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3Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States,
4Mayo Clinic Arizona, Scottsdale, AZ, United States

Introduction: Aerobic exercise has been shown to improve cancer-associated

cognitive decline (CACD) in breast cancer survivors (BCS), and recent findings

suggest that one mechanism by which exercise may reduce cognitive decline is

through alteration of the brain’s functional organization. Many cognitive abilities

and measures of functional brain organization change with age and disease,

typically reflected in cognitive decline and reduced di�erentiation of brain

networks, or “modularity.” Although previous research has identified associations

between lifestyle interventions, such as exercise, and increased modularity, no

studies have examined these relationships in cancer populations. The primary

aim of this study was to investigate the preliminary e�ects of a 12-week aerobic

exercise program on changes in brain networkmodularity in BCS. As a secondary

aim,we explored correlations between changes inmodularitywithmoderate-to-

vigorous physical activity (MVPA) and cognitive function. Data were exploratory

and used for hypothesis generation for a future, larger study.

Methods: Participants included a subsample of 10 BCS (M age = 65.9 ±

9.3 years) from a larger pilot study (N = 30 BCS) who were randomized to

a 12-week aerobic exercise program (AE) or usual care (UC). The present

study collected brain magnetic resonance imaging, Actigraph accelerometry,

and cognitive task performance at baseline and 3-month follow-up (i.e., post-

intervention; n = 4 AE, n = 6 UC). Intervention e�ects on modularity, MVPA, and

cognition were quantified as magnitude of change between groups (Cohen’s d).

Changes in modularity were further explored via paired t-tests within groups.

Associations between changes in modularity, MVPA, and cognitive performance

were explored using Spearman’s correlations.

Results: The magnitude of changes in modularity between groups were

small-to-moderate and favored the AE group (d = 0.23 to d = 0.67 across

thresholds). Paired t-tests revealed a significant increase in modularity in the

AE group from baseline to 3-month follow-up (t = 3.08, p = 0.03, d = 1.17),

but not in the UC group. The correlation between changes in MVPA and

changes in modularity were not statistically significant (r = 0.36, p = 0.39),

and correlations between modularity and cognitive performance yielded mixed

e�ects by cognitive domain.

Discussion: Findings suggest that aerobic exercise may influence functional

brain network organization and cognition in BCS. These data warrant further

investigation in larger exercise trials.
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1 Introduction

Breast cancer is the most commonly diagnosed cancer among

women in the United States (Siegel et al., 2023). Although

improvements in early detection and treatment have increased

5- and 10-year survival rates, survivors are often left with long-

lasting, negative side effects of treatment (Ahles et al., 2012; Ahles

and Root, 2018). Cancer associated cognitive decline (CACD),

characterized by deteriorations in executive function and memory

processes, has emerged as one of the most disruptive of these

consequences (Shilling et al., 2005; Stewart et al., 2006; Jansen

et al., 2011; Ahles et al., 2012; Janelsins et al., 2014; Mandelblatt

et al., 2016; Ahles and Root, 2018). Previous studies have estimated

that up to 78% of breast cancer survivors (BCS) report cognitive

changes, and, even decades after treatment, more than 20% report

persistent cognitive deficits (Koppelmans et al., 2012; Wefel and

Schagen, 2012; Mandelblatt et al., 2018). The most common deficits

include impairments in executive functions (i.e., top-down mental

processes that regulate behavior) and working memory (i.e., ability

to store, manipulate, and apply information) (Horowitz et al., 2019)

that can impact long-term functioning, independence, and quality

of life (Calvio et al., 2010; Vega et al., 2017; Mandelblatt et al.,

2018). As the number of cancer survivors continues to increase

(Siegel et al., 2021), there is growing need to understand and

alleviate CACD.

As the field of CACD research has grown, accumulating

evidence suggests that established neuropsychological assessments

might benefit from supplementation by functional neuroimaging

approaches that measure brain activity at rest or during task

performance (Correa and Ahles, 2008). Although functional

brain correlates of cognitive impairment in BCS have not

been fully elucidated, functional MRI (fMRI) approaches have

provided preliminary insights into widespread brain dysfunction

as a consequence of cancer (McDonald and Saykin, 2013;

Sousa et al., 2020; Mzayek et al., 2021; Phillips et al., 2022).

For example, an early fMRI study found that, despite similar

performance on cognitive tasks, BCS treated with chemotherapy

exhibited broader spatial activation during working memory

tasks, a finding that could reflect functional compensation during

task performance (Ferguson et al., 2007). Additionally, more

recent fMRI studies measuring properties of functional brain

networks have identified patterns of altered network organization

associated with reduced network efficiency, disrupted network

communication, and reduced connectivity between regions related

to attention dysfunction (Miao et al., 2016; Phillips et al., 2022).

Assessment of functional brain networks, as measured with

fMRI through resting state functional connectivity (rs-FC), has

benefitted from the application of tools from the field of graph

theory that were developed to study many types of networks. One

such tool is modularity, a graph theory metric used to evaluate

whole-brain functional connectivity. Modularity is a scalar value

that summarizes a contrast between the number connections

within and between the brain’s intrinsic functional networks

(Baniqued et al., 2018). This measure has been used to test for

differences in functional brain organization in a variety of clinical

and healthy aging populations because it is a concise quantification

of functional brain organization (He and Evans, 2010; Park and

Friston, 2013; Cohen and D’Esposito, 2016; Baniqued et al., 2018;

Gallen and D’Esposito, 2019; Esfahlani et al., 2021). Measures of

functional brain organization may have utility in populations such

as BCS who experience subtle changes in cognition that are hard

to detect with simple behavioral measures (Ahles and Root, 2018).

Modularity has not yet been examined in cancer survivors but

has the potential to elucidate underlying brain changes and aid in

understanding themechanisms involved in CACD (Sun et al., 2012;

Aboud et al., 2019).

Although there is no established treatment for CACD in BCS,

evidence of the neurocognitive benefits of regular exercise is

promising. Preliminary studies in adult cancer populations suggest

regular exercise may benefit cognition (Campbell et al., 2020);

however, few interventions have measured cognitive function

objectively or focused on neurocognitive function as a primary

outcome (Sturgeon et al., 2023). Even fewer studies in cancer have

evaluated the effects of exercise interventions on brain structure or

function (Koevoets et al., 2023). Applications of aging frameworks

may be useful in expanding this evidence base (Mandelblatt et al.,

2013; Ehlers et al., 2016; Ahles and Root, 2018; Ahles et al.,

2022). For example, studies of exercise in healthy aging populations

have shown that physical exercise attenuates age-related cognitive

decline, and one suggested mechanism for this effect is greater

segregation of functional brain networks reflected in increased

modularity (Sun et al., 2012; Aboud et al., 2019). Exercise trials

in healthy aging populations have also demonstrated changes in

rs-FC and linked modularity profiles with improved cognition as

a function of exercise (Burdette et al., 2010; Voss et al., 2010,

2020; Ehlers et al., 2016; Li et al., 2017; Baniqued et al., 2018;

Prehn et al., 2019; Stillman et al., 2020). Indeed, Voss et al. (2010)

demonstrated a significant relationship between cardiovascular

fitness, brainmodularity, and cognitive abilities in older adults such

that higher levels of fitness were associated with improved resting

functional efficiency and increased brain network modularity.

Subsequent studies have identified significant associations between

fitness and rs-FC changes (Voss et al., 2016) and found that

baselinemodularity predicted improvements in executive functions

among older adults who were enrolled in an aerobic exercise

program (Baniqued et al., 2018). While associations of fitness and

brain network organization appear to be robust and reproducible

findings, thus far no studies have, to our knowledge, explored

the effects of an exercise intervention on brain modularity in

cancer survivors. To the extent that the cognitive declines observed

in healthy aging and in BCS with CACD are the result of

shared mechanisms, treatments known to improve cognition and

brain health in healthy aging might also benefit cancer survivors

(Mandelblatt et al., 2013; Ahles and Root, 2018; Ahles et al., 2022).

The purpose of this study was to examine the effects of

a 12-week, pilot aerobic exercise intervention on whole-brain

modularity in BCS. We hypothesized that BCS randomized to

the exercise intervention, compared to those assigned to usual

care, would exhibit increased whole brain modularity as measured

through rs-FC. As this was a pilot study, the primary objective

was to generate preliminary data on the utility of modularity as a

novel biomarker of brain changes associated with engagement in

regular physical activity in BCS. Among our secondary outcomes,

we also explored correlations between changes in modularity and
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(1) change in moderate-to-vigorous physical activity (MVPA) and

(2) change in cognitive performance on tasks measuring executive

functions, working memory, and verbal memory.

2 Materials and methods

2.1 Study design and participants

Participants in this study were a subsample of BCS (n = 10)

enrolled in a pilot randomized exercise trial (N = 30) who agreed

to undergo brain MRI. Participants were recruited via targeted

mailings to breast oncology patients at an academic medical center

and private cancer center as well as flyers distributed to community

organizations, social media posts, and word of mouth. Eligible

individuals included adult women aged 21 years or older who (1)

were diagnosed with stage I–IIIa breast cancer; (2) had completed

primary treatment (i.e., surgery, chemotherapy, radiation therapy)

within 3 – 24 months of screening; (3) were postmenopausal at

the time of their diagnosis; (4) had no prior history of cancer,

excluding non-invasive skin cancer; (5) had no history of stroke,

transient ischemic attack, other neurological disorders, or brain

surgery involving tissue removal; (6) scored >21 on the Telephone

Interview of Cognitive Status – Modified (TICS-M); (Brandt et al.,

1988) (7) self-reported, on average, fewer than 60 minutes of

moderate intensity physical activity per week in the last 6 months;

(8) received physicians’ clearance to engage in exercise; and (9)

screened for safe participation in an MRI environment (e.g., no

metallic implants or claustrophobia).

Interested individuals were contacted via phone to confirm

eligibility and schedule an orientation. Participants provided

informed consent according to the Declaration of Helsinki

before data collection began. Participants completed testing (brain

imaging, physical activity monitoring, cognitive assessments) prior

to randomization and after the 12-week period. Participants were

randomized to the aerobic exercise program (n = 15) or usual care

(n = 15) following a blocked randomization scheme. Among the

women who agreed to undergo neuroimaging, 4 were randomized

to aerobic exercise and 6 were randomized to usual care. This

study was approved by the University of Nebraska Medical Center

IRB and is registered with the National Institutes of Health

(ClinicalTrials.gov) (NCT03980626).

2.2 Study groups

2.2.1 Aerobic exercise program
Participants randomized to the aerobic exercise program

(n = 4) engaged in thrice-weekly small-group or one-on-one

walking sessions led by American College of Sports Medicine

(ACSM) certified exercise physiologists at local fitness centers

(i.e., YMCAs). The exercise protocol (Figure 1) followed ACSM

guidelines for exercise in cancer survivors (Campbell et al.,

2019) and was progressive such that exercise intensity and/or

duration training principles were manipulated weekly to increase

physical activity volume and cardiorespiratory fitness over the 12-

week program. Participants’ individualized exercise prescriptions

began at ∼45%−50% heart rate reserve for 15 min−20min in

Weeks 1–3 and progressed to 60%−75% heart rate reserve for

45 min−50min by Week 9. Each exercise session began with a

5-min warm-up and ended with a 5-min cool-down. Across the

study, n = 140 sessions were completed as originally designed,

and n = 30 sessions were modified due to the COVID-19

pandemic (one participant completed a modified exercise program

in which exercise sessions 7–36 were completed as home-based,

unsupervised exercise sessions supplemented with weekly virtual

exercise counseling).

2.2.2 Usual care
Participants randomized to the usual care arm (n = 6) were

asked to continue cancer care as usual. BCS assigned to this group

were not discouraged from engaging in exercise; however, they

did not receive information regarding physical activity behavior

change, exercise prescription, or fitness levels during the 12-week

period. After follow-up assessments were complete, usual care

participants were offered an individualized exercise prescription

and a 3-month membership to a local fitness center.

2.3 Measures

All outcomes were measured at baseline (prior to

randomization) and 3-month follow-up (immediately following the

12-week intervention or usual care period). Participants completed

brain imaging and cognitive testing in two separate appointments

lasting ∼1 h each. Between data collection appointments,

participants were instructed to complete questionnaires and wear

an accelerometer.

2.3.1 Demographics and breast cancer history
Demographic information (i.e., age, race, education, income,

employment status, marital status, comorbid conditions) was

collected via self-report survey during baseline testing. Clinical

information on breast cancer diagnosis and treatments received

were obtained retrospectively using electronic medical records.

2.3.2 Physical activity
Participants were asked to wear an accelerometer (Actigraph

GT9X, Pensacola, FL, USA) for 7 consecutive days at baseline and

3-month follow-up to measure MVPA. Participants were advised to

wear the device on their non-dominant hip during waking hours.

Accelerometer data were included for analysis if the participant

had 10+ hours of wear time on at least 4 of the 7 days (Troiano

et al., 2008). Average daily minutes of MVPA were determined

using Freedson cut points (1952+ counts/minute) (Freedson et al.,

1998).

2.3.3 MRI acquisition and processing
MRI data were collected using a Siemens Prisma 3 Tesla MRI

system with a 32-channel head coil. All scans were performed by

the MRI Research Specialist using NUMARIS/4 Syngo MR VE11C

software. Any excess space within the head coil was filled with
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FIGURE 1

Exercise protocol.

foam padding to enhance comfort and limit head motion during

scanning. Participants were instructed to remain as still as possible

for all scans. The MRI protocol was adapted from the Lifespan

Human Connectome Project Aging (HCP-A) (Harms et al., 2018).

T1- and T2-weighted anatomical whole brain scans were first

acquired. T1-weighted sequences had the following parameters:

TR = 2400ms.; TE = 2.22ms.; Slice thickness = 0.8mm.; Slices

= 208; Voxel size = 0.8mm × 0.8mm × 0.8mm; Acquisition

time = 6min 38 s; GRAPPA = 2. T2-weighted sequences had

the following parameters: TR = 3200ms.; TE = 563ms.; Slice

thickness = 0.8mm.; Slices = 208; Voxel size = 0.8mm × 0.8mm

× 0.8mm; Acquisition time= 5min 57 s; GRAPPA= 2. Following,

resting state fMRI (rs-fMRI) with a multiband echo planar imaging

(EPI) sequence supplemented with a single-band EPI image and

2 spin-echo field maps with opposing phase-encoding directions

for distortion correction was collected. During this sequence,

participants were instructed to clear their minds, keep their eyes

open, and look directly at a stationary fixation cross. The rs-fMRI

scan parameters were: TR = 800ms.; TE = 37ms.; flip angle =

52◦, Slice thickness= 2.0mm.; Slices= 72; Voxel size= 2.0mm×

2.0mm × 2.0mm; Multiband acceleration factor = 8; Acquisition

time= 15min and 20 s.

Anatomical MRI data were first converted from DICOM to

NIFTI format using dcm2niix software (Li et al., 2016). Following

data conversion, MRI data were processed through a standardized

pipeline adapted from the HCP-A (Glasser et al., 2013). Briefly,

the HCP-A pipeline for anatomical data includes brain tissue

segmentation, reconstruction of cortical models, removal of non-

brain tissue, non-linear registration to template space (MNI2009c),

identification of gray/white matter boundaries, cortical thickness

calculation, and smoothing of cortical surface reconstructions

(Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000).

Preprocessing of rs-fMRI images with HCP-A pipelines

included: distortion correction, volumetric co-registration of EPI

volumes to single-band EPI reference images, and registration

from EPI to individual anatomical space (Glasser et al., 2013;

Harms et al., 2018). After preprocessing, Analysis of Functional

NeuroImages (AFNI) software tools were used for additional

processing (Cox, 1996). Each functional run was bandpass filtered

to retain frequencies between 0.008Hz and 0.09Hz. Volumes

containing significant motion or large signal outliers (≥10% of

voxels) were censored during regression, bandpass filtering, and

later analysis. Bandpass filtering was carried out during a single

unified regression step (Fox et al., 2005).

2.3.4 Modularity analysis
Functional scans were further processed to measure modularity

using Connectome Workbench software from the Connectome

Coordination Facility (Marcus et al., 2011). Scans were first

parcellated using the Gordon 333 parcellation, a map of the

intrinsic networks of the brain generated from a large dataset

of functional MRI scans (Gordon et al., 2016) that parcels the

brain into discrete units and assigns them to functional networks.

Following parcellation, the fMRI signal of voxels within parcels

were averaged to determine the mean timeseries of each parcel.

Pearson’s r correlations were then calculated for each pair of parcels

and their respective timeseries. The resulting correlations were

compiled into a correlation matrix with each parcel grouped into

the intrinsic functional network as specified by the Gordon 333

parcellation. We then applied the correlation matrix to calculate

whole brain modularity applying multiple thresholds of correlation

strength to generate datasets containing only the 80% to 98% of

strongest correlations in steps of 2%. The thresholded datasets were

then used to calculate their respective Newman modularity values

through the Brain Connectivity bctpy tool (Rubinov and Sporns,

2010). Modularity provides a simple scalar representation of the

segregation of the functional networks of the brain. It is a unitless

measure ranging from −1.0 to 1.0 such that higher values indicate

greater “modularity” reflecting greater segregation of functional

networks (Cohen and D’Esposito, 2016).

2.3.5 Cognitive testing
Cognitive function, operationalized as executive functions and

working memory, was measured using standardized cognitive tasks

administered via the BrainBaseline iPad application (Clinical ink,

Horsham, PA, USA) (Lee et al., 2012). These specific domains of
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cognition were chosen because of their established associations

with CACD and well-documented improvement with exercise in

older adults (Northey et al., 2018). The BrainBaseline application

has been validated across age groups (Lee et al., 2012) and utilized

in numerous clinical populations including older adults (Clark

et al., 2017), cancer survivors (Ehlers et al., 2017), and individuals

diagnosed with HIV (Rubin et al., 2021). Full details of these

cognitive tasks have been published previously (Ehlers et al., 2017).

Executive functions were operationalized as incongruent

reaction time on the Stroop task and total time to completion

for Trails-B. For the Stroop task (Stroop, 1935), participants were

presented with words displayed in varying colored text. Participants

were then asked to identify the color of the word in neutral (e.g., the

word “cat” presented in the color red), congruent (e.g., the word

“blue” presented in blue text), or incongruent (e.g., the word “blue”

presented in red text) conditions. The Trails-B (Tombaugh, 2004)

task required participants to use their finger to draw lines between

alternating numbers and letters in ascending order (e.g., 1, A, 2, B,

3, C, etc.).

Working memory was operationalized as accuracy and reaction

time on the N-back task in the 2-back condition and accuracy and

reaction time on the SPWM task in the set-size 3 condition. The N-

back (Owen et al., 2005) task consisted of a single stream of letters

presented in succession. Participants were asked to determine

whether the letter displayed matched the letter shown two items

before (hence, the “2-back” condition). During SPWM (Awh et al.,

1998), participants were presented with an image containing 3

black dots. After a brief delay, participants were presented with an

image of a single red dot and asked to identify whether the location

of the red dotmatched the location of one of the 3 previously shown

black dots.

2.4 Data analysis

All data analyses were exploratory and designed to calculate

preliminary effects estimates for hypothesis generation for a

future, larger study. Based on the small sample size, whole-

brain modularity, MVPA, and cognitive performance are reported

descriptively by individual. However, to provide preliminary

estimates of effect, between group differences in these outcomes

were also evaluated using Cohen’s d effect estimates. Effect

sizes of ≥0.8, ≥0.5, ≥0.2 were considered large, medium,

and small, respectively (Lakens, 2013). We also conducted an

exploratory one-tailed, paired t-tests analysis within groups

because prior work has shown that modularity increases after

an exercise intervention (Burdette et al., 2010; Voss et al.,

2010, 2020). Specifically, we evaluated change in modularity

within groups from baseline to 3-month follow-up from the

80%-98% thresholds (Voss et al., 2010, 2016, 2020). Modularity

TABLE 1 Participant characteristics.

Exercise (n = 4) Usual Care (n = 6) Total (N = 10)

M ±SDa M ±SD M ±SD

n (%) n (%) n (%)

Demographics

Age (years) 66.0 ±4.08 65.8 ±12.11 65.9 ±9.33

Bachelor’s Degree 2 (50.0) 2 (33.3) 4 (40.0)

Income ≥ $75, 000 per year 3 (75.0) 1 (16.7) 6 (78.9)

Employed full-time 1 (25.0) 1 (16.7) 2 (20.0)

White 4 (100.0) 5 (83.8) 9 (90.0)

Married 3 (75.0) 2 (33.3) 5 (50.0)

Body mass index (kg/m2) 27.2 ±5.54 30.7 ±3.67 29.3 ±4.57

Clinical

Cancer Stage

1 4 (100.0) 5 (83.8) 9 (90.0)

2 0 (0.0) 1 (16.7) 1 (10.0)

Months since diagnosis 8.5 ±6.35 15.5 ±7.48 12.7 ±7.59

Months since last treatment 7.5 ±5.74 12.0 ±8.07 10.2 ±7.25

Radiation only 3 (75.0) 2 (33.3) 5 (50.0)

Chemotherapy and radiation 0 (0.0) 3 (50.0) 3 (30.0)

Hormonal therapy 4 (100.0) 6 (100.0) 10 (100.0)

Hormonal therapy (months) 7.3 ±4.73 8.8 ±6.27 8.3 ±5.55

Diagnosed with Depression 2 (50.0) 2 (33.3) 4 (40.0)

aMean, Standard Deviation.
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TABLE 2 Brain modularity, physical activity, and cognitive function between exercise and usual care participants.

fMRI Modularity score Modularity score

Usual care group Baseline Month 3 Exercise
group

Baseline Month 3 ES

UCG (M± SD) 0.1626± 0.012 0.1704± 0.016 EG (M± SD) 0.1611± 0.009 0.1707± 0.006 0.23

UC-1 0.1666 0.1711 EG-1 0.1656 0.1672

UC-2 0.1630 0.1602 EG-2 0.1650 0.1764

UC-3 0.1668 0.1756 EG-3 0.1658 0.1749

UC-4 0.1675 0.1657 EG-4 0.1587 0.1644

UC-5 0.1733 0.1980

UC-6 0.1384 0.1519

Physical activity MVPA (min) MVPA (min)

Usual care group Baseline Month 3 Exercise
Group

Baseline Month 3 ES

UCG (M± SD) 20.3± 15.7 11.1± 10.1 EG (M± SD) 23.3± 6.6 25.7± 23.2 0.60

UC-1 13.7 25.9 EG-1 18.4 6.2

UC-2 34.1 6.9 EG-2 20.0 11.4

UC-3 39.7 N/A EG-3 33.0 57.8

UC-4 N/A N/A EG-4 22.0 27.3

UC-5 4.6 3.4

UC-6 9.1 8.2

Cognitive function

Stroop Incongruent RT Incongruent RT

Usual care group Baseline Month 3 Exercise
Group

Baseline Month 3 ES

UCG (M± SD) 1358.5± 278.9 1231.5± 216.7 EG (M± SD) 1154.8± 191.5 1090.0± 144.0 −0.39

UC-1 1101.0 1231.0 EG-1 1311.7 1284.5

UC-2 1654.2 1587.5 EG-2 883.4 1076.9

UC-3 1254.7 1027.7 EG-3 1262.9 1061.5

UC-4 1762.2 1278.1 EG-4 1161.3 937.1

UC-5 1236.5 1100.9

UC-6 1143.0 1063.9

Trails-B Total time (s) Total time (s) ES

UCG (M± SD) 90.6± 30.3 73.1± 12.8 EG (M± SD) 55.8± 7.5 56.5± 20.0 −0.77

UC-1 72.0 78.1 EG-1 61.1 84.4

UC-2 83.6 75.1 EG-2 61.6 38.0

UC-3 79.9 50.9 EG-3 45.4 56.3

UC-4 58.6 70.7 EG-4 54.9 47.4

UC-5 143.5 73.4

UC-6 106.2 90.1

N-Back 2-Back accuracy 2-Back accuracy ES

UCG (M± SD) 0.63±0.2 0.73±0.14 EG (M± SD) 0.61±0.23 0.85±0.09 0.74

UC-1 0.28 0.56 EG-1 0.67 0.83

UC-2 0.72 0.83 EG-2 0.33 0.89

UC-3 0.83 0.78 EG-3 0.56 0.72

UC-4 0.72 0.56 EG-4 0.89 0.94

(Continued)
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TABLE 2 (Continued)

N-Back 2-Back accuracy 2-Back accuracy ES

UC-5 0.50 0.83

UC-6 0.72 0.83

N-Back 2-Back RT (ms)∗ 2-Back RT (ms)∗ ES

UCG (M± SD) 1146.4± 100.5 1153.1± 26.2 EG (M± SD) 1069.8± 273.4 957.1± 94.2 0.87

UC-1 984.6 1138.9 EG-1 1246.9 1016.2

UC-2 1234.0 1162.4 EG-2 726.3 819.6

UC-3 1126.7 1121.5 EG-3 1327.8 972.5

UC-4 1259.3 1137.1 EG-4 978.5 1020.1

UC-5 1095.8 1162.9

UC-6 1177.9 1195.6

SPWM SS3 accuracy SS3 accuracy ES

UCG (M± SD) 0.74± 0.1 0.81± 0.1 EG (M± SD) 0.82± 0.08 0.93± 0.07 0.49

UC-1 0.77 0.70 EG-1 0.77 0.83

UC-2 0.67 0.67 EG-2 0.90 1.0

UC-3 0.80 0.93 EG-3 0.73 0.93

UC-4 0.87 0.87 EG-4 0.87 0.93

UC-5 0.77 0.87

UC-6 0.57 0.80

SPWM SS3 RT (ms) SS3 RT (ms) ES

UCG (M± SD) 991.3± 159.2 997.9± 92.9 EG (M± SD) 887.4± 126.2 880.7± 161.3 0.06

UC-1 925.0 1018.2 EG-1 951.7 830.9

UC-2 959.2 898.8 EG-2 731.5 680.3

UC-3 953.3 1001.1 EG-3 1020.3 960.5

UC-4 1174.4 1099.4 EG-4 846.0 1051.0

UC-5 1174.3 1009.4

UC-6 761.3 840.3

Data presented include mean modularity by group and individual participant modularity. Modularity thresholded at a representative 80th percentile of connections. Positive effect sizes indicate

benefits favoring the exercise group. M, Mean; SD, standard deviation; ES, effect size expressed as Cohen’s d; MVPA, moderate-to-vigorous physical activity; RT, reaction time; SPWM, spatial

working memory; SS3, set size 3; fMRI, functional magnetic resonance imaging; UCG, usual care group; EG, exercise group.

analyses were repeated across thresholds to binarize regional

connectivity (n.b. these thresholds play a different role than

statistical thresholds used for significance testing) (Bullmore and

Sporns, 2009; Power et al., 2011; Gordon et al., 2016). Measuring

network modularity at multiple thresholds ensured that any

isolated, spurious associations were not improperly assumed to

be robust effects. Rather, observing statistical significance and/or

directionality of associations at multiple thresholds would increase

confidence that such effects were reliable within the dataset

being analyzed.

Bivariate Spearman’s correlations were calculated to explore

associations between (1) change in MVPA and change in

modularity and (2) change in modularity and change in cognitive

performance from baseline to 3-month follow-up. Accuracy

and reaction time data were considered as separate outcomes

because they are inversely related. Data were analyzed using

SPSS version 27 (IBM Corp., Armonk, NY, USA) and R (R

Core Team).

3 Results

3.1 Sample characteristics

Women in this study were, on average, Caucasian, overweight,

older adults who had been diagnosed with early-stage breast

cancer, had completed primary treatment within 1 year prior to

enrollment, and were prescribed adjuvant hormonal therapy for

their cancer. All participants were currently prescribed hormonal

therapy, half received radiation therapy, and only 3 BCS (all

usual care) received chemotherapy. Full details of the sample are

presented in Table 1.
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FIGURE 2

Change in modularity scores from baseline to 3-month follow-up by group. Change in modularity at 80% threshold (group mean = solid line,

individual subjects = dashed lines). The exercise group had significantly increased modularity at the 3-month follow up compared to baseline (*p <

0.05), while the usual care group did not show significant changes in modularity from baseline to 3-month follow-up.

3.2 E�ect sizes: modularity, MVPA,
cognition

The magnitude of change in modularity between groups

yielded small to medium effect sizes across thresholds [range: d

= 0.23 (80% threshold), d = 0.67 (96% threshold)]. Individual

and aggregate values at the 80% threshold are reported in

Table 2, with aggregate values on all thresholds available in

Supplementary Table 1. BCS randomized to aerobic exercise

increased daily MVPA by 2.3min while those randomized to usual

care decreased daily MVPA by 9.2min per day (Table 2). Change

in MVPA between groups yielded a medium effect size (d =

0.60). The magnitude of change in cognitive performance varied

across tasks, with changes in Stroop and Trails-B (i.e., executive

function) favoring the control group and changes in N-Back and

SPWM (i.e., working memory) favoring the aerobic exercise group

(Table 2)

3.3 Modularity: exploratory t-tests

The exploratory within-group analysis revealed statistically

significant positive changes in modularity from baseline to 3-

month follow-up in the aerobic exercise group at 80%, 82%,

and 84% thresholds (Figure 2; Supplementary Table 1). There

was no significant change in modularity between baseline and

3-month follow up in the usual care group at any threshold

(Supplementary Table 1). The individual data highlight how

patients in the exercise group demonstrated an increase in

modularity, while the usual care group had more variable

changes in modularity from baseline to 3-month follow-up.

The difference in network correlation from baseline to 3-month

follow-up is represented by a cross correlation matrix for each

group in Figure 3. This qualitative representation of changes

within and between brain networks depicts increased within-

network connectivity and decreased between-network connectivity

in the aerobic exercise group. While the usual care group also

displays some decreases in between-network connectivity, the

overall patterns were attenuated compared with the aerobic

exercise group.

3.4 Associations among physical activity,
modularity, and cognitive function

Correlation analyses revealed a weak, positive correlation

between change inMVPA and change in 80% thresholdmodularity;

however, it did not achieve statistical significance (r = 0.36, p =

0.39). There were no statistically significant correlations between

change in modularity and change in cognitive performance

outcomes (all p > 0.09; Table 3). For completeness, we describe the

observed, non-significant patterns in the remainder of this section,

with the caveat that larger samples sizes will likely be required

for rigorous evaluation. Directionality of the associations indicated

that increased modularity was associated with small improvements

in Stroop incongruent reaction time, Trails-B total time, N-back 2-

Back accuracy, and SWPM accuracy. Correlations between change

in modularity and cognitive outcomes across all thresholds are

included in Supplementary Table 2.

4 Discussion

The primary objective of this exploratory study was to examine

the effects of a 12-week aerobic exercise program on whole-

brain modularity in post-menopausal BCS. Major findings suggest
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FIGURE 3

Average change in network correlation from baseline to 3-month follow-up in the usual care and exercise groups. Change in modularity from

baseline to 3-month follow up is displayed at a representative 80% threshold in the UC and AE groups. This qualitative representation of changes

within and between brain networks demonstrates that in the AE group there was increased within-network connectivity and decreased

between-network connectivity, while these patterns were attenuated in the UC group.

modularity may be a novel brain biomarker warranting further

exploration in exercise oncology. The exploratory modularity

analysis revealed that BCS in the aerobic exercise group

demonstrated improvements in modularity from baseline to 3-

month follow-up, while the usual care group did not. Despite

the small sample size, these preliminary results revealed that

the neuroimaging approach was sensitive to changes in brain

network organization after only 12 weeks of aerobic exercise

training. However, change in modularity was not significantly

correlated with changes in MVPA or cognitive performance. How

or whether these changes are reliably associated with MVPA and

cognitive performance remains unclear, but these associations

warrant future research.

Whole brain modularity has been used previously to describe

changes in functional connectivity associated with aging and

disease (Chan et al., 2014; Aboud et al., 2019) as well as

to predict cognitive improvements after exercise and cognitive

training interventions (Baniqued et al., 2018, 2019). Analyses in the

present study revealed that between group changes in modularity

favored the aerobic exercise group with a small to medium effect

size. The exploratory t-tests demonstrated that even a short,

moderate-intensity aerobic exercise intervention may yield positive

changes in brain network functional organization, and qualitative

observations were consistent with modularity increases observed

only in the aerobic exercise group. These findings are notable

because they replicate evidence of modularity changes in aging

adults after participation in an exercise intervention (Burdette et al.,

2010; Baniqued et al., 2019). Broadly, evidence from computational

models have demonstrated that modular networks are able to adapt

more efficiently to new environments, (Kashtan and Alon, 2005;

Tosh and McNally, 2015), and evidence from MRI studies have

found that optimally modular networks require lower functional

demand to perform cognitive tasks (Stevens et al., 2012; Fornito

TABLE 3 Correlations of change in whole-brain modularity with MVPA

and cognitive performance.

Modularity

r (p)

MVPA 0.36 (0.39)

Stroop

Incongruent RT −0.44 (0.88)

Trails-B

Total Time −0.56 (0.09)

N-Back

2-Back accuracy 0.32 (0.37)

2-Back RT 0.47 (0.17)

SPWM

SS3 accuracy 0.58 (0.28)

SS3 RT 0.25 (0.49)

r, Spearman’s rho; MVPA, moderate-to-vigorous physical activity; RT, reaction time; SPWM,

spatial working memory; SS3, set size 3. Modularity presented as score at 80th percentile of

correlation strength. Beneficial associations are indicated by negative correlations for timed

outcomes and positive correlations for accuracy and MVPA outcomes.

et al., 2015; Baniqued et al., 2018). In contrast, aging-related

disruptions in brain modularity are associated with lower cognitive

efficiency and hypothesized to occur prior to anatomical atrophy

and behavioral cognitive impairment (Onoda and Yamaguchi,

2013). Taken together with findings presented in this study, it is

plausible that exercise interventions could serve as an important

first step in ameliorating cognitive declines in BCS through the

improvement of brain modularity.

In contrast to previous research (Galiano-Castillo et al.,

2017; Campbell et al., 2018; Hartman et al., 2018), there were
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no associations between change in modularity and change in

cognitive performance, despite some correlations trending toward

significance and being of moderate strength. This may be

at least partially explained by trends observed in age-related

decline in which stronger changes observed in modularity

preceded behavioral changes in cognitive performance (Onoda

and Yamaguchi, 2013). Additionally, previously published MRI

data have suggested that BCS exhibit compensatory brain activity

during cognitive tasks characteristic of network dysfunction (Kesler

et al., 2017; Phillips et al., 2022). Therefore, biomarkers of

functional organization, such as brain modularity, may be useful

for identifying both subclinical declines in brain health and

intervention-related improvements in studies of CACD. While

cognitive training intervention studies have found improvements

in task performance after only 5 to 8 weeks, aerobic exercise-related

cognitive gains may take longer to manifest. Indeed, improvements

in executive functions observed by Baniqued et al. (2018) were

the result of a 6-month exercise program, that is, twice the length

of the program in this study, and was conducted in healthy

older adults without known memory impairments. Furthermore,

findings from another previous study in older adults only found

favorable effects on functional connectivity and executive functions

after 12-months of exercise training, with no change observed at the

interim 6-month follow-up (Voss et al., 2010). Amid promising, but

inconsistent, evidence on exercise’s neurocognitive benefits amid

cancer (Campbell et al., 2019), it is unclear whether the trajectory of

functional connectivity and cognitive responses to exercise training

in a cancer population would mirror those previously reported

in aging. Nevertheless, modularity should be considered in future

studies of CACD because it may provide a metric of intervention-

related cognitive improvements that, based on the present findings,

may be modified over even short periods of time.

Of further interest was the weak, non-significant correlation

between modularity and MVPA. Findings from previous imaging

studies in aging have indicated that it may be changes in

cardiorespiratory fitness, not minutes of MVPA, that drive neural

and cognitive changes associated with exercise interventions

(Chaddock-Heyman et al., 2015; Oberlin et al., 2016; Voss et al.,

2016; Lesnovskaya et al., 2023). However, while cross-sectional

studies have observed positive associations between fitness and

neural biomarkers in BCS (Chaddock-Heyman et al., 2015;

Lesnovskaya et al., 2023), fitness-related improvements have not yet

been supported by emergent data (Koevoets et al., 2023).

4.1 Strengths and limitations

This study was the one of the first to examine the effects of

aerobic exercise training on neural outcomes in cancer survivors

and, to our knowledge, the first to investigate brain network

modularity (Koevoets et al., 2023). Furthermore, it employed a

rigorous fMRI protocol to evaluate a novel brain biomarker with

implications for successful brain aging and provided promising

preliminary results. It is, however, limited in its conclusions due

to the pilot design and small sample size. As such, results should

be interpreted with caution and be considered as hypothesis

generating. It is possible that other factors influenced brain changes

other than the exercise intervention that were not observable in

this analysis. Specifically, BCS with a history of chemotherapy

treatment were not evenly distributed between treatment groups,

which may have biased results favoring the intervention. As there

was only a weak correlation between change in MVPA and change

in modularity, it is unclear to what extent other unknown factors

related to the intervention, other than increasing physical activity,

such as improved fitness or improved psychosocial function, were

associated with changes in modularity. Larger studies are needed

to fully understand the effects of exercise interventions on brain

network organization. The sample was also primarily composed

of white BCS with early-stage cancer who had not received

chemotherapy and that were not required to have cognitive

complaints to be eligible for participation, which limits the

generalizability of results to the broader breast cancer population.

Modularity as a biomarker for CACD has many strengths,

but it is not without limitations. Parcellating functional data to

split the brain into discrete functional units allows calculations

of modularity and other connectomic measures; however, it

relies on a large normative sample to generate a parcellation

(Gordon et al., 2016). It is therefore possible that some features

unique to individuals or non-healthy populations are lost. For

example, the Gordon 333 parcellation was generated utilizing

functional MRI data from healthy adults (Gordon et al., 2016).

This parcellation is well-validated and widely used, but the

development of a BCS-specific functional parcellation might

benefit future efforts. Additionally, as modularity is a whole

brain metric, it does not assess changes within specific networks.

Identifying network-specific changes associated with CACD and

exercise interventions is a key future direction for this line

of research.

4.2 Conclusion

The primary objective was to evaluate modularity as a

biomarker of exercise intervention-related changes in brain health.

Findings indicated that the 12-week exercise intervention was

associated with a medium effect on daily MVPA and brain

modularity. There was a weak correlation between change

in MVPA and change in modularity; the small sample size

and limited power may have weakened this association. The

exploratory analysis revealed that at the 80%-84% thresholds,

BCS in the aerobic exercise group had significantly higher

whole-brain modularity at the 3-month follow-up, and the

directionality, albeit not the statistical significance, of the effect

was consistent across all thresholds. Given that the direction

of the associations between modularity, physical activity, and

cognition were in the expected direction, results from this

study indicate that further investigation of these relationships

is warranted.
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