOTE 0.84 (0.04) 0.71 (0.12) 0.49 (0.17) 0.71 (0.10)

NUMBER_OF_FIXATIONS 0.84 (0.06) 0.68 (0.14) 0.76 (0.11) 0.50 (0.14)

NUMBER_OF_FIXATIONS_NOTE 0.83 (0.06) 0.68 (0.14) 0.76 (0.11) 0.51 (0.15)

NUMBER_OF_PROGRESSIVE_FIXATIONS 0.75 (0.07) 0.60 (0.10) 0.67 (0.10) 0.44 (0.07)

NUMBER_OF_PROGRESSIVE_FIXATIONS_NOTE 0.77 (0.07) 0.60 (0.11) 0.69 (0.12) 0.42 (0.09)

NUMBER_OF_REFIXATIONS 0.84 (0.06) 0.70 (0.13) 0.74 (0.12) 0.49 (0.12)

NUMBER_OF_REFIXATIONS_NOTE 0.84 (0.06) 0.69 (0.13) 0.74 (0.12) 0.49 (0.12)

NUMBER_OF_REGRESSIVE_FIXATIONS 0.78 (0.06) 0.67 (0.10) 0.73 (0.08) 0.52 (0.07)

NUMBER_OF_REGRESSIVE_FIXATIONS_NOTE 0.79 (0.06) 0.68 (0.10) 0.75 (0.09) 0.53 (0.07)

PERCEIVED_COMPLEXITY 0.66 (0.06) 0.63 (0.11) 0.55 (0.10) 0.42 (0.09)

PLAY_DURATION 0.87 (0.06) 0.77 (0.12) 0.74 (0.11) 0.60 (0.14)

PLAY_DURATION_NOTE 0.87 (0.06) 0.77 (0.12) 0.74 (0.11) 0.60 (0.14)

PUPIL_VARIATION 0.62 (0.08) 0.45 (0.13) 0.52 (0.11) 0.45 (0.09)

SECOND_PASS_FIX_TOTAL 0.86 (0.06) 0.74 (0.12) 0.74 (0.13) 0.44 (0.11)

SECOND_PASS_FIXATION 0.70 (0.05) 0.65 (0.05) 0.45 (0.10) 0.54 (0.08)

SECOND_PASS_FIXATION_by_AOI 0.85 (0.06) 0.74 (0.11) 0.74 (0.12) 0.45 (0.10)

SECOND_PASS_FIXATION_NOTE 0.72 (0.06) 0.67 (0.06) 0.59 (0.10) 0.54 (0.10)

SUM_OF_FIXATIONS 0.86 (0.06) 0.74 (0.11) 0.75 (0.13) 0.39 (0.12)

SUM_OF_FIXATIONS_NOTE 0.86 (0.06) 0.74 (0.11) 0.75 (0.13) 0.39 (0.12)

TEMPO_BPM 0.77 (0.05) 0.68 (0.10) 0.56 (0.09) 0.52 (0.12)

VELOCITY 0.49 (0.11) 0.35 (0.11) 0.44 (0.08) 0.49 (0.07)

Measures {1–2} vs. {3–5} 1 vs. 2 3 vs. {4–5} 4 vs. 5

%_CORRECT_AOI 0.58 (0.09) 0.52 (0.14) 0.55 (0.14) 0.57 (0.08)

%_ERRONEOUS_AOI 0.66 (0.05) 0.52 (0.14) 0.49 (0.06) 0.60 (0.08)

%_OF_REFIXATIONS 0.82 (0.06) 0.69 (0.12) 0.63 (0.19) 0.46 (0.10)

AVERAGE_FIXATION_DURATION 0.80 (0.08) 0.72 (0.08) 0.55 (0.16) 0.42 (0.12)

COD 0.48 (0.12) 0.37 (0.16) 0.49 (0.18) 0.42 (0.11)

CORSI 0.50 (0.13) 0.73 (0.15) 0.66 (0.14) 0.39 (0.16)

DIGIT_SPAN_AVERAGE 0.53 (0.16) 0.59 (0.25) 0.40 (0.10) 0.47 (0.12)

EHS 0.57 (0.08) 0.49 (0.07) 0.53 (0.08) 0.48 (0.07)

FIRST_PASS_FIX_TOTAL 0.69 (0.08) 0.46 (0.12) 0.67 (0.10) 0.37 (0.12)

FIRST_PASS_FIXATION 0.55 (0.14) 0.47 (0.10) 0.46 (0.05) 0.51 (0.10)

FIRST_PASS_FIXATION_by_AOI 0.69 (0.08) 0.41 (0.11) 0.68 (0.10) 0.37 (0.12)

FIRST_PASS_FIXATION_NOTE 0.60 (0.13) 0.50 (0.11) 0.49 (0.09) 0.50 (0.12)

FIXATIONS_DURATION_by_note 0.86 (0.06) 0.74 (0.11) 0.75 (0.13) 0.39 (0.12)

LATENCY 0.73 (0.06) 0.78 (0.10) 0.60 (0.17) 0.56 (0.15)

NUMBER_AOI_CORRECT_TOTAL 0.56 (0.08) 0.52 (0.13) 0.59 (0.08) 0.59 (0.06)

NUMBER_NOTES_WRONG_TOTAL 0.77 (0.05) 0.47 (0.16) 0.63 (0.04) 0.61 (0.06)

NUMBER_OF_BLINK 0.84 (0.04) 0.71 (0.12) 0.47 (0.09) 0.60 (0.10)

NUMBER_OF_BLINK_NOTE 0.84 (0.04) 0.71 (0.12) 0.49 (0.17) 0.71 (0.10)

NUMBER_OF_FIXATIONS 0.84 (0.06) 0.68 (0.14) 0.76 (0.11) 0.50 (0.14)

NUMBER_OF_FIXATIONS_NOTE 0.83 (0.06) 0.68 (0.14) 0.76 (0.11) 0.51 (0.15)

NUMBER_OF_PROGRESSIVE_FIXATIONS 0.75 (0.07) 0.60 (0.10) 0.67 (0.10) 0.44 (0.07)

NUMBER_OF_PROGRESSIVE_FIXATIONS_NOTE 0.77 (0.07) 0.60 (0.11) 0.69 (0.12) 0.42 (0.09)

NUMBER_OF_REFIXATIONS 0.84 (0.06) 0.70 (0.13) 0.74 (0.12) 0.49 (0.12)

NUMBER_OF_REFIXATIONS_NOTE 0.84 (0.06) 0.69 (0.13) 0.74 (0.12) 0.49 (0.12)

NUMBER_OF_REGRESSIVE_FIXATIONS 0.78 (0.06) 0.67 (0.10) 0.73 (0.08) 0.52 (0.07)

NUMBER_OF_REGRESSIVE_FIXATIONS_NOTE 0.79 (0.06) 0.68 (0.10) 0.75 (0.09) 0.53 (0.07)

PERCEIVED_COMPLEXITY 0.66 (0.06) 0.63 (0.11) 0.55 (0.10) 0.42 (0.09)

PLAY_DURATION 0.87 (0.06) 0.77 (0.12) 0.74 (0.11) 0.60 (0.14)

PLAY_DURATION_NOTE 0.87 (0.06) 0.77 (0.12) 0.74 (0.11) 0.60 (0.14)

PUPIL_VARIATION 0.62 (0.08) 0.45 (0.13) 0.52 (0.11) 0.45 (0.09)

SECOND_PASS_FIX_TOTAL 0.86 (0.06) 0.74 (0.12) 0.74 (0.13) 0.44 (0.11)

SECOND_PASS_FIXATION 0.70 (0.05) 0.65 (0.05) 0.45 (0.10) 0.54 (0.08)

SECOND_PASS_FIXATION_by_AOI 0.85 (0.06) 0.74 (0.11) 0.74 (0.12) 0.45 (0.10)

SECOND_PASS_FIXATION_NOTE 0.72 (0.06) 0.67 (0.06) 0.59 (0.10) 0.54 (0.10)

SUM_OF_FIXATIONS 0.86 (0.06) 0.74 (0.11) 0.75 (0.13) 0.39 (0.12)

SUM_OF_FIXATIONS_NOTE 0.86 (0.06) 0.74 (0.11) 0.75 (0.13) 0.39 (0.12)

TEMPO_BPM 0.77 (0.05) 0.68 (0.10) 0.56 (0.09) 0.52 (0.12)

VELOCITY 0.49 (0.11) 0.35 (0.11) 0.44 (0.08) 0.49 (0.07)

important for the SVM. The variables at the bottom were the last

to be removed and are therefore the most informative for the SVM.

The last one to be removed was the sum of fixations by note. Even

if the performance did not decrease a lot each time a variable was

removed, at the end of the completion of the process, the analysis

including 38 variables revealed that the four most relevant variables

Frontiers inCognition 10 frontiersin.org

https://doi.org/10.3389/fcogn.2024.1417011
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Drai-Zerbib et al. 10.3389/fcogn.2024.1417011

related to the level of expertise were the sum of fixations by note, the

number of blinks, the number of fixations and the average fixation

duration, the most relevant being sum of fixations by note.

Finally, to assess the model’s ability to generalize, we compared

the results of the univariate SVM on two data sets. Running

UnivariateSVM() function, the first data set was obtained by

training and testing on classical scores, which serves as a reference

since it was tested on the same type of data it was trained on.

The second data set was obtained by training on classical scores

and testing on contemporary scores. As we can see (Table A2) the

results are relatively similar between the two data sets, with each

variable obtaining broadly identical performance indices (AUC

value) across different level comparisons. Thus, the model presents

a strong ability to generalize.

To further refine the identification of the best predictors for

distinguishing level 1 from level 2 and level 3 from levels 4 and

5 we opted to reduce the number of measures. We trained our

SVM on four preselected eye-tracking (visual) measures, average

fixation duration, number of fixations, number of blinks, and

number of regressive fixations, across the three data sets and

their different combinations of training/testing across five levels.

Indeed, a manual selection of relevant variables was conducted

before the automatic selection to avoid bias from the latter.

Manually selecting variables beforehand provides a more reliable

performance assessment, untainted by the outcomes of automatic

selection. We manually identified a subset of visual variables

that were relevant, complementary, and with no redundancy.

Interestingly, among these a priori chosen variables based on

previous research (e.g., Drai-Zerbib and Baccino, 2018), the average

fixation duration, the number of fixations, and the number of blinks

were also identified by the SVM as the most informative variables

(after the most important one which is the sum of fixations by

note). As illustrated in Table 5, the corresponding AUC indicates

that using only these four variables produced satisfactory outcomes

for comparisons between level 1 and level 2 and between level 3

and levels 4 and 5. The performance was found to be fairly robust

when adding or removing a variable. However, the model, once

again, failed to predict the level of expertise between groups 4

and 5, with a decreased probability threshold (<0.45). However,

regardless of the types of scores (CL, CO, and ALL) used for the

training and testing phases, the model better predicted the level

of expertise between levels 1 and 2, with an increased probability

threshold (>0.74) similar to the one obtained to distinguish level

3 from levels 4 and 5 with the 38 measures. Furthermore, the

model produced the same results for the training and testing phases

with 4 visual measures compared to 38 measures for the other

comparisons. Thus, this result confirms that the proposed model

has a high generalization capability and can be effectively applied

to different comparison levels in the three data sets (CL, CO, and

ALL), providing similar results.

Discussion

This study used an advanced machine learning technique

to classify musicians according to their level of expertise by

analyzing their eye movements synchronized with their playing

behavior during sight-reading of classical and contemporary scores.

TABLE 5 Results (AUC value) from the data sets used for the training and

testing phases with four visual measures (in bold values corresponding to

the probability threshold >0.70).

Four measures

All/All 1–2 vs. 3–5 0.87 (0.05)

1 vs. 2 0.76 (0.11)

3 vs. 4–5 0.71 (0.13)

4 vs. 5 0.45 (0.13)

All/CL 1–2 vs. 3–5 0.88 (0.05)

1 vs. 2 0.76 (0.11)

3 vs. 4–5 0.73 (0.14)

4 vs. 5 0.45 (0.14)

All/CO 1–2 vs. 3–5 0.86 (0.05)

1 vs. 2 0.74 (0.11)

3 vs. 4–5 0.68 (0.13)

4 vs. 5 0.44 (0.12)

CL/All 1,2 vs. 3–5 0.87 (0.05)

1 vs. 2 0.75 (0.12)

3 vs. 4–5 0.71 (0.13)

4 vs. 5 0.44 (0.11)

CL/CL 1–2 vs. 3–5 0.88 (0.05)

1 vs. 2 0.76 (0.12)

3 vs. 4–5 0.73 (0.14)

4 vs. 5 0.44 (0.11)

CL/CO 1–2 vs. 3–5 0.86 (0.05)

1 vs. 2 0.74 (0.12)

3 vs. 4–5 0.68 (0.13)

4 vs. 5 0.44 (0.11)

CO/All 1–2 vs. 3–5 0.87 (0.05)

1 vs. 2 0.77 (0.09)

3 vs. 4–5 0.70 (0.14)

4 vs. 5 0.45 (0.14)

CO/CL 1–2 vs. 3–5 0.88 (0.05)

1 vs. 2 0.77 (0.10)

3 vs. 4–5 0.72 (0.14)

4 vs. 5 0.45 (0.15)

CO/CO 1–2 vs. 3–5 0.86 (0.06)

1 vs. 2 0.75 (0.09)

3 vs. 4–5 0.67 (0.13)

4 vs. 5 0.45 (0.13)

Four measures

All/All 1–2 vs. 3–5 0.87 (0.05)

1 vs. 2 0.76 (0.11)

3 vs. 4–5 0.71 (0.13)

4 vs. 5 0.45 (0.13)

All/CL 1–2 vs. 3–5 0.88 (0.05)

1 vs. 2 0.76 (0.11)

3 vs. 4–5 0.73 (0.14)

4 vs. 5 0.45 (0.14)

All/CO 1–2 vs. 3–5 0.86 (0.05)

1 vs. 2 0.74 (0.11)

3 vs. 4–5 0.68 (0.13)

4 vs. 5 0.44 (0.12)

CL/All 1,2 vs. 3–5 0.87 (0.05)

1 vs. 2 0.75 (0.12)

3 vs. 4–5 0.71 (0.13)

4 vs. 5 0.44 (0.11)

CL/CL 1–2 vs. 3–5 0.88 (0.05)

1 vs. 2 0.76 (0.12)

3 vs. 4–5 0.73 (0.14)

4 vs. 5 0.44 (0.11)

CL/CO 1–2 vs. 3–5 0.86 (0.05)

1 vs. 2 0.74 (0.12)

3 vs. 4–5 0.68 (0.13)

4 vs. 5 0.44 (0.11)

CO/All 1–2 vs. 3–5 0.87 (0.05)

1 vs. 2 0.77 (0.09)

3 vs. 4–5 0.70 (0.14)

4 vs. 5 0.45 (0.14)

CO/CL 1–2 vs. 3–5 0.88 (0.05)

1 vs. 2 0.77 (0.10)

3 vs. 4–5 0.72 (0.14)

4 vs. 5 0.45 (0.15)

CO/CO 1–2 vs. 3–5 0.86 (0.06)

1 vs. 2 0.75 (0.09)

3 vs. 4–5 0.67 (0.13)

4 vs. 5 0.45 (0.13)

These results demonstrate the performance of the model trained with four eye-tracking

measures (average fixation duration, number of fixations, number of blinks, and number

of regressive fixations) across five levels and different combinations of training and testing

data sets.

CL/CL, Training: Classical Music Scores, Testing: Classical Music Scores; CO/CO,

Training: Contemporary Music Scores, Testing: Contemporary Music Scores; ALL/ALL,

Training: Mixed Classical and Contemporary Music Scores, Testing: Mixed Classical

and Contemporary Music Scores; CL/CO, Training: Classical Music Scores, Testing:

Contemporary Music Scores; CL/ALL, Training: Classical Music Scores, Testing: Mixed

Classical and Contemporary Music Scores; CO/CL, Training: Contemporary Music Scores,

Testing: Classical Music Scores; CO/ALL, Training: Contemporary Music Scores, Testing:

Mixed Classical and Contemporary Music Scores; ALL/CL, Training: Mixed Classical and

Contemporary Music Scores, Testing: Classical Music Scores; ALL/CO, Training: Mixed

Classical and Contemporary Music Scores, Testing: Contemporary Music Scores.
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We used an SVM to, first, investigate whether the level of

expertise of the musicians could be reliably inferred from eye

movements, performance, and subjective measures during music

reading and, second, exhibit the most relevant predictors for

classifying levels/groups of expertise in music reading. Our SVM

was trained and tested on eye movement, performance, and

subjective measures from 68 pianists at five levels of music expertise

(first cycle to professional musicians), sight-reading classical and

contemporary music excerpts. The SVM analysis included 24

visual measures (e.g., number of progressive fixations, number

of regressive fixations, pupil size, first-pass fixations, and second-

pass fixations), ten performance measures (e.g., eye-hand span,

percentage of incorrect notes per AOI, tempo, play duration, and

velocity), and four subjective measures (i.e., perceived complexity

and cognitive skills). Those different types of variables were all

included in the SVM and computed together independently of

their belonging to a subgroup. Musical sight-reading engages

mechanisms and concepts related to expertise, encompassing the

management of multimodal information, the acquisition of reading

skills, auditory processing, motor skills, memory, and attention.

Investigating the construction of expertise in musical sight-reading

can provide insights into the general mechanisms underlying

expertise development.

The results indicated the robust classification accuracy achieved

by the model. It effectively classified different levels of expertise

based on eye movements, performance, and subjective measures.

The model exhibited a very high accuracy of prediction in

classifying lower level musicians (1 and 2) from other levels

(3, 4, and 5), as well as a highly accurate prediction in

classifying medium-level musicians (3) compared to higher level

musicians (4 and 5). However, it demonstrated comparatively

poorer performance when comparing levels 4 and 5 and levels

1 and 2 when tacking all the 38 variables to run the SVM.

This suggests that distinguishing between lower levels (cycles 1

and 2) based on eye movements, performance, and subjective

measures may be challenging due to ongoing development inmusic

processing competencies and relatively similar eye movements and

performance. The Corsi Block tapping test, evaluating visuospatial

working memory, proved to be a good classification variable

between groups 1 and 2, in particular for classical music data.

Thus, the visuospatial span may be a predictor to distinguish

the lower levels of expertise in music. Conversely, discerning

between higher levels (CPES, CNSM, and professional musicians)

was difficult, likely due to a similar elaboration level of expert

memory structures developed over years of learning and practice.

Their eye movements, performance, and subjective measures were

very comparable. Therefore, these results answer positively to our

first hypothesis: the level of expertise of the musicians can be

reliably inferred from eye movements, performance, and subjective

measures during music reading, using SVM. In particular, the

model effectively classified three levels of expertise in music sight-

reading, non-experts (levels 1 and 2), medium-level musicians

(level 3), and experts (CPES, CNSM, and professional musicians).

That a smaller number of subjects may lead to poorer training

of the SVMs and therefore to poorer performance is worth noting.

However, to validate that the differences in performance were

mainly due to the difficulty of separating similar levels 4 and 5 and

not to the number of subjects, we trained and tested levels 1 and

2 vs. levels 3, 4, and 5 classifications on only some of the subjects

(from 20 to 100%). We observed a drop in performance of only

two points (AUC of 0.87 instead of 0.89) when only 20 of the 68

subjects were included. This shows that the performance achieved

on the more advanced classifications (0.52 for 4 vs. 5) is related to

the similarity of the groups and not to the number of subjects used

to train the SVMs. Moreover, the performance of the model trained

with only four eye movement variables (i.e., the number of blinks,

the average fixation duration, number of fixations, and number

of regressive fixations) showed a good classification accuracy to

discriminate levels 1 from 2 and level 3 from levels 4 and 5, with

a performance that is quite robust to the addition or removal of a

variable. However, this is not the case for level 4 vs. level 5.

The results also provided the relevant predictors for classifying

musical expertise. In the first step, the model identified relevant

variables for classifying different levels. A high number of variables

were identified (24) to distinguish lower (levels 1 and 2) from

other levels of expertise (level 3, CPES, CNSM, and professional

musicians). These predictors predominantly comprised visual

measures (e.g., the fixation duration by note, the second-pass

fixations total, the sum of fixations, the sum of fixations by

note, the number of blinks, the number of blinks by note, the

number of fixations number of refixations, and the average fixation

duration) and performance measures [e.g., play duration, play

duration by note, the number of false notes total, tempo [bpm],

and latency], as none of the subjective measures was identified

in this classification. Moreover, for prediction between level 3

(medium level) and higher levels (CPES, CNSM, and professional

musicians), the model identified a lower number of variables

(13). These mainly comprised visual measures (e.g., number

of fixations, number of fixations by note, fixation duration by

note, number of regressive fixations by note, sum of fixations,

and sum of fixations by note) and performance measures (e.g.,

play duration and play duration by note). Again, no subjective

measure was identified for this classification. Furthermore, the

model identified 13 variables for prediction between levels 1 and

2. These predictors were mainly visual measures (e.g., fixation

duration by note, second-pass fixation total, second-pass fixation

by note, and sum of fixations) and performance measures (e.g.,

play duration, play duration by note, and latency). Interestingly,

a subjective measure, the Corsi Block tapping test, evaluating

visuospatial working memory, was identified in this classification.

This result confirms that the visuospatial memory span can serve

as a valuable indicator for classifying musical expertise between

levels 1 and 2. This is particularly evident in the current study when

musicians are instructed to play naturally while refraining from

repeating notes upon making mistakes. Interestingly, among the 38

variables considered, the model only identified one predictor, the

number of blinks by note, to distinguish CPES (level 4) fromCNSM

and professional musicians (level 5). As blink rate is an effective

measure of mental workload (Da Tao et al., 2019) and blink rate

decreases as mental workload increases across various tasks and

domains (Holland and Tarlow, 1972), this suggests that the mental

workload during music sight-reading may be the only difference

between those two higher levels of musicians. Thus, blink may be a

very useful measure to distinguish those levels of expertise.
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In the second step, the SVM model provided the most

relevant predictors among the 38 measures. The four most

relevant measures identified were visual variables such as the

sum of fixations by note, the number of blinks, the number

of fixations, and the average fixation duration. Therefore, these

results affirmatively answer our second inquiry: the SVM can

provide relevant predictors within 38 measures to distinguish levels

and, in particular, identified the four most relevant variables for

classifying different levels of expertise. Furthermore, these results

align with previous research showing the importance of average

fixation duration and number of fixations to distinguish levels of

expertise. Many studies have consistently shown that an expert

memory, built over years of practice, enables expert musicians

to read and perform faster musical scores compared to non-

experts. Experts exhibit fewer fixations (Drai-Zerbib and Baccino,

2014; Perra et al., 2024; Waters et al., 1997) and shorter fixation

durations (Drai-Zerbib and Baccino, 2005, 2014, 2018; Drai-Zerbib

et al., 2012; Goolsby, 1994; Penttinen et al., 2013; Waters et al.,

1997; Waters and Underwood, 1998; Perra et al., 2022, 2024)

compared to non-experts. Moreover, these results are consistent

with previous studies, comparing expert and non-expert musicians,

showing that eye movements in sight-reading evolve with the

development of musical expertise and may reflect the degree of

elaboration of the expert memory structures developed over years

of learning and practice (Drai-Zerbib and Baccino, 2018; Penttinen

and Huovinen, 2011; Perra et al., 2024). Thus, eye movements

in music reading are systematically influenced by the level of

expertise. Consequently, the level of expertise of the musicians

may be inferred from eye-movement behavior using an SVM.

Indicating that the number of blinks could also be a predictive

variable of expertise, this study also brings a novel insight regarding

expertise. Blinks are quite informative regarding cognitive load,

as the number of blinks reduces with the increasing workload

dedicated to a task (Brookings et al., 1996). Thus, this suggests

that the number of blinks reveals the relationship between the

cognitive resources (attention and memory) demanded by a sight-

reading task and a musician’s ability to allocate those resources can

reliably distinguish expertise levels. This result might be linked to

an increase in structural processing abilities through the acquisition

of music sight-reading expertise, with tonal-specific cues playing a

significant role in facilitating efficient eye-movement behavior and

making fluent sight-reading easier.

Moreover, SVM proved to be highly reliable, as evidenced by

the model’s accurate generalization across different types of musical

scores. This result is important because we were keen to train our

SVM on the 38 measures, including correlated predictors such as

for example number of blinks and number of blinks per note,

percentage correct AOIs played, and percentage erroneous AOIs

played, and one potential issue can be that such predictors can be

overweighted in the model (thus, the performance can be affected

if many redundant variables are included). Usually, it is prudent

to evaluate the impact of high correlations among predictors,

especially if performance issues arise. In such cases, dimensionality

reduction techniques, like principal component analysis, can be

employed tomitigate the effects ofmulticollinearity before applying

an SVM. However, we opted not to take this step as we did not

encounter any performance issues. Indeed, our results were highly

satisfactory. Currently, we have demonstrated that our SVMs can

consistently achieve a minimum accuracy of 0.89 for classification

between lower (1–2) and higher (3–5) levels. Similarly, the

performance ranges from 0.73 to 0.78 for classification level 3 vs.

level 4 and 5. Moreover, in cases of multicollinearity, the model

tends to have poor generalization ability and may overfit the

data, leading to poor performance on unseen data (Chan et al.,

2022). This is not the case in our study. To maximize the model,

we tested its generalization ability to ensure accurate predictions

on new data rather than solely on the training data. We have

shown that our SVMs achieve a similar performance on classical

partitions on which they were trained and on contemporary

partitions they have never seen. Indeed, the model’s performance,

when trained and tested on classical scores, was comparable to

that achieved when training on classical scores and testing on

contemporary scores. This result is also particularly interesting as

it suggests that musical expertise may exhibit specificity not only

in terms of knowledge, in which the sophistication of knowledge

structures would relate to the rules governing a particular activity

(Perra et al., 2024), but also in a broader domain-specific context.

In other words, it implies that expertise in music reading

may extend beyond the type of composition usually performed,

encompassing a deeper understanding of the underlying principles

and conventions that govern musical performances across various

genres. Indeed, previous studies showed that musicians develop

an expert memory and activate high-level knowledge structures

to generate expectations about the musical structure of the score.

In particular, knowledge structures specific to tonal music such

as retrieval structures may facilitate the encoding and retrieval

of information during music reading (Drai-Zerbib et al., 2012;

Ericsson and Kintsch, 1995, 2000). The present study shows that

the model was able to generalize with classical scores, composed in

a tonal architecture, corresponding to the type of music frequently

studied and performed during music education. The model was

also able to generalize with contemporary scores, which, even

written with the same code (chords and succession of notes), does

not respect the rules of tonal music, is less studied during music

education. Thus, the model can efficiently learn from a type of score

and predict with another type of score. Interestingly, performance

measures were not considered the best classifiers (compared to the

top ones), even though it might be expected that performance is

synonymous with expertise. However, one might consider that the

less expert participants were more focused on playing accurately,

even if it meant reducing the chosen tempo for these short excerpts.

This trade-off could probably explain such a result.

In addition to elucidating the reliability and rationale behind

employing SVM for classifying varying levels of expertise in music

sight-reading, these findings further substantiate the assertion

that expert musicians leverage their prior knowledge and expert

memory to sight-read proficiently. These outcomes bear significant

theoretical and practical implications for music cognition and

pedagogy. Theoretical implications arise from these findings as they

offer insights into the development of an expert memory and the

reconfiguration of cognitive processes over the course of learning

from the first cycle to the professional level. This restructuring

becomes evident at the level CPES (as levels 4 and 5 were difficult to

distinguish), showing a threshold in the learning of music reading
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following the entry in CPES, beyond which eye movements and

performance no longer diverge, indicating the establishment of

expert memory (Ericsson and Kintsch, 1995). The present study

once again validated that the number and duration of fixations are

both robust indicators of expertise in music reading. Additionally,

the number of blinks, reflecting the level of mental workload,

may serve as a distinguishing measure, in particular for higher

levels of expertise, highlighting the intricate interplay between

eye movements and cognitive processing. This study contributes

to our understanding of the intricate mechanisms involved in

expert music reading, offering valuable insights into the cognitive

processes of the musician’s brain for researchers, conservatory

professors, and musicians. Practical implications arise from these

findings as SVM can help to provide an innovative way to assess

the level of expertise. By leveraging an SVM for eye-movement

analysis, a platform equipped with eye-tracking technology can

be developed to assess and refine music-reading expertise across

diverse levels. Integrating eye tracking and SVM analysis, this

platform would provide an objective assessment of music-reading

expertise during sight-reading exercises. Such a tool could assist

educators and conservatories in providing the best teaching for

students. Based on individual profiles delineated by specific eye

movements (e.g., the sum of fixations by note, the number of

blinks, the number of fixations, and the average fixation duration)

students could be assigned to groups matching their profiles,

fostering a harmonious progression in their learning and expertise

development. This pedagogical tool would empower educators

to make informed decisions regarding the assignment of music

reading levels, particularly during pivotal end-of-year or end-of-

cycle evaluations. Furthermore, by aligning students’ profiles with

their respective music-reading levels, tailored exercises can be

administered to enrich their learning experience and effectively

develop expertise in music. Processing and integrating musical

notation according to the level of expertise is a crucial question

for music teaching in terms of both training and profiling young

musicians to provide them with the most fitted teaching. The

present study showed that innovative methods such as machine

learning and eye tracking can enhance the understanding of

expertise in music reading, and beyond, as music reading offers

a unique insight into the research area of expert memory. Music

reading involves sequential information processing, wherein the

attentional focus continuously shifts to the upcoming note in

the reading direction (Rayner, 1998) and involves multisensory

information processing (auditory, visual, and motor; Drai-Zerbib

and Baccino, 2005, 2014, 2018; Stewart et al., 2003).
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