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Retrieval-based inference in the
acquired equivalence paradigm

Troy M. Houser†, Louisa Krantz† and Dagmar Zeithamova*

Department of Psychology, University of Oregon, Eugene, OR, United States

Introduction: Generalization is fundamental to cognition. In acquired

equivalence, two stimuli that share a common association become treated as

equivalent, with information acquired about one stimulus generalizing to the

other. Acquired equivalence has been thought to rely on integrating related

memories as they are encoded, resulting in fast spontaneous generalization, but

other studies suggested e�ortful on-demand recombination of initially separate

memories at retrieval. Here, we tested whether the tendency to separate vs.

integrate related information may depend on a methodological detail of a

traditional acquired equivalence paradigm.

Methods: Human participants underwent feedback-based learning of

overlapping face-scene associations, choosing a correct scene for a face

from two options on each trial. Foil (incorrect) scenes were controlled for half of

the participants to ensure that they can only learn from corrective feedback. The

other half had foils selected randomly on each trial, allowing statistical learning

of face-scene co-occurrence to supplement feedback-based learning. We

hypothesized that the opportunity for statistical learning would boost learning

and generalization and facilitate memory integration.

Results: The opportunity for statistical learning increased associative learning

and generalization. However, rather than integrated memories, generalization

was increased through learning during test.

Discussion: The results indicate that the tendency for generalization in the

acquired equivalence is rather small, with no evidence for integrative encoding

irrespective of group. The results inform current debates regarding encoding-

based vs. retrieval-based mechanisms of generalization. They also highlight how

methodological details may alter performance and the involvement of cognitive

processes that underlie it.

KEYWORDS

acquired equivalence, integrative encoding, retrieval-based inference, statistical

learning, memory

1 Introduction

The groundbreaking work of Pavlov (2010) demonstrated how a response conditioned
to a stimulus can be elicited by novel stimuli that are physically similar to the conditioned
stimulus. This sparked a wealth of cognitive research focusing on how perceptually similar
stimuli excite common elements in the mind and brain, allowing one to generalize a
learned behavioral response to new stimuli (Shepard, 1957, 1987; Estes et al., 1964; Hill
and Mackintosh, 1976; Rescorla, 1976). While this research program has contributed
immensely to our understanding of how conditioned behaviors transfer to novel situations,
stimulus generalization does not require physical similarity. Quite early on, Miller and
Dollard (1941) argued that the transfer of a response to novel stimuli or contexts does
not have to depend on the intrinsic properties of the stimuli but rather can also be
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achieved via their associative history. The important idea behind
associative-based transfer is that stimuli that are not perceptually
alike but that share a common associate will be represented as more
similar than two stimuli that do not share an associate (Honey and
Hall, 1989; Coutureau et al., 2002). In other words, stimuli with a
shared associate can become treated as equivalent, or acquire their
equivalence. Acquired equivalence has been demonstrated across a
variety of stimuli, including faces, abstract symbols, odors, or tones
(Honey andHall, 1989; Stevenson, 2001; Hall et al., 2003; Stevenson
et al., 2003). Since its conceptualization, the cognitive mechanisms
underlying acquired equivalence have been of broad interest, given
that the tendency to generalize across associatively related stimuli
can help us understand healthy cognition (Meeter et al., 2009; Doll
et al., 2015) as well as cognitive changes in clinical populations
(Bódi et al., 2009; Kostek et al., 2014; Foerde and Steinglass, 2017).
For example, dementia has been shown to impair (Bódi et al., 2009)
while posttraumatic stress disorder enhances (Kostek et al., 2014)
acquired equivalence.

The acquired equivalence paradigm, that can be used in
both animals and humans, tests spontaneous generalization of
associations learned through feedback-based training (Edwards
et al., 1982; Honey and Hall, 1991; Meeter et al., 2009; Doll
et al., 2015). In a typical acquired equivalence task (Figure 1),
participants learn that two cue stimuli (such as two faces, F1 and
F2) share a common association (for example, both preferring
snowy mountains over a canyon). This establishes the equivalency
between the two stimuli. Participants also learn a second preference
for one of the cue stimuli (such as F1 preferring the city over
the beach). In a critical untrained test trial, reliably choosing the
city over the beach for the second face would be indicative of
generalization of preferences through acquired equivalence.

Two classes of mechanisms have been put forth as explanations
for acquired equivalence (Figure 2). Encoding-based models
suggest that the brain integrates related experiences into a network
of associations that link all the elements within a quadruplet
together (e.g., F1-F2-S1-S2; Figure 2 Top) at the time of encoding
(Shohamy and Wagner, 2008). Presumably, prior associations are
reactivated during encoding of related associations, leading to the
integration of overlapping associations into a combined memory
representation (see also Zeithamova et al., 2012). As a consequence,
one should be able to directly retrieve the untrained association
(F2-S2) frommemory, with the same ease as trained associations. In
contrast, retrieval-based models argue that learned associations are
encoded separately (F1-S1, F1-S2, F2-S1). Generalization happens
on-demand at test, whereby memory traces are sequentially
retrieved and recombined in the moment to infer the untrained
association (Figure 2 Bottom). Evidence implicating both models
has surfaced in the literature.

Encoding-based theories assume that participants during
training form an integrated memory representation that already
links all related elements within a quadruplet together (Figure 2).
As a consequence, processes needed during the test of the
untrained association should be no different from retrieving a
trained association. Indeed, a landmark study using the acquired
equivalence paradigm (Shohamy and Wagner, 2008) showed that
among those with a strong tendency to generalize, reaction times
were nearly identical for trained and untrained associations.

Furthermore, hippocampal responses during training, but not
during the test, were related to generalization performance. As a
flip side, integration during encoding may lead to false memories
for inferred information because the inferred association becomes
and integral part of the stored memory representation (Shohamy
and Wagner, 2008; Carpenter and Schacter, 2017, 2018).

While the evidence for integration during encoding in acquired
equivalence aligns with evidence for integration in other types
of generalization paradigms (Zeithamova et al., 2012; Schlichting
et al., 2014; Schlichting and Preston, 2015; Richter et al., 2016;
Bowman and Zeithamova, 2018), it has been difficult to replicate.
In the most direct attempt, de Araujo Sanchez and Zeithamova
(2023) closely followed the procedures from Shohamy andWagner
(2008), with an explicit source memory measure added at the end
to test the prediction that generalization leads to false memory.
Contrary their prediction, they found that participants were largely
aware they were making novel judgments on untrained trials, with
no relationship between generalization tendency and false memory
(de Araujo Sanchez and Zeithamova, 2023). This particular finding
did not directly conflict with the prior study—the relationship
between false memory (false belief that one actually studied the
untrained association) and generalization in Shohamy andWagner
was only anecdotal, based on an informal debriefing. But other
behavioral evidence for integration was also not replicated. de
Araujo Sanchez and Zeithamova (2023) found large reaction time
cost for untrained trials compared to trained trials that was present
even among the top generalizers. The tendency to generalize was
on average rather small (around 55%, with 50% being chance),
compared to 81% found in Shohamy and Wagner, 2008. As in
Shohamy and Wagner (2008), each test trial was repeated 6 times
for a better estimate of generalization tendency. When analyzing
each repetition separately, the generalization scores were not
reliably different from 50% on the first repetition and increased
across repeated testing. In other words, the pattern of results
was more consistent with retrieval-based accounts, assuming
separate representations formed at encoding being linked on-
demand during test. Thus, both evidence for integrative encoding
and retrieval-based on-demand generalization processes have been
found in prior work, without a clear way to reconcile them.
Finally, even though most studies using acquired equivalence have
not reported analyses that could resolve between encoding-based
and retrieval-based accounts, the magnitude of the generalization
tendency observed in Shohamy and Wagner (2008) was much
larger than any subsequent study (Duncan et al., 2012; Doll
et al., 2015; Foerde and Steinglass, 2017; de Araujo Sanchez and
Zeithamova, 2023). Thus, conflicting findings regard not only the
mechanisms of generalization, but also its prevalence.

In the current paper, we asked what might be the reason for
these mixed and seemingly conflicting results. We hypothesized
that a nuanced aspect of the procedure may push participants
toward separation vs. integration of related experiences, with
consequences for learning as well as generalization. To ensure that
participants only learn via the corrective feedback, most acquired
equivalence studies control for cue-response co-occurrence by
“yoking” pairs of quadruplets together (Myers et al., 2003; Meeter
et al., 2009; Doll et al., 2015; Foerde and Steinglass, 2017), as
illustrated in Figure 3. For example, quadruplet one (F1, F2, S1, S2)
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FIGURE 1

The acquired equivalence paradigm. Stimuli are organized into quadruplets, where two cue stimuli (here, Face 1 and Face 2) are associated with two

response stimuli (here, Scene 1 and Scene 2). Training includes three of the four possible cue-response associations (F1-S1, F1-S2, F2-S1), learned via

feedback-based training. Here, the cue face is presented at the top and the participant needs to decide which of the bottom scenes is preferred by

the cue face. Correct preference for each face is highlighted in this figure by a circle, the other scene is a foil from a di�erent quadruplet. Participants

receive feedback after each guess. Test includes trained associations and the untrained Face2-Scene2 associations (dashed line, dashed border), with

no feedback provided. Response bias (here, the tendency to select city over palms as a preference for Face 2) would indicate spontaneous

generalization of preferences across Face 1 and Face 2. Participants are not informed about the structure of the stimuli and they are not told that the

test includes preferences they had not studied.

is yoked with quadruplet two (F3, F4, S3, S4), such that the correct
choices of one quadruplet serve as foils for the other quadruplet and
vice versa. During training and test, F1-S1 trials always include not
only the same F1 and S1 stimulus, but also the same foil scene S3.
For example, the choice may always be between the mountains and
the canyon (F1: S1 vs. S3), with the mountains being the correct
choice. The same options would also be used for F3 (F3: S1 vs.
S3), but now the canyon would be the correct choice for F3. This
way, the frequency of co-occurrence is equated between the two
choice scenes (F1 was seen equally often with both S1 and S3)
and participants can only learn the correct choice based on the
corrective feedback. This design also aligns with animal and early
human studies that only used two quadruplets (Bódi et al., 2009;
Meeter et al., 2009), whose stimuli served as each other’s foils, akin
the yoked example in Figure 3.

Specifically, we hypothesized that an opportunity to
supplement feedback-based associative learning with statistical

learning may lead to faster learning of trained associations and
a stronger tendency to integrate related experiences. Notably,
participants are assumed to learn the trained associations through
feedback. Nevertheless, unless the selection of foil scenes on each
2-alternative forced choice trial is strictly controlled, participants
may have another clue available: the frequency of stimulus co-
occurrence. For example, if the foil scene is selected randomly on
each trial, participants may not only learn the correct scene for each
face from the feedback, but may be also learning the associations
from frequency statistics, as associated stimuli co-occur more
often (Figure 3, Non-yoked design). For example, first F1-S1
training trial may require a choice between mountains and the
canyon, second F1-S1 trial mountains and a lagoon, third F1-S1
trial mountains and a field. This offers another route to learning
F1-S1 association through statistical learning, as F1 is more
often co-occurring with S1 compared to other scenes. As both
statistical learning and integrative encoding are thought to rely
on the same neural mechanisms (Schapiro et al., 2017), this may
not only boost learning of the trained associations but also bias
participants toward memory integration, boosting generalization.
As Shohamy andWagner (2008) did not report all the details of the
foil selection in their study, it is possible that the strong learning

and generalization they observed could be in part because of the
contribution of statistical learning, if the foils were indeed varying
across repetitions.

We hypothesized that these nuanced details of task design
may affect the degree of generalization as well as the degree to
which generalization is based on integrative encoding vs. retrieval-
based strategies. In contrast to the random foil design where
statistical learning can contribute to learning and generalization,
we hypothesized that the more controlled yoked design may bias
participants toward separate encoding of individual associations
to prevent interference (O’Reilly and Rudy, 2001; Kirwan and
Stark, 2007; Favila et al., 2016). Specifically, the yoked design
necessitates that participants differentiate very similar trials to
make the correct choice: S1 should be picked over S3 in context
of F1, but S3 should be picked over S1 in context of F3 (Figure 3,
Yoked design). Notably, it is important that participants do not

integrate across faces F1 and F3 that have distinct preferences,
even though those faces are repeatedly presented with the same
scene options. Thus, we hypothesized that when foil scenes are
strictly controlled to prevent statistical learning, participants may
be biased to pattern separate each association, with integrative
encoding being less likely.

To test whether it is possible to bias participants toward or away
from integration by enabling or preventing statistical learning, we
manipulated the structure of foils in the feedback-based learning
trials (Figure 3). In the yoked group, foils and correct choices were
yoked and participants could only learn face-scene associations
through corrective feedback. In the non-yoked group, participants
underwent the same training and test structure, but with foil stimuli
varying across trial repetitions, giving them the opportunity to
supplement the feedback-based training with statistical learning, as
the frequency of co-occurrence between each face and its correct
scene offered another associative cue. We hypothesized that the
opportunity for statistical learning in the non-yoked group will
result in faster learning. Furthermore, because statistical learning
and memory integration are thought to depend on the same neural
mechanisms (Schapiro et al., 2017), we also predicted greater
tendency to generalize, as well as greater evidence for integrative
encoding in the non-yoked than yoked condition. To foreshadow
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FIGURE 2

Memory representations proposed to underly generalization in

acquired equivalence. (Top) Related experiences are integrated into

a combined memory representation that links all elements together.

The red line indicates that even associations that had not been

directly encountered are already represented as a part of the

integrated representation. (Bottom) Retrieval-based models assume

that individual associations are encoded as separate memory

representations (blue lines). Generalization judgments for untrained

associations can be inferred on-demand by recursive retrieval of

individual trained associations, as indicated by the retrieval path

marked by black arrows.

the results, we found evidence for enhanced learning of trained
associations in the non-yoked group, but limited generalization in
both groups.

2 Method

2.1 Participants

A total of 107 people participated in the study. All were
undergraduate students at the University of Oregon who had
signed up for the study through SONA for course credit and
provided written consent before taking part in the study. The
age of participants ranged from 19–24, with a mean of 19 years.
When asked about gender, 76 identified as female, 29 as male, and
2 as non-binary. All participants were included in the analyses.
Experimental procedures were approved by Research Compliance
Services at the University of Oregon.

2.2 Stimuli

Stimuli included 16 grayscale images of neutral faces (8 male,
8 female, varying races) and 16 colored scene images, randomly
assigned into 8 quadruplets, varying across participants. Within
each quadruplet, there were 2 faces (e.g., F1 and F2) associated
with 2 scenes (e.g., S1 and S2), resulting in four possible face-scene
associations within each quadruplet: F1-S1, F2-S1, F1-S2, and F2-
S2. Participants were trained through corrective feedback on three
of the face-scene associations (F1-S1, F2-S1, F1-S2), and then tested
without feedback on all four (Figure 1).

2.3 Procedure overview

We employed a between-subjects procedure in which
participants completed one of two versions of the acquired
equivalence task, differing only in the way the foil stimuli were
controlled. For both conditions, the experiment consisted of (1)
pre-exposure to all facial stimuli, (2) feedback-based training of
the three premise associations, and (3) a test for generalization via
acquired equivalence that included both trained and untrained
associations. In both training and testing, participants were shown
a face along with two scenes for each trial and asked to choose
the scene that correctly corresponded to the presented face. In the
yoked condition, the foil scene was consistent across trials and
thus co-occurred with the cue at the same frequency as the correct
scene. In the non-yoked condition, the incorrect scene changed
pseudo-randomly with each iteration. The stimuli, number of
trials, presence of feedback, and number of trial iterations were
equal across conditions. Complete details of the two conditions are
provided below.

2.3.1 Pre-exposure
Participants first underwent pre-exposure, in which they

successively viewed the 16 faces that would be shown to them
during the task. Participants were not asked to do anything but
familiarize themselves with the stimuli. Each face was shown three
times in a random order, presented one-by-one for 2 s and followed
by a 1 s fixation cross that appeared between them. This phase
of the experiment was included for participants to familiarize
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themselves with the stimuli (Shohamy and Wagner, 2008) and no
data was collected.

2.3.2 Training
Participants were then trained on three of the four face-scene

associations (F1-S1, F1-S2, and F2-S1) from each quadruplet, using
corrective feedback given after each trial. For each trial, participants
were presented with a face at the top of the screen and two
choice scenes (a correct scene and a foil scene) below it. Stimuli
stayed on the screen for 3 s, during which participants had to
select the scene that correctly corresponded to the presented face.
Participants were then shown feedback based on their response
(“Correct!,” “Incorrect!,” or “Too late!”) for 1 s, which was then
followed by a 1 s fixation cross. Each association was presented 7
times in random order, resulting in a total of 168 training trials
(8 quadruplets × 3 trained associations in each × 7 repetitions).
To ensure that participants were learning the associations and not
relying on spatial cues to infer the answer, correct scenes were
shown about an equal number of times on the left and right side
of the screen.

2.4 Procedure di�erences between
conditions

To see how the absence of yoking and the opportunity to use
statistical learning may affect acquired equivalence, the stimuli and
procedure were the same for both conditions except for the way in
which the foil scene was controlled (Figure 3).

2.4.1 Yoked condition
In the yoked task version, each quadruplet was yoked to another

quadruplet to serve as each other’s foils (Bowman et al., 2021;
de Araujo Sanchez and Zeithamova, 2023). This meant that the
foil for each face was the same across all repetitions of the same
trial type. For example, all F1-S1 trials consisted of F1: S1 vs. S3
choice, with only the left-right presentation of scenes randomized
across trials. It also meant that the same two scenes switched roles
across trials. For example, all F3-S3 trials consisted of F3: S1 vs.
S3 choice, but the correct option would now be S3 rather than
S1. This way, participants had to learn via the corrective feedback
as the frequency of face-scene co-occurrence was equated between
the correct choice and the foil. Furthermore, participants could not
just remember which scene among two they should pick without
considering the associated face, which could be the case if foil
assignment was not reciprocal.

2.4.2 Non-yoked condition
In the non-yoked version, the foil was not consistent across

trials but rather was a pseudo-randomly selected scene from a
different quadruplet that changed with each iteration. The foils
were constrained to be scenes with an analogous position in
another quadruplet. For example, for S1, only the shared scenes
from other quadruplets (S3, S5, S7, etc.) would be used as foils.
To make the non-yoked condition maximally distinct from the

yoke condition and maximize the statistical learning opportunity,
the foils never repeated across trials in the current study, rather
than being completely random. This was also the reason why
training in the current study included 7 repetitions of each
trained associations, rather than 8 used in the studies that directly
inspired us (Shohamy and Wagner, 2008; de Araujo Sanchez and
Zeithamova, 2023).

2.5 Test

After training, participants were tested on the three premise
associations learned during training, as well as the fourth, untrained
association F2-S2 (Figures 1, 3). The tendency to choose S2 for the
F2 face is the key measure of generalization in this task. Although
we will sometimes refer to the proportion of S2 responses to F2
cue face as “proportion correct,” the participants are never told
what is expected of them on the untrained trials (or even that
there are untrained trials included), so there is not an objectively
correct response on those trials. Just like in training, stimuli were
presented for 3 s and followed by a 1 s fixation cross. To be
consistent with prior acquired equivalence studies and to be able
to look for learning-during-test (Shohamy and Wagner, 2008; de
Araujo Sanchez and Zeithamova, 2023), each test trial was repeated
6 times, resulting in a total of 192 test trials (8 quadruplets × 4
associations in each× 6 repetitions). As during study, the control of
the foils during test differed between groups, with the yoked group
continuing the yoked procedure and the non-yoked group being
tested using foils pseudo-randomly varying across repetitions. The
order of the trials within each repetition block was randomized
and the correct scenes were presented on either side of the screen
an equal number of times. Corrective feedback was not given
during test.

2.6 Statistical analyses

For all statistical analyses, we report results from all
participants. There were, however, eight participants in
the non-yoked group and fifteen participants in the yoked
group that demonstrated no learning during the training
phase (<57% correct, cutoff determined using a one-tailed
binomial test against chance). To ensure that the results are
robust with respect to the inclusion criterion, we verified
that the results of each analysis would be comparable had we
excluded non-learners. Any differences are noted at the end of
each analysis.

2.6.1 Training
To evaluate training performance, we first calculated the

average overall accuracy for each participant in both groups and
compared the group averages against chance levels. To evaluate
training performance over time in both groups, we split training
into mean accuracy for each block and entered these scores into a
repeated measures ANOVA between groups.
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FIGURE 3

The di�erence between yoked and non-yoked design. Participants are learning the same quadruplets from overlapping face-scene associations in

both conditions, but the conditions di�er in the selection of foils for feedback-based training. In the yoked task design (top half), two quadruplets

(here, Face1-Face2-Scene1-Scene2 and Face3-Face4-Scene3-Scene4) are “yoked” together to serve as each other’s foil stimuli. For example, Face

1-Scene 1 association is trained and tested with Scene 3 always serving as a foil (Face1: Scene1 vs. Scene3, with Scene1 being the correct choice),

and Face 3-Scene 3 association is trained and tested with Scene 1 always serving as a foil (Face3: Scene1 vs. Scene3, with Scene3 being the correct

choice). As the same foil is repeated across all Face1-Scene1 trials, participants cannot use the frequency of co-occurrence as another learning cue

about which face goes with which scene; they can only learn via the corrective feedback. In the non-yoked task design, foil scenes are chosen

randomly or pseudo-randomly on each trial. As a consequence, each face is presented most often with its associated scene, and participants can use

statistical learning o� the frequency of co-occurrence (familiarity of the face-scene pairing) as another cue about which scene is correct.

2.6.2 Testing
2.6.2.1 Generalization tendency

To evaluate testing performance, we first calculated the average
overall accuracy for trained trials and generalization scores on
untrained trials for each participant in both groups and compared
the group averages against chance levels. We tested for group
differences in performance on trained and untrained trials using
a mixed ANOVA with trial type (trained, untrained) as a within-
subject factor and group (yoked, non-yoked) as a between-
subject factor.

2.6.2.2 Learning during test

We have previously observed learning during test, consistent
with the notion that generalization can rely on on-demand
recursive retrieval of individual trained associations to inform
untrained trials. Moreover, the non-yoked group would have an

opportunity to continue utilizing statistical learning based on co-
occurrence frequency, including on the untrained trial. Thus, here
we tested for a learning effect during the testing phase by running
a 2 × 2 × 6 mixed ANOVA (2 groups × 2 trial types × 6
testing blocks).

2.6.2.3 Response time cost

As response times can provide important insight into the
cognitive processes underlying decision-making in the acquired
equivalence paradigm (Shohamy and Wagner, 2008; de Araujo
Sanchez and Zeithamova, 2023), we compared raw response
times in both groups for trained and untrained trials (via a 2
× 2 repeated measures ANOVA) during the testing phase. An
interaction between group and trial type showing smaller response
time cost on untrained trials for the non-yoked group would be
consistent with a greater reliance on integration during encoding
in that group.
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2.6.3 Relationship between response time cost
and generalization

Strong behavioral evidence for encoding-based models of
acquired equivalence came from Shohamy and Wagner (2008),
who showed that untrained test trials incurred minimal response
time costs when generalization was high. To obtain response time
costs for each participant, we took the log transformed mean
response times on correct trained test trials and subtracted it from
the log transformed mean response times on correct untrained
test trials. Small response time cost would indicate that untrained
trials were not substantially more demanding than trained trials,
as would be expected if all the stimuli within a quadruplet were
already integrated into a combined memory representation during
encoding (Shohamy and Wagner, 2008). We then ran a Pearson
correlation test between response time costs and generalization
scores to replicate the analysis of Shohamy & Wagner reporting
a strong negative correlation, with minimal response time cost
observed for those with strong generalization tendency. We
performed this analysis for both groups and corrected for multiple
comparisons by setting alpha equal to 0.025.

3 Results

3.1 Training

The proportion of correct responses for each participant during
each block of training is presented in Figure 4. We found that the
average accuracy for both the yoked (µ = 62%, SD = 9%) and
non-yoked (µ = 69%, SD = 10%) group was well above chance
(yoked: t(51) = 9.33, 95% CI = [0.59, 0.65], d = 1.29, p < 0.001;
non-yoked: t(54) = 13.97, 95% CI = [0.66, 0.71], d = 1.88, p <

0.001). To test for an effect of training block, we entered mean
accuracy per participant for each block into a 2 (group: yoked, non-
yoked)× 7 (repetitions) mixed effects ANOVA. As seen in Figure 4,
participants across conditions demonstrated increased accuracy
across iterations of the premise associations during training [main
effect of repetition, F(6,630) =132.88, p < 0.001, η2p = 0.56]. These
results show that participants were paying attention and were
trying to learn the task. The main effect of group (yoked vs. non-
yoked) was also significant [F(6,630) = 13.5, η2p = 0.11, p < 0.001],
indicating that accuracy for premise associations during training
was greater when the structure of foils allowed for statistical
learning to supplement feedback-based learning. The degree of
improvement across iterations during training was similar across
conditions [interaction F(6,630) = 1.14, η2p = 0.01, p = 0.339]. To
summarize, participants were learning the task, improving with
time, though the opportunity for statistical learning in non-yoked
condition led to better training accuracy than observed when foils
were strictly controlled in the yoke condition. These results from
training do not change qualitatively after excluding non-learners.

3.2 Testing

The proportion of responses that were correct for each group
and each trial type are displayed in Figure 5. Please note that
untrained trials do not technically have a correct response, though
for simplicity, we refer to responses that demonstrate acquired

equivalence as “correct.” We were interested in uncovering
differences in testing accuracy between groups for each association
type (trained vs. untrained). In addition to the main effect of
group and trial type, we hypothesized that there would be a
disproportionate group difference in untrained trial performance,
meaning we expected to see an interaction between group and
association type. We observed a main effect of association type
[F(1,105) = 222.81, η2p = 0.68, p < 0.001], indicating that both
groups were more accurate for trained than untrained associations.
There was also a main effect of group [F(1,105) = 41.9, η2p =

0.29, p < 0.001], meaning the non-yoked group performed overall
better than the yoked group during testing. Finally, we observed a
marginal group-by-association type interaction [F(1,105) = 3.29, η2p
= 0.03, p= 0.072]. To unpack this interaction, we ran independent
sample t-tests, which showed that the non-yoked group scored
significantly higher than the yoked group on both trained [t(105) =
3.77, 95% CI = [0.05, 0.15], d = 0.73, p < 0.001] and untrained
[t(105) = 6.68, 95% CI = [0.11, 0.20], d = 1.29, p < 0.001], but
the effect size was numerically greater for untrained trial. This
result suggests that participants in the non-yoked group exhibited
acquired equivalence to a greater degree than participants in the
yoked group, above and beyond of the difference in learning the
training associations. After excluding non-learners, main effects of
association type and group remain the same, and the association
type-by-group interaction becomes significant, strengthening the
claim that the non-yoked group exhibited acquired equivalence
to a degree that is not explained by differences in learning the
training associations.

3.3 Controlling for trained accuracy

The marginal interaction between trial type and group suggests
that the generalization differences between groups are greater than
the differences in accuracy for trained trials. In other words, the
opportunity for statistical learningmay have boosted generalization
above and beyond what would be expected from just having better
memory for trained trials. Furthermore, while generalization in the
non-yoked condition did not reach the levels observed in Shohamy
and Wagner (2008), the memory for trained associations was also
lower. Thus, to further compare generalization tendency between
the yoked and non-yoked group, and between the non-yoked
group and the prior report of strong generalization (Shohamy and
Wagner, 2008) while taking account the differences observed for
trained trials, we performed two control analyses (Figure 6). Both
analyses focused on controlling for direct performance at test. The
first approach was to limit the analyses to untrained trials for which
all the corresponding trained trials were remembered well. Given
that there were 6 testing blocks, we set our inclusion criterion to at
least 5 out of the 6 responses correct for each trained association
from a given quadruplet. When only considering untrained trials
for which trained associations were remembered (Figure 6A), the
yoked group’s mean generalization on untrained trials rose to 55%
(SD = 27%), while in non-yoked group, generalization rose to
67% (SD = 15%). As the difference remained significant [t(86) =
2.76, 95% CIdifference = [0.04, 0.22], d = 0.59, p = 0.007], this
analysis again suggests that group differences in generalization
are not entirely explainable by differences in memory for trained
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FIGURE 4

Training performance. Proportion of all trials that were correct across training blocks. The y-axis denotes accuracy while the x-axis denotes block.

Color dissociates the yoked (teal) and non-yoked (orange) groups. Thick lines represent group averages and thin lines with dots represent individual

performance. Error bars represent ± SEM (standard error of the mean).

associations. Yet, the non-yoked group still did not generalize to
the same degree as observed in Shohamy and Wagner (2008).

The second control analysis involved excluding all participants
whose test performance was below 80% on trained trials. The
goal was to only include participants whose memory for trained
associations was comparable to the participants reported in
Shohamy and Wagner (2008). This led to the exclusion of 49
participants, resulting in a subsample size of n = 58 (19 in the
yoked group, 39 in the non-yoked group; Figure 6B). By only
taking participants that displayed robust premise knowledge, we
should be again able to evaluate if the structure of foil selection
affects generalization across related experience above and beyond
its effect on learning per se. As can be seen in Figure 6B, there
were large individual differences in the tendency to generalize
even among those who remembered the trained associations well.
To compare group averages, a 2 × 2 ANOVA with group as a
between subject factor and trial type as a within subject factor
showed a main effect of association type [F(1,56) = 336.7, η2p =

0.86, p < 0.001] and group [F(1,56) = 20.5 η2p = 0.27, p < 0.001],
as well as a significant interaction [F(1,56) = 21.4, η2p = 0.28, p <

0.001]. Follow up pair-wise comparisons between groups showed
comparable memory for trained associations [t(56) = 1.04, 95%
CIdifference = [−0.01, 0.04], d = 0.29, p = 0.303], but significantly
greater generalization in the non-yoked group compared to the
yoked group [t(56) = 4.90, 95% CI = [0.10, 0.24], d = 1.37, p
< 0.001]. Thus, the difference in generalization between groups
cannot be fully explained by differential knowledge of premise
associations. Notably, even among the strong learners in the yoked
group, the average tendency to generalize on untrained trials
did not exceed chance, with some participants reliably choosing
scenes not associated with the pairmate from the same quadruplet
(Figure 6B).

FIGURE 5

Testing performance. Mean proportion correct for trained

associations and mean proportion of responses consistent with

acquired equivalence for untrained associations. Dots are individual

participants. Upper and lower boxplot hinges denote the 75th and

25th percentiles and the middle hinge is the median accuracy.

Whiskers extend to the minimum and maximum scores. Half violin

plots are accuracy distributions.

3.4 Learning during testing

In our prior study using yoked design, we found little
evidence for generalization on the first test trial for each
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FIGURE 6

Performance on untrained trials while controlling for trained accuracy. (A) Generalization scores limited to untrained trials for which the participants

remembered the corresponding premise associations at test. (B) Test performance on trained and untrained trials after excluding participants that

scored below 80% on trained test trials. In both plots, the y-axis is the accuracy for trained trials or the proportion of generalization-consistent

responses on untrained trials; x-axis denotes trial type, and color denotes group assignment.

FIGURE 7

Learning during test. Testing performance for trained (A) and untrained (B) trial types for each testing block. Color denotes the yoked (teal) and

non-yoked (orange) between-subjects conditions. Thick lines represent group averages and thin lines with dots represent individual performance.

Error bars denote ± SEM.

untrained association that then slightly but reliably increased
across repetitions (de Araujo Sanchez and Zeithamova, 2023).
This is possible for untrained trials as participants can be linking

the initially separate trained memories on-demand at test. Here,
we hypothesized that learning during test may be even more
pronounced in the non-yoked group that could additionally utilize
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TABLE 1 Results from block × trial type × group ANOVA.

E�ect SS df F p η2

Group 5.13 1,105 41.9 <0.001 0.285

Trial type 16.313 1,105 222.81 <0.001 0.680

Block 0.102 5,525 1.59 0.160 0.015

Trial type× group 0.241 1,105 3.29 0.072 0.030

Block× group 0.378 5,525 5.89 <0.001 0.053

Block× trial type 0.370 5,525 5.61 <0.001 0.051

Block× trial type× group 0.212 5,525 3.22 0.007 0.030

FIGURE 8

Response time di�erences. Raw response times for each group and

trial type. Y-axis represents response times in seconds and the x-axis

denotes trial type. Dots are individual participants and color denotes

group. Error bars are ± SEM.

statistical learning. Specifically, because the foil scene varied across
test repetitions in the non-yoked group, these participants could
use statistical learning also during the test phase which could
further boost their generalization scores. To test for this possibility,
we ran a 2 groups × 2 trial types × 6 repetitions mixed design
ANOVA on the generalization scores for untrained trials (Figure 7).
The full ANOVA results are reported in Table 1. There was a main
effect of group, a main effect of trial type, and a marginal group-by-
trial type interaction, all of which reiterates the analysis reported
in the “Testing” section above. Of main interest was the effect of
block and any interactions with block. The main effect of block
did not reach significance. However, there was a block X group,
block X trial type, as well as a three-way block X group X trial
type interaction.

As illustrated in Figure 7, performance was relatively stable
across test repetitions for trained trials (β = −0.003, p = 0.351),
but increased across repetitions for untrained trials, as confirmed

FIGURE 9

Relationship of response time costs and acquired equivalence.

Correlations between response time cost and acquired equivalence

scores for yoked (teal) and non-yoked (orange) group. Dots

represent individual participants. Ribbons denote 95% confidence

intervals around the best fitting line.

by a significant linear trend across testing blocks for untrained
trials (β = 0.01, p= 0.011). However, the increase across untrained
trials was driven specifically by the non-yoked group, which started
the first block of testing with generalization scores only marginally
above chance [t(54) = 1.96, 95% CI = [0.49, 0.59], d = 0.26, p
= 0.055] and then increased accuracy across repeated testing. In
contrast, the generalization tendency for the yoked group remained
approximately at chance throughout the testing phase (linear trend
β = −0.005, p = 0.310). All main effects and interactions remain
qualitatively unchanged after excluding non-learners.

3.5 Response time di�erences between
groups

The mean response time for each group and trial is shown in
Figure 8. A 2× 2 mixed ANOVA showed a main effect of trial type
on response time [F(1,105) = 170.6, η2p = 0.62, p < 0.001], with
response times faster for trained than untrained trials. There was
no effect of group [F(1,105) = 0.378, η2p < 0.01, p= 0.540], but there
was a group X trial type interaction [F(1,105) = 15.1, η2p = 0.125, p
< 0.001]. Post-hoc group comparisons revealed that the interaction
was driven by significantly faster response times in the non-yoked
group than yoked group on trained trials [t(105) = 2.09, 95% CI =
[0.01, 0.18], d = 0.40, p = 0.039], but comparable response times
across groups for untrained trials [t(105) =−0.13, 95% CI= [−0.12,
0.10], d = 0.03, p = 0.893]. Thus, contrary to our hypothesis, there
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was no evidence that untrained trials would be less effortful for non-
yoked compared to the yoked group. All results were replicated
after excluding non-learners.

3.6 Relationship between response times
and generalization

To try and tease apart generalization strategies, we computed
response time costs (for correct untrained test trials minus correct
trained test trials) for every participant and then correlated
response time costs with acquired equivalence (generalization)
scores. A striking negative correlation (r = −0.69) was observed
in Shohamy and Wagner (2008), where those with the highest
generalization scores showed minimal reaction time cost, as would
be predicted if generalization relied on integratedmemories formed
during encoding. Although the current study was not a priori
powered for analysis of individual differences, we wanted to see
whether this finding can be numerically replicated, at least in the
non-yoked condition. Post-hoc power analysis indicated that the
current sample size (N > 50 in each group) would be sufficient to
detect correlations with absolute r> 0.33. The results are presented
in Figure 9. In the yoked condition, we found no relationship
between response time cost and generalization (r = −0.06, p =

0.661), replicating the near-zero correlation found with a much
larger sample in de Araujo Sanchez and Zeithamova (2023). In
the non-yoked condition, where we expected greater evidence
for integrative encoding, we instead found a non-significant,
numerically positive correction (r = 0.19, p = 0.155), indicating
that greater generalization success came at the cost of increased
effort. Thus, the reaction time analyses did not find any evidence
that integration would be greater in the non-yoked condition
than yoked condition. These results were replicated after we
excluded non-learners.

4 Discussion

The transfer of previously acquired knowledge to novel stimuli
can be facilitated by intrinsic properties of stimuli, such as
their physical characteristics (Shepard, 1957, 1958, 1987; Rescorla,
1976; Pavlov, 2010). But transfer, or generalization, of a learned
response to a new stimulus does not require physical similarity and
instead can be based on a shared response history or associative
relation. The acquired equivalence paradigm has been an important
paradigm used to measure the spontaneous tendency to generalize
across associatively related stimuli as it can be used in both
animal and human studies. Moreover, the patterns of responses
and reaction times in this paradigm have been used to elucidate
the cognitive processes and memory representations underlying
relational generalization—integrative encoding or on-demand
inference from separate representations. Even though findings in
individual studies have provided compelling evidence for one or
the other mechanism, they have been conflicting across studies.
We hypothesized that this discrepancy in the literature could
arise from subtle methodological differences of the feedback-based
paradigm, such as the selection of foils on each trial. Specifically,
we predicted that memory integration and generalization via

acquired equivalence would be boosted when foils are selected
randomly, providing an opportunity to supplement feedback-based
learning with statistical learning of stimulus co-occurrence. The
results were mixed with respect to our hypothesis. We found that
the opportunity for statistical learning boosted training and test
performance, but the boost to generalization was driven by learning
during test rather than memory integration. The findings provide
additional support to retrieval-based theories of generalization
and highlight how subtle differences in methodological procedures
can modulate the cognitive processes involved in a seemingly
identical task.

We found ample evidence for overall better learning
when people have the opportunity for statistical learning, for
participants in the non-yoked group indeed performed better
during both training and testing. Furthermore, this boost was
disproportionately large for untrained test trials, even when
controlling for the differences in learning of trained associations.
Having found that statistical learning increased generalization, we
returned to the original question that Shohamy andWagner (2008)
attempted to answer: whether generalization through acquired
equivalence was enacted through integrative encoding or retrieval-
based mechanisms. Encoding-based acquired equivalence assumes
that the premise associations become integrated within a single
network of associations. As such, integrated memories should
lead to a high degree of generalization and minimal response time
cost for untrained trials, as they would involve a simple retrieval
of associations already formed during encoding. Contrary to this
hypothesis, we found large reaction time cost for untrained trials
in both groups, and no evidence that higher generalization would
be associated with smaller reaction time cost. Moreover, we found
no evidence for generalization through acquired equivalence in
the first block of testing phase for either group, yet the encoding
hypothesis assumes that knowledge of the untrained association
should be present prior to testing.

Retrieval-based models assume that individual overlapping
experiences are encoded into separate representations, but those
separate memories can be recursively recalled and recombined to
infer new information (Kumaran and McClelland, 2012; Banino
et al., 2016). When the recursive recall and inference takes
place on-demand at test, it would be expected to be more
effortful than direct retrieval and incur longer response times,
as observed here. While some differences in response latencies
between trained and untrained trials could be expected even for
integrated memories because of differential memory strength, the
fact that the response time cost was not decreased for strong
generalizers contradicts the prediction of integrative encoding.
Interestingly, the current data do not show much evidence for
retrieval-based inference either. Because the output of the retrieval-
based inference can get re-encoded back to the hippocampus
(Koster et al., 2018), participants may continue linking trained
associations to infer untrained associations during test, thereby
increasing the likelihood of generalization responses with every
subsequent test. This was observed as learning during test for
untrained associations by de Araujo Sanchez and Zeithamova
(2023), even though all their experiments included yoked design
preventing statistical learning. In contrast, here both groups
performed at chance level for untrained associations during the
first block of testing, and the yoked group remained at chance
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throughout test phase. These results may indicate a lack of tendency
for acquired equivalence in both groups. Although the non-yoked
group did show reliable learning during test and above chance
generalization when averaged across the testing phase, this could
result from statistical learning alone, as the untrained face-scene
pairings became more and more familiar across repeated testing.

In conclusion, we found that the opportunity for statistical
learning offered by less controlled foil selection in the non-
yoked condition led to better training performance of premise
associations as well as greater acquired equivalence scores.
However, contrary to our prediction, we found no evidence for
integrative encoding in either task version. While the conflicting
findings in the literature remain unresolved, our study highlights
the challenges with the assumption that a specific task (such as
the acquired equivalence paradigm) measures a specific process
of interest (such as generalization through acquired equivalence).
In addition to the potential role of paradigm details in enabling
or preventing a contribution of other cognitive processes, these
challenges further highlight the benefits of including additional
analyses or measures that can corroborate accuracy measures and
resolve between competing interpretations (Shohamy andWagner,
2008; Schlichting et al., 2014; Carpenter and Schacter, 2017, 2018;
de Araujo Sanchez and Zeithamova, 2023).
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