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Introduction: Categorization involves grouping information to make inferences

and support novel decisions. In the laboratory, category learning tasks commonly

involve trial-and-error where participants are instructed to classify stimuli and

learn through feedback. Here, we tested across two experiments whether

people can acquire category knowledge in an incidental manner by associating

category members with other information that itself is structured, and how it

compares to acquiring category knowledge directly through feedback-based

classification training.

Methods: Subjects were trained to remember specific associations consisting

of cartoon animals paired with animal-specific background scenes. Animals

presented on forest vs. mountain scenes weremembers of two prototype-based

categories, but this was not conveyed to the participants. Spontaneous category

learning was tested by asking participants to guess habitat (mountains, forests)

for old and new cartoon animals without feedback.

Results: We found that participants spontaneously acquired category

knowledge, showing high categorization accuracy for new animals, comparable

to a group that underwent a traditional feedback-based classification training

with the same stimuli. Strategy analysis showed that themajority of participants in

both groups abstracted the central tendency of the categories, albeit a somewhat

larger proportion of subjects relied on memory for specific training exemplars

after paired-associate learning. Partial evidence was found for the hypothesis

that generalized knowledge emerged at the expense of memory for specific

animal-scene associations.

Discussion: The findings show that despite the goal to remember specific

information that required di�erentiation of stimuli within categories, subjects

can spontaneously acquire category knowledge, generalizable to novel stimuli

in a way comparable to traditional supervised classification training. This work

provides new insights into how category learning can proceed under more

naturalistic demands.

KEYWORDS

category learning, prototype theory, exemplar theory, paired-associate learning,

incidental learning, generalization (psychology)

Introduction

Categorization is important for many facets of cognition, including decision-making,

object recognition, and language processing. The study of categorization has primarily

utilized supervised category learning tasks that consist of showing participants a stimulus

and teaching them its category membership through corrective feedback (Love, 2002;
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Nosofsky et al., 1994; Shepard et al., 1961). The ability to generalize

category labels to new stimuli is then taken as evidence for

the formation of category knowledge. This work has led to the

development of several successful categorization models, including

exemplar models that emphasize the role of memory for specific

category exemplars (Medin and Schaffer, 1978; Nosofsky, 1986) and

prototypemodels that emphasize the formation of abstract category

representations (Posner and Keele, 1968; Smith and Minda, 1998).

While we have learned much from this traditional approach, overt

category decisions coupled with explicit feedback likely do not

capture the range of ways in which we acquire category knowledge

in the real world.

Importantly, category knowledge can also be acquired

incidentally, without explicit instruction. For example, imagine

trying an assortment of dishes from a foreign country. Perhaps, the

dishes have similar spices, aromas, and flavors. Then, your friend

tells you that the dishes are part of Thai cuisine. In the future,

you will likely be able to differentiate Thai from other cuisines,

indicating that, while you may not have known what type of food

you were eating, your brain was implicitly grouping similar sensory

information together to form a unique category.

Incidental perceptual category learning studies in the auditory

(Gabay et al., 2015, 2023; Lim et al., 2019; Roark et al., 2022)

and visual (Aizenstein et al., 2000; Bozoki et al., 2006; Kéri et al.,

2001; Love, 2002; Reber et al., 2003; Wattenmaker, 1993) domains

have demonstrated how category structure can be extracted in the

absence of explicit instruction. In a typical incidental perceptual

categorization task, participants are shown a series of stimuli and

then informed that all of those stimuli form a category. They are

then asked to indicate for a series of new stimuli whether or not

each stimulus belongs to the same category (referred to as an

A/not A task; e.g., Ashby and Maddox, 2011; Zeithamova et al.,

2008). Less frequent has been work on unsupervised acquisition

of category structures containing two or more categories (Ashby

et al., 1999; Love, 2003). While learning in these paradigms is

unsupervised, lacking feedback, the aim to discover the underlying

category structure is typically explicitly instructed and its success is

variable, influenced for example by the order in which the stimuli

are presented (Clapper, 2006; Clapper and Bower, 1994, 2002;

Zeithamova and Maddox, 2009).

More recently, a question arose whether it is possible

to incidentally learn categories when explicitly focused on

individuating each stimulus and when categories are not clearly

dictated by an underlying similarity structure among stimuli. A

recent study utilized the presence of a shared label (family name) as

one way to provide an opportunity to spontaneously form category

knowledge (Ashby et al., 2020). Participants learned a set of paired

associates, each consisting of a face and their full names (e.g.,

“Peter Miller”). To generate a similarity structure among the faces,

face stimuli were created by morphing together two never-studied

“parent” faces. Some of the faces with a shared parent were assigned

a shared family name while other faces with a shared parent were

assigned different family names, enabling to tease apart the effects

of physical similarity and category membership. After learning,

participants demonstrated a category bias in perceptual similarity

ratings such that faces with shared family names were rated as more

similar than faces that were equated for physical similarity but had

different family names. Participants were also highly successful in

generalizing family names to never-studied faces, with the degree

of generalization being predicted by the emerged perceptual biases.

This finding was later replicated in a separate fMRI scanned sample,

which provided evidence for category representations forming

spontaneously in the brain while participants were still learning

the unique full names for each face (Ashby and Zeithamova, 2022).

The nature of those category representations, such as whether

they tend to be exemplar-based or generalized, is however not

straightforward to adjudicate for such stimuli.

Here, we build upon and extend this work in two directions.

First, we tested whether people spontaneously acquire category

knowledge even when no shared label is provided, through a mere

association of each stimulus with other information that itself has

category structure. Second, we utilized binary-dimension stimuli,

a type of stimuli used extensively in prior categorization studies

and suitable for the use of formal categorization models that can

estimate underlying category representations from the patterns of

participants’ responses. Participants were asked to remember a set

of paired associates, consisting of a cartoon animal and its preferred

habitat (a background scene unique to each animal). Though

participants needed to remember the specific scene for each cartoon

animal, the scenes fell into two categories, mountains and forests,

providing the opportunity for the participants to spontaneously

organize the cartoon animals in line with their associated scene

type. After paired-associates training, we measured category

knowledge by testing people’s ability to generalize category

membership (forest or mountain habitat) to novel animals. Further,

the binary dimension stimuli in a form of cartoon animals

allowed us to utilize two well-established categorization models

to determine the type of representations people rely on after they

acquired category information incidentally. The exemplar model

posits that people store individual instances in memory (Figure 1A)

and categorize new instances based on their similarity to all stored

exemplars (Medin and Schaffer, 1978; Nosofsky, 1986). By contrast,

the prototype model posits that people extract the central tendency

across category exemplars (Figure 1A) which subsequently guides

generalization behavior (Posner and Keele, 1968; Smith and

Minda, 1998). We hypothesized that people trained to remember

specific associations will successfully form and generalize category

knowledge, but may increasingly rely on memory for specific

exemplars rather than abstracted central tendencies (prototypes).

To test this hypothesis, we utilized a category structure that leads

to predominantly prototype representations when learned through

traditional feedback-based classification training (Bowman and

Zeithamova, 2018), and assessed (1) people’s ability to incidentally

acquire and subsequently generalize category knowledge, and (2)

the impact that incidental learning has on generalization strategy.

Finally, we explored whether the type of category representations

that people formed (prototype or exemplar) related to how

well they remember specific animal-scene associations requiring

them to individuate category members, given the theoretical

proposals suggesting a trade-off between memory specificity and

generalization (McClelland and Goddard, 1996; Shohamy and

Wagner, 2008; Varga et al., 2019). Overall, this work moves us

closer to understanding the nature of category learning under more

naturalistic demands.
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FIGURE 1

Experiment design. (A) Example stimulus set and the corresponding prototypes. Top row: category prototypes. Bottom row: example training set,

divided into their correct categories. (B) Stimuli were cartoon animals varying along 8 binary dimensions (features). Two maximally distinct stimuli

(di�erent on all 8 dimensions) served as category prototypes. Each stimulus can be characterized by the number of features by which it di�ers from

each prototype (referred to as physical distance). (C) Example training trial. Background and response options appeared first. The stimulus took 2 s to

gradually appear, at which point subject can report how confident they are they will remember the animal-scene association. Fixation screen

immediately follows response. (D) Example associative memory test trial. Each training stimulus was shown with 6 possible response options:

Correct scene, lure scene from the same category, two foil scenes from the other category, and two verbal category labels (“Mountains”, “Forests”) if

a participant remembers the scene category but not the exact scene. (E) Example category generalization test trial. Participants were asked to guess

the correct scene category for a set of training and new (generalization) animals.

Experiment 1

Method

Participants
Healthy participants (n = 71; 50 females) were undergraduates

recruited from the University of Oregon via the university’s SONA

research system. Ages ranged from 18 to 30 (M = 19) years.

Participants received course credit for their participation. All

participants provided written informed consent and experimental

procedures were approved by Research Compliance Services at the

University of Oregon.

Materials
Stimuli

The complete stimulus set is freely available through the

Open Science Framework (http://osf.io/8bph2). Stimuli consisted

of cartoon animals that varied along 8 binary feature dimensions:

color (yellow/gray), shape of feet (clawed/webbed), shape of

body (squared/circular), shape of tail (devil tail/feather tail),

dot orientation on body (vertical/horizontal), pattern on neck

(stripes/horns), head shape (with beak/with horn), and head

orientation (forward/up). Two stimuli with the maximally different

number of features were the prototypes for Category A and

Category B for all participants (Figure 1A). Physical similarity

between stimuli was defined as the number of shared features

(Figure 1B). The inverse, physical distance, was defined as

the number of differing features. Category A stimuli shared

more features with prototype A than prototype B and vice

versa. Stimuli that were equidistant from both prototypes were

not used.

Training set

Four training sets were created and assigned to participants

randomly. All training sets included four stimuli per category

(eight training stimuli in total), each differing from their respective

category prototype by two features. An example training set with

the corresponding prototypes is presented in Figure 1A. Prototypes

themselves were never presented during training. Because the

majority of the training exemplars differed from each other by

four features, whether they belonged to the same or opposing

category, the similarity structure among stimuli did not fully dictate

categorymembership. Instead, themembership was determined via

the associated scenes.
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Training scenes

Each training animal was paired with an animal-unique scene

(8 scenes total) for the paired-associate learning task (Figure 1C).

The scenes were distinctive from each other, but fell into two

categories, mountains and forests. Training animals that belonged

to one category were all paired with scenes from one scene type,

training animals that belong to the other category were all paired

with scenes from the other scene type. In total, there were eight

unique animal-scene paired-associates used during training.

Testing set

Four testing sets were created and assigned to participants

based on which training set they were administered. All testing

sets included the 8 training stimuli (each presented twice) and

50 novel stimuli. Novel stimuli consisted of 8 randomly selected

animals at each distance from the category prototypes (e.g., eight

new animals one feature different from prototype A, eight new

animals two features different from prototype A, and so on),

excluding equidistant stimuli. The test sets also included the two

previously unseen prototypes, each shown twice. Repeating the

training stimuli and prototypes helps ensure dissociable prototype

and exemplar model predictions (Bowman and Zeithamova, 2018;

Kéri et al., 2001; Smith et al., 2008).

Experimental design
Training

Participants first completed a training session where they were

instructed to remember which background scene is the habitat for

each unique training cartoon animal. Importantly, while each of

the eight background scenes was unique, all scenes fell into two

categories: mountains or forests, with the habitat type aligning with

category structure. In other words, all four category A exemplars

were paired with one of the four unique forest scenes while

all four category B exemplars were paired with one of the four

unique mountain scenes. Participants were not informed about

the existence of the scene or animal categories and instead the

task resembled a paired-associate learning task as used in episodic

memory studies.

On each trial, participants were first shown one of eight

background scenes that filled the screen. The associated cartoon

animal then took 2 s to materialize by gradually increasing the

image’s opacity. Participants were then prompted to report how

confident they are that they would remember the scene habitat for

the particular cartoon animal using a button press corresponding

to “1 = Definitely Forget”, “2 = Maybe Forget”, “3 = Maybe

Remember”, or “4 = Definitely Remember”. Participants had 5 s

to make a decision but the trial advanced if a response was

registered sooner. An example training trial is shown in Figure 1C.

Participants completed five blocks of training, each containing five

repetitions of all training items with self-paced breaks between the

blocks. The total number of training trials was two hundred (8

animal-scene pairs X 5 repetitions per block X 5 blocks = 200

trials). Stimulus order was randomized within each block.

Associative memory test

Following training, participants were administered an

associative memory test, where they were shown each training

stimulus along with four scene options and instructed to respond

which scene they think the stimulus was paired with during

training (Figure 1D). Scene options always consisted of two

mountain and two forest scenes: the correct scene, a lure of the

same type, and two foils from the other habitat type. That way, the

choices provided did not offer any cues with respect to which scene

type (forest or mountain) is correct. Participants were also given

the option of responding “Mountains” or “Forests” if they could

not recall the specific scene.

Category generalization test

As the final portion of the session, participants were

administered a surprise generalization test. On each trial, they were

shown a training or a new (generalization) cartoon animal and

instructed to respond either “Mountains” or “Forest” via button

press (Figure 1E). The categorization test consisted of one block

of 68 trials with 5 s stimulus presentation and 7 s fixation. Trials

advanced earlier if responses were registered before 5 s. There was

no feedback during the generalization test.

Statistical analysis
Raw data and the code necessary to reproduce the plots for

Experiment 1 can be found at https://osf.io/dhmks.

Prospective memory judgments during training

Prospective memory judgements at training were mainly

collected to ensure continued attention during observational

learning and were not of primary interest. Nevertheless, we

conducted a repeated-measures ANOVA to see if participants’

confidence in their memory for the scene-animal associations

increased over time. For each participant and each block, we

computed the mean confidence rating. We expected to see an

effect of training block. Only 49 participants were included in the

prospective judgments analysis: due to technical error, data from

the final training block was not saved for 21 participants and one

participant made no responses for the first training block.

Associative memory

To evaluate how well participants remembered the specific

animal-scene associations, we calculated the proportion of correct

scene responses during the associative memory test for each

participant. For completeness, we also computed and report the

proportion of responses to all other unique options (i.e., to

lure scene, specific foil scenes, and correct and incorrect general

category labels).

Categorization accuracy during generalization test

To estimate how well participants generalized incidentally

learned category information, we calculated the average accuracy

of responses for each participant and compared these averages to

chance level (50%) using a single sample t-test. Next, we tested

to what degree generalization responses are modulated by the

similarity to prototypes and whether the data exhibits a similarity

gradient as commonly reported in category learning studies.

For each participant, we first calculated the mean categorization

accuracy across all generalization (new) trials at each distance

from its prototype. These scores were submitted to a repeated

measures ANOVA to test for an effect of distance on generalization
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performance. Additionally, we compared categorization accuracy

for old (training) animals and new (generalization) animals at

the same distance from the prototypes (two features difference,

as all training animals varied from their respective prototypes by

two features) using a paired t-test. An old-advantage, or greater

accuracy for training (old) than generalization (new) stimuli at

the same distance, indicates a contribution of the memory for

specific instances to categorization and is often observed even when

behavior is otherwise dominated by a prototype strategy (Bowman

and Zeithamova, 2018). Given that we instructed participants to

remember specific events, we predicted that old animals would be

categorized more accurately than new animals.

Categorization strategies during generalization test

To identify the generalization strategies that people used, we fit

prototype and exemplar models to the trial-by-trial responses from

the generalization phase for each participant. Prototype models

assume that category structures are represented by their prototype,

and thus, they compute the similarity of each generalization

stimulus to each prototype. Perceptual similarity is modeled as an

exponential decay function of physical similarity (Shepard, 1958,

1987), while taking into account differences in attention to specific

features. Formally, the similarity S of a stimulus x to category A is:

SA (x) = exp

[

−c
∑

(

w
∣

∣x− protoA
∣

∣

r) 1
r

]

,

where c is a sensitivity parameter that controls the rate of

decay (estimated from the data), w is a vector of attention

weights with length equal to the number of stimulus features

(estimated from the data and constrained to sum to one),

and r is the distance metric (set to 1 to reflect city-block

distance metric typically used for binary features). In total,

there are nine participant-specific parameters estimated from

their pattern of responses: one c parameter and eight attention

weights, one for each stimulus dimension. Thus, the models can

account for intra-individual and inter-individual variability in

feature saliency.

Exemplar models assume that categories are represented by

their exemplars, or individual instances. These models calculate

similarity between each stimulus and a category by computing the

summed similarity of the stimulus and all the training stimuli from

the given category (Nosofsky, 1987):

SA (x) =
∑

y∈A

exp

[

−c
∑

(

w
∣

∣x− y
∣

∣

r) 1
r

]

.

Here, y represents a training stimulus from category A and all

other parameters are the same as in the prototype model.

To transform similarity scores to probabilities, we used a Luce

choice rule (Luce, 1963):

P (A|x) =
SA(x)

SA (x) + SB(x)
.

Using these equations, we obtained best fitting parameters

from both models for each participant via maximum likelihood

techniques. Specifically, we minimized the negative log

likelihood by adjusting parameter estimates with gradient

descent. To obtain best fitting parameter estimates, we used

the Rsolnp::solnp function (Ye, 1987) as implemented in R,

which optimizes model fit with general nonlinear optimization

augmented with Lagrange multipliers. We used the method

of Lagrange multipliers to impose an equality constraint on

the attention weight parameters such that they had to sum

to 1. We used noninformative priors, set all lower bounds

to 0, and the upper bound for the sensitivity parameter was

set to 20.

Model selection

After optimization, prototype and exemplar model fits were

compared at the individual level. A number of studies have

demonstrated how group-level trends in generalization can be

obtained by superimposing subgroup trends (Ashby et al., 1994;

Lee et al., 2018; Lee and Livesey, 2018; Lovibond et al.,

2019), highlighting the need for individualized assessment of

generalization behavior (Zaman et al., 2023). Model fits were

compared to each other and to chance to estimate the best

fitting categorization strategy for each individual participant. We

used a Monte Carlo simulation approach for model selection,

as described previously (Bowman and Zeithamova, 2018; Kroese

and Rubinstein, 2012). Each participant was assigned one of

four strategy labels: exemplar, prototype, comparable fit, or

random. First, we shuffled empirical responses 10,000 times

and obtained model fit values for each permutation to generate

subject-specific null distributions for both computational models.

We then compared empirical model fits against the subject-

specific distribution of these null model fits. If the empirically

observed fits were better than 95% of the simulated fits, we

conclude that the model describes the data better than assuming

that the participant responded randomly (p < 0.05, one-tailed).

Participants who had neither prototype nor exemplar fit reliably

better than chance were given “random” as their strategy label.

For the remaining participants, we then directly compared the

prototype and exemplar model fits to each other. To test for

differences in model fits for each participant, we compared

relative model fit differences, [(fitprototype – fitexemplar)/(fitprototype
+ fitexemplar)] to the relative model fit differences of simulated

fits. One model was deemed a winner (i.e., subject was deemed

a “prototypist” or “exemplarist”) if the difference in empirical

fits appeared by chance with a frequency of <25% (p < 0.25,

two-tailed). This approach has been shown to be more suitable

for model comparison than simply comparing raw fits for two

reasons: (a) the exemplar model tends to fit even random

data slightly better than the prototype model, suggesting that

equal number of parameters does not guarantee equal model

flexibility, and (b) utilizing a confidence threshold before one

model is deemed a winner helps differentiate negligible model

fit differences from more meaningful ones (see Bowman et al.,

2020; Bowman and Zeithamova, 2018). We preregistered using

the raw fit differences, but verified that strategy assignment

remained the same whether we used raw fit differences or relative

fit differences.
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FIGURE 2

Experiment 1 training and generalization performance. (A) Mean confidence ratings for each training block. Thick line indicates the group average

ratings, illustrating the increased confidence with training time. Thin lines depict average ratings for each participant. (B) Associative memory

performance. Bar heights indicate proportion of associative test responses. (C) Generalization phase accuracy per each distance from the

prototypes. Color indicates stimulus type (white = old; green = new). All training (old) items were at the distance 2 from their respective prototypes.

(D) Generalization phase accuracy per each distance from the prototypes, including visualization of individual participants. The thick green line

indicates the group average [same as (C)]. Dots and connecting thin lines represent individual subjects. In all panels, error bars represent standard

errors of the mean.

Results

Prospective memory judgments during training
We found a main effect of block [F(4,192) = 48.2, η2 =

0.21, p < 0.001], driven by participants increasing confidence in

their ability to remember the animal-scene associations over time

(Figure 2A). This effect indicates that participants paid attention to

the task.

Associative memory
We assessed how often participants correctly recalled each

training exemplar’s paired background scene. Overall, people

chose the correct scene most often (M = 64%, SD = 27%)

indicating that participants successfully bound training exemplars

to their unique background scenes. The full distribution of

responses to all options is visualized in Figure 2B and suggests

that when participants did not remember the specific correct

scene association, they did not seem to remember the general

category either. For example, among the three incorrect scenes,

they would pick the single lure scene (9.5% of trials) just as

often as one of the two foil scenes from the wrong category

(18.1% for the two foil scenes = approximately 9% for each foil;

Figure 2B). Moreover, the general habitat labels were not used

frequently but also did not show any evidence that participants

would favor the correct habitat over wrong habitat {t(70) = −0.50,

95% CIdifference = [-0.03, 0.02], d = 0.06, p = 0.616}. Thus,

participants seemed to most often encode the specific scene-animal

associations and did not seem to be encoding the scenes at the

generic category level.
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Categorization accuracy
The overall average categorization accuracy was 62% (SD =

16%), which was well above chance {t(70) = 6.19, 95% CI = [0.58,

0.66], d = 0.73, p < 0.001}. Participants not only remembered the

habitat type for the training animals (M= 68%, SD= 19%), but also

tended to correctly guess habitats for new animals (M= 60%, SD=

17%). Categorization accuracy split by the distance to the prototype

is presented in Figure 2C, D. To test for generalization gradients

among the new test exemplars, we used a repeated measures

ANOVA with distance from the category prototype as a predictor

and average categorization accuracy as an outcome. We found a

main effect of distance (0–3) [F(3,210) = 39.6, η2 = 0.189, p <

0.001], with accuracy decreasing with the distance from prototypes

(Figure 2D).

As all old (training) exemplars were at distance 2 from the

prototypes, we also compared categorization for old vs. new

distance 2 exemplars. Consistent with prior work, we found higher

categorization accuracy for old than new exemplars at distance 2

from prototypes {t(70) = 3.02, 95% CIdifference = [0.03, 0.13], d =

0.39, p = 0.004; Figure 2B}. Nevertheless, participants were still

more successful categorizing the never-seen prototypes than the

directly studied training exemplars {t(70) = 4.52, 95% CI = [0.07,

0.17], d = 0.46, p < 0.001}. Thus, the paired-associate learning

task produced a pattern of categorization performance similar to

a traditional supervised training task, including the categorization

advantage for prototypes over training items themselves.

Categorization strategies
While a number of sophisticated categorization models exists,

prototype and exemplar models represent two points on a

continuum of conceptual knowledge from generality to specificity.

Thus, we used them here to augment our analysis to determine

what kinds of representations people form and utilize for

categorization decisions.

The conceptual illustration of the prototype and exemplar

models is presented in Figure 3A. The proportions of participants

that received each label (prototype, exemplar, comparable fit,

random) is depicted in Figure 3B. Approximately 58% (41 out of

71) of participants had responses best fit by the prototype model,

20% (14 out of 71) were best fit by the exemplar model, and 1% (1

out of 71) of participants had comparable prototype and exemplar

model fits (Figure 3B). The remaining 21% (15 out of 71) of

participants had neither prototype nor exemplar model fit reliably

above chance and were classified as using a random strategy. Thus,

contrary to our prediction, the majority of participants were still

best fit by the prototype model, suggesting that they abstracted the

central tendency of the category rather than primarily relying on

their memory for specific animal-scene associations.

Discussion

Overall, the results from Experiment 1 provide strong evidence

for people’s ability to form category knowledge incidentally through

association with information that itself has category structure.

Notably, participants acquired the category structure even when

the task at hand required them to differentiate the specific

associated scenes (e.g., all the forests from each other) rather

than treating them as equivalent category members. Furthermore,

participants seemed to base their categorization judgments on

abstract category representations based on the category center

(prototypes) rather than the specific associations they acquired

for the training stimuli. First, participants showed a typical

categorization gradient, and categorized novel prototypes better

than the actual training exemplars that they were instructed to

remember. Intuitively, generalization gradients are thought to

emerge from prototype-based categorization representations but

exemplar representations can also produce such a gradient (Jäkel

et al., 2007, 2008; Nosofsky and Kruschke, 1992). Because only a

formal comparison can determine whether the model predictions

provide a good quantitative rather than just qualitative fit (Smith,

2002), we employed formal model fitting to directly estimate

each participant’s generalization strategy from their pattern of

responses. Contrary to our prediction, we found that a majority

of participants’ responses were fit best by the prototype model.

The dominance of prototype strategies in this task is consistent

with a previous study (Bowman and Zeithamova, 2018) that used

identical stimuli and category structures but employed traditional

feedback-based classification training. It was however contrary

to our prediction that generalization after the paired-associate

learning would be based primarily on exemplar representations.

While both the current study and the prior study with the same

stimuli found prototype dominance, the specific proportions were

numerically shifted toward exemplar representations in our data;

we found 58% participants best fit by the prototype strategy

compared to 73% in Bowman and Zeithamova (2018) and 20%

participants best fit by exemplar model, compared to just 10%

in Bowman and Zeithamova (2018). Unsure of whether these

are meaningful differences driven by the paired-associate learning

task in comparison to the traditional feedback-based classification

training, we preregistered and designed Experiment 2. Our goal

was to replicate Experiment 1 findings as well as directly compare

paired associate learning with feedback-based classification training

using a between-subjects design.

Experiment 2

Method

Participants
Our pre-registered sample size was N = 110 (55 for each

group; https://osf.io/dzr6v). This was based on a power analysis

for a Chi squared test of independence, to provide 80% power to

detect medium effects (Effect size w = 0.3) for the difference in

strategies between the two groups, as determined in G-Power (Faul

et al., 2007, 2009), with a cushion for potential exclusion. The final

sample size was larger than our pre-registered sample size as we

were posting timeslots in batches every two weeks, as planned in

our pre-registration.

Healthy young undergraduate students (n = 135; 95

females) were recruited from the University of Oregon

via the university’s SONA research system and received a

course credit for their participation. Participants ages ranged
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FIGURE 3

Experiment 1 computational model fitting results. (A) Example of the two accounts of generalization that we tested for. Upon seeing a novel stimulus

(animal on the left side), one can either compare it to all training exemplars and use the summed similarities within categories to make a response

(exemplar model) or compare it to abstracted prototypes to make a response (prototype model). (B) The proportion of subjects classified as

generalizing according to the prototype strategy, exemplar strategy, having a comparable prototype and exemplar model fit, or having fits not

exceeding chance (random).

from 18 to 25 (M = 19) years. All participants provided

written informed consent and experimental procedures were

approved by Research Compliance Services at the University

of Oregon.

Materials
Stimuli

The logical structure of the stimuli was identical to Experiment

1 but the appearance and specific features were different to further

test replicability of Experiment 1 with new stimuli. The cartoon

animals in Experiment 2 varied along the following 8 binary

feature dimensions: color (purple/red), neck (short/long), tail

(straight/curled), foot shape (claws/round), snout (rounded/pig),

head (ears/antennae), body shape (angled/round), and design

on the body (polka dots/stripes). Two example prototypes are

presented in Figure 4A. The complete stimulus set is freely available

through the Open Science Framework (http://osf.io/8bph2). The

structure of the training set and testing set were identical to

Experiment 1.

Experimental design
Experiment 2 utilized a between-subjects design, where

participants were randomly assigned into a paired-associate

learning group (N = 67) or a feedback-based classification training

group (N = 68).

Participants in the paired-associate group completed the exact

same tasks (paired-associate learning, associative memory test,

and category generalization test) as participants in Experiment 1.

As in Experiment 1, the paired-associates learning task required

participants to memorize eight unique animal-scene association

over 5 blocks of training, with five repetitions of each association

per block (200 learning trials in total). Training animals from

one category were associated with four different mountain scenes,

training animals from the other category were associated with

four different forest scenes. To ensure attention and equate

response requirement with the feedback-based classification group,

participants were asked to indicate on each trial how likely they are

to remember each animal-scene association on a subsequent test.

The paired-associate learning task was followed by an associative

memory task for the 8 animal-scene associations, identical to

Experiment 1.

Participants in the feedback-based classification training group

were learning about the two categories directly, using traditional

supervised category learning task with the same stimuli (no

scenes). Prior to training, participants were told they would learn

the habitats in which different animals lived. During training,

participants viewed individual cartoon animals on a computer

screen, with a prompt “Does this guy live in the forest or the

mountains?” displayed above the animal and two response options

on the left (“Mountains”) and the right (“Forest”) side of the screen.

Participants choose one of the two categories by pressing either 1

or 0 on the keyboard. Participants had 5 s to make a decision but

the trial advanced if a response was registered sooner. After making

a response, participants were given feedback for 3 s as to whether

they were correct or incorrect (e.g., “Correct!” or “Incorrect. This

one was from the mountains.”). As in the paired-associate learning

group, there were five training blocks with five repetitions of each

of the 8 training exemplars in each block (200 training trials

in total).

The category generalization test was the same as in Experiment

1 and identical for both groups. On each trial, participants saw

a cartoon animal and had to guess the habitat (“Mountains” or

“Forest”) of that animal. The test was self-paced and no feedback

was given.

Frontiers inCognition 08 frontiersin.org

https://doi.org/10.3389/fcogn.2024.1324678
http://osf.io/8bph2
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Houser et al. 10.3389/fcogn.2024.1324678

FIGURE 4

Experiment 2 stimuli and training performance. (A) Two example prototypes used in Experiment 2, illustrating the 8 binary features on which the

cartoon animals can di�er. (B) Training responses for paired-associates learning group (confidence ratings). Inset shows an example training trial in

the paired-associates learning condition, consisting on observing animal-scene association and rating how likely the association will be remembered

on a future test. (C) Training performance for feedback-based classification training group (proportion correct). Inset shows an example supervised

classification training trial, consisting of categorizing an animal into one of two categories and receiving feedback. In (B, C), thick lines represent

group averages and the thin lines and dots represent individual subjects (dots jittered to avoid overlap). Error bars are for standard errors of the mean.

Statistical analysis
Raw data and the code necessary to reproduce the plots for

Experiment 2 can be found at https://osf.io/dhmks.

Training

To test whether participants in the paired-associate learning

group maintained attention and participants in the feedback-

based classification training group learned over time, we conducted

two separate repeated measures ANOVAs using mean confidence

ratings (paired-associate learning group) and mean accuracy

(feedback-based classification training group) for each participant

and training block.

Associative memory

We computed associative memory measures for participants

in the paired-associate group the same way that we did in

Experiment 1.

Categorization test accuracy and strategy analysis

For the final category generalization test, we reported the same

analyses as in Experiment 1 within each group separately and then

compared the groups on each measure. Categorization accuracy

was compared using an independent samples t-test (overall) and

two mixed design ANOVAs (generalization gradient and old/new

comparisons). To compare strategies, we used a Chi square test

of independence to determine whether the proportions of people

classified as using one strategy vs. another differed between groups.

Results

Training data
There was a main effect of block in both the paired-associate

learning group [F(4,248) = 73.9, η2 = 0.193, p < 0.001] and

feedback-based classification training group [F(4,264) = 41.2, η2 =

0.173, p < 0.001]. Thus, participants trained to remember specific

associations became more confident in their ability to remember

these associations over time while participants trained to categorize

exemplars became more accurate over time (Figures 4B, C). Ergo,

both groups were engaged in their respective tasks.

Associative memory (paired-associate group only)
As in Experiment 1, we assessed how often participants

correctly recalled each training exemplar’s paired background

scene. Overall, people chose the correct scenemost often (M= 71%,

SD= 24%) indicating that participants successfully bound training

exemplars to their unique background scenes. The full distribution

of responses to all options is visualized in Figure 5A and, as in

Exp. 1, suggests that when participants did not remember the

specific correct scene association, they did not seem to remember

the general category either. Thus, we replicated the finding from

Exp. 1 that participants seemed to most often encode the specific

scene-animal associations.

Categorization accuracy
During the final category generalization test, participants

performed well-above chance in both the paired-associate learning

group {M= 72%, SD= 13%, t(66) = 14.272, 95%CI= [0.69, 0.76], d
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FIGURE 5

Experiment 2 test performance. (A) Associative memory responses for paired-associate group. Bar height indicates the proportion of each type of

response. (B) Categorization performance for both groups for novel stimuli at each distance to the prototypes. Thick lines represent group averages

and thin lines and dots represent individual subject data. (C) Categorization performance for just the paired-associates learning group. (D)

Categorization performance for just the feedback-based classification training group. In (C, D), bar height denotes accuracy at the given distance,

averaged across subjects. White bars are old (training) exemplars. In all plots, error bars denote the standard error of the mean.

= 1.74, p< 0.001} and feedback-based classification training group

{M = 75%, SD = 13%, t(67) = 15.786, 95% CI = [0.72, 0.79], d =

1.91, p < 0.001}. The overall accuracy did not significantly differ

between the groups {t(133) = 1.38, 95% CI= [-0.01, 0.08], d= 0.24,

p = 0.171}. Thus, categorization during the generalization test was

nearly as successful after the paired-associate learning task as after

traditional feedback-based classification training. This was quite

surprising given that participants in the paired-associate learning

group focused on learning specific scene associates of specific

animals while participants in the feedback-based classification

training group were directly learning to categorize the animals into

two categories.

Categorization accuracy for all novel items at each distance

from the prototypes is presented in Figure 5B, andwith accuracy for

old items included in Figures 5C, D. To test for the gradient effect

among novel test exemplars and any distance-specific differences

between groups, we employed a mixed design ANOVA with

distance from the prototype as a within-subject factor and training

group (paired-associate learning vs. feedback-based classification

training) as a between-subject factor (Figure 5B). We found a main

effect of distance [F(3,399) = 96.05, η2 = 0.226, p< 0.001], indicating

that performance decreased with distance from the prototype, no

main effect of group [F(1,133) = 2.52, η2 = 0.008, p = 0.115], and

a significant group-by-distance interaction [F(1,399) = 2.98, η2 =

0.007, p = 0.031]. To follow up on this interaction, we ran post-

hoc independent samples t-tests, comparing group performance

at each distance (0–3) from the prototypes. The feedback-

based classification training group showed better categorization of

distance two items {t(133) = 2.54, 95 % CI = [0.01, 0.12], d =

0.44, p = 0.012}, with a similar trend for prototypes {t(133) = 1.88,

95% CI = [0.01, 0.16], d = 0.32, p = 0.062}, while distance 1 and

distance 3 items were comparable across groups (both |t| < 0.53, d

< 0.09, p > 0.59). Thus, although we found no reliable differences

in the overall accuracy, there seemed to be a small generalization
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advantage after feedback-based classification training for some of

the generalization stimuli.

We next looked at old/new differences among distance 2 items

and how they compare between groups. We found a main effect

of stimulus type [F(1,133) = 20.418, η2 = 0.028, p < 0.001], such

that participants categorized training (old) stimuli better than novel

ones. We also found a main effect of group [F(1,133) = 4.73, η2

= 0.027, p = 0.031], with greater accuracy after feedback-based

classification training than paired-associates learning. There was

no group-by-old/new interaction [F(1,133) = 0.94, η2 = 0.001,

p = 0.333], suggesting that the old-advantage was comparable

between groups.

Categorization strategies
The percentage of participants labeled with each strategy

label is presented in Figure 6. To compare the proportions of

exemplarists and prototypists across groups, we used a Chi-squared

test of independence. Only participants that were confidently

assigned one or the other strategy were included in the analysis,

participants with comparable fits or that used a random strategy

were excluded from this analysis. The results showed a trending

relationship between generalization strategy and group (X 2 =

5.73, p = 0.057). Thus, while generalization strategies following

incidental category acquisition through paired-associates learning

were similar to generalization strategies following traditional

feedback-based category learning, there was a numerical shift

toward exemplar-based strategies.

Relationship between specific and general
knowledge (Exp. 1 and 2)

We next conducted a (preregistered) exploratory analysis that

attempted to better understand the relationship between specific

and general knowledge. Many theories suggests that generalization

and specificity may trade off, such that formation of generalized

memory representations comes at the expense of memory for

specific details (McClelland and Goddard, 1996; Shohamy and

Wagner, 2008; Varga et al., 2019). Because the paired-associates

training group was tested not only on concept generalization

but also on their memory for specific animal-scene associations

requiring them to distinguish among similar animals and among

similar scenes, we utilized the opportunity to explore the potential

trade-off at the level of individual differences.

To look for a potential trade off in our data, we first

tested whether participants who successfully formed generalized

knowledge were less able to remember specific details. We reasoned

that if prototypists formed general knowledge while exemplarists

formed specific memories, then exemplarists should demonstrate

superior associative memory performance.

Using a two sample t-test comparing associative memory

between participants classified as “exemplarists” vs. “prototypists”,

we found significantly greater associative memory for exemplarists

than prototypists in Exp. 1 [t(53) = 2.68, d = 0.83, p =

0.010; Figure 7A] and numerically greater associative memory for

exemplarists than prototypists in Exp. 2 [t(56) = 1.17, d = 0.32,

p = 0.248; Figure 7B]. The difference between exemplarists and

prototypists was also significant when data were collapsed across

experiments [t(111) = 2.65, d = 0.54, p = 0.009; Figure 7C]. Thus,

we found some evidence that the formation of generalized category

representation, operationalized here as the use of a prototype

strategy, came at the expense for memory for specific animal-

scene associations.

Next, we were interested whether memory for specific details

and generalization success are related in our sample, and whether

this relationship differs depending on categorization strategy.

While generalization decisions can be based both on specific

memories and generalized knowledge, making predictions for the

specificity-generalization relationship uncertain, the formal models

are helpful in estimating the underlying memory representations

underlying categorization behaviors. For example, specificity and

generalization may go hand-in-hand instead of trading off when

they are both dependent on the same memory representations

(Richter et al., 2016). We hypothesized that, if people used an

exemplar-based strategy to categorize stimuli, their generalization

and associative memory performance should be positively related.

Such a relationship may not exist among prototypists as they

presumably use different representations for the associative

memory and generalization tasks. To test these ideas, we computed

across-subjects correlations between associative memory scores

and generalization accuracy during the final categorization test,

separately among prototypists and exemplarists. The results

were inconsistent across experiments. In Exp 1, we found no

relationship between associative memory and generalization for

either exemplarists (r=−0.08, 95% CI= [−0.59, 0.47], p= 0.782)

or prototypists (r = 0.07, 95% CI = [-0.24, 0.37], p = 0.670)

(Figure 8A). In Exp. 2, we found a strong positive correlation

between associative memory and generalization for exemplarists

(r= 0.66, 95% CI= [0.32, 0.85], p= 0.001) but not for prototypists

(r = 0.22, 95% CI = [-0.11, 0.51], p = 0.181) (Figure 8B).

Regression analysis directly comparing the prototype and exemplar

strategy users confirmed that the relationship between associative

memory and generalization was reliably stronger for exemplarists

than prototypists (strategy ∗ associative memory interaction,

β = 0.26, p = 0.013). Thus, we found partial evidence that

the relationship between specific and general knowledge does

differ depending on strategy, though the results were inconsistent

across experiments.

General discussion

The complexity of the world allows us to acquire category

knowledge in a number of ways. Most work evaluating category

knowledge acquisition trains people to learn categories using

category response options coupled with explicit feedback, such

that people are trained to associate stimuli with category labels

through trial-and-error. In the current paper, we were interested

in whether the same category knowledge could be acquired

incidentally, without explicit instruction, by learning to associate

individual category members with other specific stimuli that can

be organized into categories based on preexisting knowledge. We

found that people did indeed acquire category knowledge despite

training to remember specific paired associates, reaching nearly

identical generalization performance as those explicitly trained to

categorize. Moreover, similarly to those who underwent explicit

feedback-based categorization training, paired associate learners

showed a prototype strategy dominance during categorization test.
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FIGURE 6

Experiment 2 categorization strategies. The percentage of participants in the (A) paired-associate learning group and (B) feedback-based

classification training group that were assigned each of four possible categorization strategy labels.

FIGURE 7

Associative memory and subsequent strategy use. Associative memory performance for prototype and exemplar strategy users in Exp. 1 (A), Exp. 2

(B), and when collapsed across both experiments (C). Error bars are standard errors of the mean. Dots denote individual participants. Colors denote

generalization strategy (red = exemplarists; blue = prototypists).

FIGURE 8

Generalization-associative memory relationship. Lines represent correlations between correct scene responses (y-axis) and generalization accuracy

(x-axis) and ribbons denote 95% confidence intervals for Exp. 1 (A), Exp. 2 (B). Dots denote individual participants. Colors denote generalization

strategy (red = exemplarists; blue = prototypists).
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Nevertheless, a marginal trend suggested a tendency toward more

exemplar-based strategies in people trained to remember specific

information. These findings inform our understanding of how

memories for experiences are spontaneously organized to serve

multiple forms of cognition.

Results from the current study underscore important

similarities and differences between incidental andmore traditional

category learning. Incidental category learning may provide a more

naturalistic framework to characterize categorization processes

(Broadbent et al., 2018; Gabay et al., 2015, 2023; Roark et al., 2022;

Unger and Sloutsky, 2022). For example, a child that hears the

word “ball” might already be focusing on its red and spherical

properties, and thus, will incidentally learn to associate the category

ball with red and sphere features. Indeed, a number of studies

have implicated incidental category structure in learning relational

information in children (Gentner and Namy, 2006; Vasilyeva et al.,

2018). In the current study, we administered a novel category

learning paradigm that resembles incidental learning, in that

participants never received either explicit instruction to categorize

stimuli or corrective feedback during training. However, unlike the

majority of prior incidental categorization studies, the categories

were not uniquely dictated by a similarity structure among training

exemplars. Despite that, we found evidence for robust incidental

concept learning after learning to remember specific associations.

While the categorization performance was slightly better in the

feedback-based classification training group for some of the stimuli,

including the prototypes, the overall accuracy was comparable.

Participants trained to remember specific associations were able to

generalize incidentally-aligned category structure to novel stimuli,

and showed similar generalization gradients as typically found in

traditional category training studies, such as higher categorization

success for prototypes than the stimuli they were trained on.

As such, this study contributes to our understanding of concept

learning under more naturalistic demands and indicates that many

aspects of category learning are robust with respect to how the

categories are learned.

Prior work on incidental learning has provided evidence

that the learning systems and cognitive mechanisms engaged

by traditional, feedback-based learning may be distinct from

those employed during incidental category learning (Lim et al.,

2019; Tricomi et al., 2006). Furthermore, research on episodic

memory has shown how task goals and other conditions may

bias participants to encode related information into separated

memories vs. integration representations (Chanales et al., 2019,

2021; Schlichting et al., 2014, 2015; Schlichting and Preston, 2015;

Zeithamova and Preston, 2017). Here, we hypothesized there

would be a difference in generalization strategy between feedback-

based classification training group and paired-associate learning

group. Specifically, we used prototype and exemplar models of

categorization, both of which can provide good fits to behavior

(Bowman et al., 2022; Bowman and Zeithamova, 2020, 2023; Heit,

1992; Hintzman, 1984; Nosofsky, 1986; Nosofsky et al., 1994;

Posner and Keele, 1968) and neural activity (Bowman et al., 2020;

Bowman and Zeithamova, 2018; Mack et al., 2013). We predicted

an increase in reliance on exemplars after paired-associate learning

emphasizing memory for individual stimuli, but the results were

mixed in that regard. Although we found a marginally significant

shift toward exemplar strategies after paired-associate learning,

more than half of the participants were still fit best by the

prototype model. As a second approach to comparing the role

of specific memories in generalization success, we evaluated the

degree of “old-advantage”, or better categorization performance for

old items than new items at the same distance from the prototypes,

which can indicate a role for exemplar memorization in the

overall categorization success. Old-advantage in both experiments

was reliably above zero, but comparable between paired-associate

learning group and feedback-based classification training group.

Thus, the role of exemplar memorization, as indicated by the

old-advantage analysis, did not seem to increase after the paired-

associate learning. One possible reason for a lack of increased

exemplar memorization following paired-associate learning is that

the common scenes facilitated more contextual-based memory

than memorization of associations (Hayes et al., 2007). That is,

perhaps visual context (i.e., mountains or forest) facilitated retrieval

of central tendencies within each context.

Exploratory analyses focused on the relationship between

specificity and generalization. First, we hypothesized that given

their reliance on specific memories, exemplarists may have

better memory for animal-scene associations than those relying

on prototypes. The data were relatively well aligned with

this prediction. This may indicate that there is a trade-off

between specificity and generalization, such that the formation

of a prototype comes at the expense of memories for specific

associations. Alternatively, those with superior associative memory

may be more likely to adopt an exemplar strategy. Second, we

hypothesized that individual differences in associative memory

may track generalization success in those relying on an exemplar

strategy, given that both tasks are presumably supported by the

same representations. In contrast, such a relationship may be

less pronounced in those using a prototype strategy, as they

presumably use distinct representations for the two tasks. The

results of Experiment 2 aligned with this prediction: we observed

a strong positive correlation between associative memory and

generalization success in exemplarists, which is predicted by

single-system theories assuming that the same type of memory

representations supports both specific and generalized judgments

(Zeithamova and Bowman, 2020). However, this correlation was

only observed for Exp. 2 and Exp. 1, meaning the results

are inconclusive. The relationship between associative memory

and generalization success in those relying on prototypes was

not significant in either experiment, which may reflect the

use of distinct representations across the two tasks. However,

each experiment was underpowered with respect to individual

differences analyses, preventing strong conclusions from these

null findings. Future studies may revisit this question in a larger

sample, as within-subject correlations can contribute to our

understanding of the shared and unique processes across different

cognitive measures.

The grouping of participants into exemplar- and prototype-

based strategy users assumes that people form representations

of either prototypes or exemplars. Decades of debate have

reinforced this dichotomy, yet, more recently, it has been theorized

that prototypes and exemplars form in parallel in the brain

(Bowman et al., 2020; Zeithamova and Bowman, 2020). Forming

representations at multiple levels of specificity can promote

flexibility in future decision-making, as it is not always clear
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how current experience will become relevant. Intriguingly, the

hippocampal axis has been posited to track multiple scales of

information content (Brunec et al., 2018; Maurer and Nadel,

2021), consistent with a gradient of place cell receptive field sizes

(Strange et al., 2014). Indeed, neuroimaging studies have found

prototype representations specifically in the anterior portion of

the hippocampus (Bowman et al., 2020; Bowman and Zeithamova,

2018). Functional connectivity along the hippocampal axis also

aligns with the specificity-generalization continuum (Frank et al.,

2019) and Guo and Yang (2023) show that the ventromedial

prefrontal cortex is more strongly connected with the posterior

hippocampus when retrieving specific associations but more

strongly connected with the anterior hippocampus when retrieving

schemas. While category representations can be found elsewhere in

the brain (Mansouri et al., 2020), it is apparent that, across both

tasks (Blank and Bayer, 2022; Mack et al., 2013) and methodologies

(Sherman et al., 2023), specific and general representations of

experience may form in parallel.

The current findings are broadly consistent with the notion

that generalized representations may form in parallel with specific

ones during learning to be flexibly utilized during subsequent

decision-making depending on task goals. While we hypothesized

that people trained to remember specific information would

increasingly use an exemplar-based strategy, we instead found

reliance on prototypes in the majority of participants. Importantly,

because the associative test required differentiation among similar

animals and background scenes from the same category, it could

not be based on just general knowledge about scene categories.

Thus, individuals appeared to both encode specific information

and construct general representations, and were able to use either

type of memory in a flexible, task-dependent manner. Prototype

strategy may dominate categorization task in most participants

because it is cognitively more efficient. Nevertheless, the increased

attention to differentiating details of individual exemplars elicited

by the paired-associate learning task may result in somewhat

greater exemplar strategy utilization than observed after traditional

supervised training.

Conclusions

In the current study, we have demonstrated that people

trained to remember specific associations can incidentally acquire

knowledge of category structures revealed by association with other

material that itself is structured. Furthermore, generalization of

such knowledge to novel stimuli relied on similar representations

as when acquired during traditional feedback-based classification

training. When considered in tandem with previous literature,

these results suggest that people may encode experiences

at multiple levels of specificity, maintaining specific details

while spontaneously organizing related memories to form more

generalized knowledge. This may allow them to flexibly switch

among representations, focusing on differentiating details of

specific memories vs. generalized knowledge, in response to

task demands.
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