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Introduction: After category learning, same-category items tend to be rated as

more similar than items from di�erent categories. Whether this category bias

in similarity ratings reflects true changes in perception or a strategic judgment

bias to rate same-category items more similarly has been debated. The current

study investigated the influence of perceptual and strategic judgment biases on

perceived similarity ratings of face stimuli.

Method: To explore the influence of perceptual and strategic biases, post-

learning category bias wasmeasured after learning one of two category structures.

In a similarity-consistent structure, faces within a category shared physical

features and category bias could reflect a combination of strategic bias and true

perceptual changes. In a similarity-inconsistent structure, category membership

was orthogonal to physical features and category bias could only be driven by

strategic bias to rate same-label faces as more similar.

Results: We found a strong category bias after learning, but only when category

labels could be aligned to the similarity structure. When category label conflicted

with similarity structure, the mere presence of a shared label did not create a bias.

Discussion: These findings indicate that category bias in this paradigm is largely

driven by a perceptual bias, consistent with proposals that category learning

can stretch or shrink perceptual space by biasing attention toward category-

relevant and away from category-irrelevant features. More broadly, these findings

contribute to our understanding of category-driven biases and may inform bias

research in other domains such as social stereotypes.

KEYWORDS

category learning, perceptual bias, strategic judgment bias, similarity-based categories,

arbitrary categories

Introduction

We encounter a massive amount of information daily. Categorization is one of the ways

we organize this plethora of data for future use. Category knowledge allows us to organize

that information into meaningful bundles and generalization of category knowledge guides

our decisions in novel situations (Markman and Ross, 2003; Ashby and Maddox, 2005,

2011; Seger and Miller, 2010; Goldstone et al., 2018). Category knowledge also affects

perception: items within a category are viewed as more similar while items from different

categories are viewed as less similar (see Livingston et al., 1998; Goldstone and Steyvers,

2001). This category bias in perception has been documented for well-established categories

such as discriminating hues across color boundaries (Bornstein et al., 1976; Sandell et al.,

1979; Bornstein and Korda, 1984; Franklin and Davies, 2004; Winawer et al., 2007) and
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discriminating speech sounds across phonemic boundaries

(Liberman et al., 1957). Even categories like race induce a category

bias in perception (Levin and Angelone, 2002) which may in part

explain other phenomena like own-race bias where individuals are

better at differentiating people of their same race (Timeo et al.,

2017). Additionally, category biases in perception can emerge

after individuals learn new categories in the laboratory (Rosch and

Mervis, 1975; Goldstone, 1994a,b; Beale and Keil, 1995; Goldstone

et al., 2001), and can be induced by the presence of a shared

category label even when task instructions emphasize memory for

individual items (Ashby et al., 2020; Ashby and Zeithamova, 2022;

Bowman et al., 2022).

In lab studies examining the impact of newly learned categories,

the presence of a category bias in perception has commonly been

studied using perceived similarity ratings (Goldstone, 1994a; Beale

and Keil, 1995; Kurtz, 1996; Livingston et al., 1998). Typically,

participants are shown a set of stimuli and asked to rate how alike all

stimuli are to one another. These ratings are taken prior to category

learning and then again after participants have learned category

information. Evidence for category bias in these similarity ratings

is reflected by greater perceived similarity ratings after learning for

items that belong to the same category (Goldstone, 1994a; Levin

and Beale, 2000; Ashby et al., 2020), and/or lower similarity ratings

for items that belong to different categories (Kurtz, 1996; Livingston

et al., 1998; Ashby et al., 2020). Our prior work has examined

category bias in perceived similarity ratings after participants

learned a family category structure of face-blend stimuli varying

alongmany continuous dimensions.We have shown that a category

bias in perceived similarity ratings of faces can arise in brain

and behavior from the mere presence of a shared family label

even when individuals are not explicitly aware of an underlying

family category structure and task goals focus on memorizing

individual faces rather than category learning (Ashby et al., 2020;

Ashby and Zeithamova, 2022). Furthermore, the categorization bias

predicts how well individuals can generalize category information

to new faces in both young adults (Ashby et al., 2020; Ashby

and Zeithamova, 2022) and older adults (Bowman et al., 2022),

suggesting that it tracks category knowledge.

What drives changes in perceived similarity ratings following

category learning? The mechanism responsible for category bias

has been debated. Some have postulated that category learning

affects how we perceive the world by warping perceptual space.

As attention is biased toward category-relevant features and

away from category-irrelevant features, the perceptual space

stretches along the relevant dimensions and shrinks along the

irrelevant dimensions, making within-category similarity and

between-category differencesmore apparent (Nosofsky, 1984, 1986;

Kruschke, 1992, 1996; Lupyan, 2012). Thus, under this perceptual

bias account, category learning alters representations of individual

items to align with category membership. In support of this

account, past behavioral work has indicated that information

is more discriminable across category-relevant dimensions after

category learning (Goldstone, 1994b; Goldstone and Steyvers, 2001;

Gureckis and Goldstone, 2008). Further, increased discriminability

of items on a category-relevant dimension has been shown to

extend to more complex category structures (e.g., object shape and

object motion dimensions; Folstein et al., 2014) and result in larger

increases in within-category similarity after learning compared to

more simple category structures (Pothos and Reppa, 2014).

Neuroimaging work has provided additional support. For

example, Folstein et al. (2013b) indicated that better ability

to discriminate among category-relevant features after learning

was associated with increased discriminability of their neural

representations in visual cortex. Likewise, Juárez et al. (2019)

found that an increase in the N1 neural response—typically

associated with early perceptual processing in category learning

(for example see Curran et al., 2002)—predicted a decrease in

similarity ratings for items that belong to different categories

after learning. And recent work from our lab found evidence

for category-biased neural representations widespread across the

cortex that emerged during learning, even when physical similarity

was controlled for and category information was not explicitly

emphasized (Ashby and Zeithamova, 2022). Taken together, we

have proposed that changes in perceived similarity ratings after

category learning in our prior work reflect true changes in

perception as attention is shifted toward category-relevant and

away from category-irrelevant features to better align perceived

similarity with category membership.

However, category biases may not just reflect changes in

perceptual space. For example, Goldstone and colleagues (2001)

suggest an alternative to the perceptual change hypothesis asserting

that biases in perceived similarity ratings may also reflect strategic

judgment bias to take the category label into account when rating

similarity. In other words, one may provide higher ratings of

items from the same category and lower ratings of items from

different categories simply because their same vs. distinct category

labels are considered, rather than because they appear more or

less similar. Indeed, a contribution of the strategic judgment

bias to perceived similarity ratings was concluded in a study in

adult category learners by Goldstone and colleagues (2001) which

included new items not previously associated with a category label

during the similarity rating phase. This also aligns with other work

showing that introducing verbal interference disrupts learning

of shared linguistic labels which abolishes categorical perception

effects (Roberson and Davidoff, 2000; Pilling et al., 2003; Hanley

and Roberson, 2011; Simanova et al., 2016) and developmental

work showing an effect of shared linguistic labels on similarity

judgments in children (Sloutsky and Lo, 1999; Booth, 2014). Thus,

differentiating between a perceptual bias and a strategic judgment

bias account is important for a mechanistic understanding of the

role of concepts in cognition and perception.

Having found strong category biases in brain and behavior in

our prior work using a face-blend category learning task (see Ashby

et al., 2020; Ashby and Zeithamova, 2022; Bowman et al., 2022), the

current study sought to determine the degree to which perceptual

and strategic judgment bias may contribute to the similarity

ratings measures in this paradigm. We reasoned that when faces

belonging to the same category share features (as they typically

do), category bias in perceived similarity ratings may be fully or

partially driven by true changes in perception, such as through

attentional bias toward category-relevant features. On the other

hand, when category labels are arbitrary and faces within categories

do not share features, one cannot alter within-category similarity

or between-category differences through learned attentional biases.
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As such, any change in perceived similarity ratings would be

driven by a strategic judgment bias to rate same category faces

similarly. By comparing similarity rating bias observed under

these two conditions, we can determine the degree to which

strategic judgment bias contributes to category bias in post-

learning perceived similarity ratings.

Using a traditional feedback-based category learning task and

face-blend stimuli developed in our prior work to control physical

similarity of naturalistic stimuli (Ashby et al., 2020; Ashby and

Zeithamova, 2022; Bowman et al., 2022), we tracked post-learning

category bias under two category conditions. Some participants

learned categories where stimuli within a category shared features

while others learned categories where stimuli within a category did

not share features. We reasoned that if category bias in similarity

ratings is more reflective of a strategic judgment bias, then category

bias in similarity ratings would be expected after learning in

both category conditions, even when participants learn category

labels that are orthogonal to the physical similarity structure of

the stimuli. Alternatively, if a category bias in ratings is more

reflective of changes in perception or attention to category-relevant

features, then a category bias in perceived similarity ratings would

only be expected following learning of categories based on shared

features. And finally, if category bias in similarity ratings is a

combination of true changes in perception and a strategic judgment

bias, comparing the degree of category bias between conditions will

allow us to estimate the relative contribution of each process to the

total category bias.

Methods

Data transparency and openness

We report how we determined our sample size, all data

exclusions, all manipulations, and all measures in the study. The

design and analysis plan for this experiment were preregistered via

the Open Science Framework (OSF; https://osf.io/9serh) and all

data and materials are also publicly available via OSF (https://osf.

io/bhc32/).

Participants

Two-hundred and 15 participants were recruited from the

University of Oregon via the university SONA research system

and completed the study online via Pavlovia (www.pavlovia.org)

in 2020. Participants received course credit as compensation for

their participation. All participants provided informed consent and

experimental procedures were approved by Research Compliance

Services at the University of Oregon. Six participants were

excluded from analyses for failing to respond to 20% or more

of the trials in either the similarity ratings or category learning

phases. The remaining sample of 209 participants are reported

in all analyses. Due to experimenter error in pivoting to online

data collection amidst the COVID-19 pandemic, demographic

information was only collected for approximately half the sample

(93 female, 19 male, 3 unreported; age 18–34 years; Mage =

19.46, SDage = 2.05). Since all participants were recruited through

introductory psychology courses at the University of Oregon, we

are confident that the limited demographic information collected is

representative of the overall sample.

Rationale for sample size
The present study compared the category bias effect sizes

between two groups of subjects, one that learned similarity-based

categories (similarity-consistent condition) and one that learned

categories that lacked a similarity structure (similarity-inconsistent

condition). Sample sizes of at least 100 participants per condition

were determined a priori via power analyses in G∗Power (Faul

et al., 2007, 2009) utilizing effect sizes from previous studies

(see Ashby et al., 2020; Ashby and Zeithamova, 2022; Bowman

et al., 2022). Prior data demonstrated that when categories were

similarity-consistent, the effect of a category bias in similarity

ratings post-learning was medium-sized (Cohen’s d = 0.51). We

reasoned that this effect size may be reflective of a combination

of perceptual change and strategic processes in the similarity-

consistent condition, with at least one of these effects contributing

at least half (d = 0.25) of the total effect size. In contrast, no true

perceptual changes would be expected in the similarity-inconsistent

condition, and any category bias in similarity ratings would be due

solely to strategic processes (with effect size expected to be much

smaller than d = 0.5). Thus, our target was 80% power to detect

a small effect (d = 0.25, or half of the total d = 0.5 expected in

the similarity-consistent condition based on our prior data) at the

standard alpha error probability level (α = 0.05). This target is

sufficient for both detecting differences between conditions and

detecting a presence of category bias in the similarity-inconsistent

condition (if one exists).

Stimuli

Stimuli were grayscale images of blended faces created by

morphing pairs of “parent” faces (FantaMorph Version 5 by

Abrosoft) originating from the Dallas Face Database (Minear and

Park, 2004), the Computer Vision Laboratory Database (Peer,

1999), and a Google Image search (Figure 1). Ten parent faces were

selected for blending from a larger pool of faces used in prior

work (see also Ashby et al., 2020; Ashby and Zeithamova, 2022;

Bowman et al., 2022). We found in previous data that face blends

of very distinctive parent faces were dominated by features of those

parents, while features of more average parent faces tended to be

lost in the resultant face-blend. Thus, we selected 10 faces that

were neither too distinctive nor too average, helping us ensure

that all face blends were about equally physically similar to both

parent faces rather than randomly biased toward one parent or the

other. From the set of 10 parent faces, six were randomly selected

for each participant and blending was conducted by morphing

three of these parent faces (“A” Parents) with the remaining three

parent faces (“B” Parents) individually. This resulted in a set of

nine face-blends that shared 50% features from each parent to be

used in category learning and similarity ratings tasks (see Figure 1).

To measure changes related to category learning and not mere

differences in exposure frequency to different face features, it was
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important that the training set was derived using an equal number

of “A” and “B” parent faces. The 3x3 stimulus structure ensured

that the task was not trivially easy (as would be the case with 2x2

structure) while resulting in a manageable number of pair-wise

comparisons among all stimuli for the subsequent similarity rating

task. To minimize any potential item effects in similarity ratings,

participants were yoked within and across conditions, such that for

each participant in the similarity-consistent condition with a given

set of “A” and “B” parents, there was a participant in the similarity-

inconsistent condition with the same parent-face selection, as well

as one participant in each condition using the same parent faces but

with reversed “A” and “B” parent assignment. The original, non-

blended parent faces were never shown to participants nor used

during any stage of the experiment.

Using blended faces allowed us to generate more naturalistic,

realistic-looking stimuli that vary along many ill-defined features,

akin to what we frequently encounter in everyday life, while still

controlling their physical similarity. Our prior work demonstrated

that participants are highly sensitive to the similarity structure

introduced by face blending, such that two faces that share a parent

(and thus exhibit that parent’s facial features) are perceived as much

more similar than two faces that do not share a parent (e.g., Cohen’s

d = 1.50 in pre-learning similarity ratings in Ashby et al., 2020).

Furthermore, we used the same stimuli and category structure

as our prior work in order to better discern among competing

interpretations of our previous work in light of findings from the

current study.

Because we were interested in biases driven by the category

learning task, it was important that the blended faces were not

easily sorted into pre-existing categories prior to training on

face families. Because race and gender are their own preexisting

categories, all parent faces had to be of a single race and single

gender. We chose white faces for the stimulus set because prior

work has shown that white Americans exhibit greater own-race

effects in face recognition than non-white Americans (Meissner

and Brigham, 2001; Herzmann et al., 2017), and we expected

our sample to be majority white based on the University of

Oregon population demographics (64% white). We chose male

for the face gender because females show less own-gender bias

than males (Mishra et al., 2019) and because female faces have a

greater variability in hair styles that can make the blending process

difficult. Exploratory analyses of data from our prior work (see

Ashby et al., 2020) indicate that category learning and the resulting

category bias in this paradigm do not differ between male and

female participants.

Experimental conditions

Participants were randomly assigned into one of two

experimental conditions where they learned to sort the

nine face-blends into three categories labeled by family

name (Miller, Wilson, Davis). The experimental conditions

participants were assigned to determined how the face-

blends were assigned into family categories either based on

a shared parent (similarity-consistent) or a lack of a shared

parent (similarity-inconsistent).

Similarity-consistent family structure
For similarity-consistent categories, family assignment was

aligned with the physical similarity among faces (Figure 1A).

Specifically, three of the parent faces (“A” Parents) determined the

three family categories (Miller, Wilson, Davis). Any face-blend of

that parent face was considered a member of the same category.

Because they were blended from the same parent, face-blends from

a given category not only shared a family name but also shared

physical features (see faces across rows in Figure 1A). Notably, faces

that shared a “B” parent also shared physical features but belonged

to different families (see faces down columns in Figure 1A). Thus,

physical similarity alone did not determine category membership

and participants needed to learn which face features were relevant

to category membership through training. Category bias was

measured by comparing similarity ratings for pairs of faces that

shared a parent and belonged to the same family category with

similarity ratings for pairs of faces that also shared a parent but

belonged to different categories (rows vs. columns in Figure 1A).

A tendency to rate faces that share category-relevant “A” parents as

more similar than those that share category-irrelevant “B” parents

would constitute a category bias in perceived similarity rating.

We reasoned that this category bias would be a combination of

a true perceptual bias and a strategic judgment bias (total bias =

perceptual bias+ strategic judgment bias).

Similarity-inconsistent family structure
For similarity-inconsistent categories, the same blended faces

were used but family assignment was orthogonal to the physical

similarity of the face-blends, such that faces from the same category

shared a family name but critically did not share a parent face

(Figure 1B). Thus, there were no relevant or irrelevant physical

features to be extracted for the categories and instead learning

required that the category label be memorized for each face. This

category structure is conceptually similar to the Type 6 category

structure from seminal work by Shepard et al. (1961). Category bias

can still be measured by comparing ratings for faces that do not

share a parent but belong to the same category vs. those who do

not share a parent and belong to different categories (i.e., faces that

belong vs. not belong to the same category, controlled for physical

similarity). Because the stimuli within a category do not share

features, learning is unlikely to lead to true perceptual biases and

instead any post-learning similarity rating bias would only reflect

strategic judgment bias to rate faces as more similar due to the same

category label (total bias= strategic judgment bias).

Procedure

Experimental procedures were identical for participants in both

conditions and consisted of four phases: passive viewing, pre-

learning similarity ratings, feedback-based category learning, and

post-learning similarity ratings. Each phase is detailed below.

Passive viewing
Prior to any learning, participants were presented with each of

the nine face-blends to familiarize them with the stimuli and the
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FIGURE 1

Face-blend stimulus structure by experimental condition. (A) Similarity-consistent categories. Blends of each “A” parent face share the same category

label (family surname) and share physical features of the parent face. Blends of each “B” parent face (faces in each column) also share physical

features but not category label. (B) Similarity-inconsistent categories where category membership is orthogonal to physical similarity. Blends of the

same parent face never belong to the same category. Reprinted and adapted (with permission) from the Dallas Face Database (Minear and Park,

2004) and the CVL Face Database (Peer, 1999).

degree of similarity between all faces before collecting perceived

similarity ratings. Each of the nine training blends were viewed

once (3s), in random order, without any labels and without making

any responses. Trials were separated by a fixation inter-stimulus-

interval (ISI; 1s).

Pre-learning similarity ratings
Prior to learning, all possible 36 pairwise comparisons of

the nine training blends were presented and participants rated

the similarity of the two faces on a scale from one to six (1

= two faces appear very dissimilar, 6 = two faces appear very

similar). Trials were presented for 6s with a fixation ISI (1s) after

each response.

Feedback-based category learning of families
On each trial, a single face was presented on the screen

for 4s along with three family surnames (Miller, Wilson,

Davis) as response options. Participants were instructed to

indicate family membership via button press. After each

response, corrective feedback was presented (2s), followed

by a fixation ISI (1s). Participants completed five blocks

of category learning separated by a self-paced break. Each

block consisted of three repetitions of each stimulus, for a

total of 15 repetitions per stimulus across the entire category

learning phase.

Post-learning similarity ratings
Perceived similarity ratings were again collected immediately

after the learning phase with the same procedure as the pre-learning

ratings. Pairwise comparisons of the faces were presented in a

different random order than the pre-learning ratings.

Statistical analyses

Category learning
To determine how well participants learned the category labels

in both conditions, we examined learning changes across time using

a 2 [category structure condition (similarity-consistent, similarity-

inconsistent)] x 5 [learning phase (block 1, block 2, block 3, block

4, block 5)] repeated measures ANOVA with learning phase as

a within-subjects factor. Greenhouse-Geisser corrections for any

violations of sphericity as detected via Mauchly’s test are noted as

GG in results.

Category bias
To establish that the blending procedure successfully

manipulated the physical similarity and perceived similarity of

the faces, we first compared the pre-learning similarity ratings for

faces that shared a blending parent and faces that did not share a

blending parent, collapsed across conditions, using a paired t-test.

We predicted that faces that shared a parent would be rated as

more similar than faces that did not share a parent (Figure 2A)
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FIGURE 2

Hypothetical outcomes illustrating the manipulation check pre-learning and the calculation of category bias in each condition post-learning. (A)

Prior to learning category information, and regardless of condition, faces that share a parent are predicted to be rated as more similar than faces that

do not share a blended parent. (B) Hypothetical results showing category bias in each condition. For similarity-consistent categories, some pairs of

faces that share a parent belong to the same category while other pairs of faces that share a parent belong to di�erent categories. Category bias is

the di�erence in post-learning similarity ratings for those two types of similarity rating trials. For similarity-inconsistent families, some pairs of faces

that do not share a parent belong to the same category while other pairs of faces that do not share a parent belong to di�erent categories. Category

bias is the di�erence in post-learning similarity ratings for those two types of similarity rating trials.

indicating that participants are sensitive to the similarity structure

among the blended stimuli.

Of primary interest was the measure of category bias in

perceived similarity ratings after learning (Ashby et al., 2020;

Ashby and Zeithamova, 2022; Bowman et al., 2022). We sought

to compare the degree of category bias when there are category-

relevant features that can be extracted with the degree of category

bias when there are no category-relevant features that can be

extracted. Specifically, one of the pre-learning trial types (shared

parent or no shared parent) can be further split after learning

based on categorymembership, with the resulting trial types unique

to each experimental condition (Figure 2B). In the similarity-

consistent condition, the shared-parent trial type can be further

split into two: faces that share a parent and have the same family

name and faces that share a parent but have a different family name

(Figure 2B, left panel, blue bars). Category bias in this condition

was calculated from these shared-parent trial types by taking the

difference of the similarity ratings for pairs of faces that were

from the same family and similarity ratings for pairs of faces from

different families (Figure 2B, left panel, difference between blue

bars). Note that in the similarity-consistent condition, the no-

shared-parent trials cannot be split into same and different category

pairs because in this category structure only faces that shared a

blended parent belonged to the same category. Thus, all faces that

do not share a parent belong to different categories in this condition

(see colored boxes illustrating categories determined across rows in

Figure 1A).

In the similarity-inconsistent condition, the no-shared-parent

trial type can be further split into two: faces that do not share a

parent but belong to the same family and faces that do not share

a parent and belong to different families (Figure 2B, right panel,

red bars). Category bias in this condition was calculated from

these no shared parent trial types by taking the difference of the

similarity ratings for pairs of faces that were from the same family

and similarity ratings for pairs of faces from different families

(Figure 2B, right panel, difference between red bars). Critically,

in the similarity-inconsistent condition the shared-parent trials

cannot be split into same and different category pairs because in

this category structure only faces that did not share a blended

parent belong to the same category. Thus, all faces that share a

parent belong to different categories in this condition (Figure 1B).

Importantly, the category bias in both conditions compares

similarity ratings for faces that belong to the same category with

ratings for faces that are equated for physical similarity but belong

to different categories.

We first examined category bias (same category minus

difference category) in each condition separately using a one-

sample t-test to determine whether category bias is significantly

greater than zero. To examine the relative contribution of

perceptual change and strategic processes on similarity ratings,

we then compared post-learning category bias between conditions

using an independent samples t-test. The same measures of

category bias were also extracted for the same pairs of faces

from pre-learning similarity ratings and compared to post-

learning category biases using a paired t-test. This allowed us

to confirm that category biases measured after learning were

driven by learning and not capturing potential random pre-

existing biases. In addition to test statistics and p-values, we

include the effect sizes and their confidence intervals throughout

the results.

Results

Category learning performance

To examine changes in category learning performance across

time, mean categorization accuracy was calculated for each of
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the five blocks of the feedback-based category learning task

(Figure 3). Categorization accuracy scores were submitted to a

2 x 5 repeated measures ANOVA, with experimental condition

(similarity-consistent, similarity-inconsistent) as a between-subject

factor and learning phase (block 1, block 2, block 3, block 4,

block 5) as a within-subject factor. A significant main effect of

condition [F(1, 207) = 113.48, p < 0.001, η
2
p = 0.354] indicated

participants had higher category-learning performance when faces

shared physical features [Maccuracy = 67%, 95% CI (64%, 70%),

chance = 33%] compared to when faces did not share any physical

features [Maccuracy = 44%, 95% CI (41%, 47%), chance = 33%].

A significant main effect of learning phase [F(2.85, 590.33) =

151.67, p < 0.001, η
2
p = 0.42, GG] with a significant linear

trend [F(1, 207) = 288.70, p < 0.001, η
2
p = 0.582] indicated

increased accuracy as learning progressed. Lastly, a significant

interaction between experimental condition and learning phase

[F(2.85, 590.33) = 3.92, p = 0.010, η
2
p = 0.019, GG] indicated

differences in the learning rate between conditions. Follow-up

comparisons of the two conditions on each block showed that

while the differences in performance were large and significant

throughout (all t > 7.0, p < 0.001, d > 0.97 in each block),

the effect size fluctuated among blocks. The largest difference

in performance between conditions was observed in Block 1 of

training (d = 1.39) and the smallest difference in Block 5 (d =

0.97). As suggested by Figure 3, performance in the similarity-

inconsistent condition continued to improve through the fifth

block of training while improvements slowed down earlier in the

similarity-consistent condition.

Overall, results from the training phase indicated that

participants learned similarity-consistent categories to a higher

degree than similarity-inconsistent categories. Namely, a lack of

shared physical features between same-family faces made the

learning task more difficult for participants in the similarity-

inconsistent condition. Due to the low learning performance,

measuring and interpreting category bias is a challenge in this

condition. For example, if a category bias is not found in

the similarity-inconsistent condition, it may argue against a

contribution of strategic judgment bias or instead reflect a lack

of opportunity to show a strategic bias because participants

were not able to adequately learn the family labels. Thus, we

conducted all the following analyses twice. In addition to analyses

with the full category-inconsistent sample, we also focused on a

subset of participants from the similarity-inconsistent condition

whose final training block performance was above 60%. This

resulted in a subset (n = 35) whose average final training

performance matched that from the similarity-consistent condition

(see the dashed line in Figure 3). We refer to this subset as

“similarity-inconsistent (memory-matched)”. Notably, using the

memory-matched subset cannot eliminate the inherent difficulty

differences across conditions, as evidenced by longer reaction times

during the last block of training in the similarity-inconsistent

(memory-matched) group (McorrectRT = 1.67) compared to the

similarity-consistent group [McorrectRT = 1.41; t(137) = 4.29,

p < 0.001, d = 0.84]. However, analyzing the subset of good

learners in the similarity-inconsistent condition allows us to

make sure that any potential differences in category bias are not

driven simply by a lack of memory for the category labels in

that condition.

FIGURE 3

Category learning performance across training for the

similarity-consistent condition (dark line) and similarity-inconsistent

condition (solid gray line). Category learning was more di�cult

when category members did not share physical features as

indicated by lower performance in the similarity-inconsistent

condition. Also included is performance from a subset of the

similarity-inconsistent group (dashed gray line) whose

categorization performance matched the category-consistent

group by the end of training. Chance = 33% for three categories.

Category bias in similarity ratings

First, we examined similarity ratings prior to learning category

information collapsed across conditions, to verify that participants

were sensitive to the similarity manipulation. Results presented in

Figure 4A indicated that faces which shared a parent were rated as

more similar than faces that did not share a parent [Mdiff = 1.39;

t(208)= 31.56, p< 0.001, d= 2.18, 95%CI (1.93, 2.43)], confirming

that our blending procedure worked as intended. As a secondary

check, we examined whether there was evidence of a pre-existing

bias toward category-membership prior to learning. As anticipated,

there was no evidence for a category bias in perceptual similarity

ratings prior to category learning in either condition [similarity-

consistent: t(103)= 0.07, p= 0.47, d= 0.007, 95% CI (−0.19, 0.20);

similarity-inconsistent: t(104)= −0.13, p= 0.45, d=−0.013, 95%

CI (−0.20, 0.18)].

To measure the emergence of a category bias after learning,

we first examined category bias in post-learning similarity

ratings in each condition. In line with prior work, we found

evidence for a post-learning category bias in the similarity-

consistent condition (Figure 4B, left panel, significant difference

between blue bars; t(103) = 4.47, p < 0.001, d = 0.44,

95% CI (0.24, 0.64)]. A paired-samples t-test confirmed that

the category-bias observed post-learning was not a result of
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FIGURE 4

Observed perceived similarity ratings before and after learning. (A) Pre-learning similarity ratings collapsed across conditions. Faces that share a

parent are rated as more similar than faces that do not share a parent. (B) Post-learning similarity ratings for the similarity-consistent and

similarity-inconsistent conditions. Ratings for the similarity-inconsistent condition are presented for the full sample as well as a memory-matched

sub-sample. There is evidence for a category bias in post-learning ratings in the similarity-consistent category condition (significant di�erence in

blue bars) but not the similarity-inconsistent categories condition (no di�erence in red bars in either sample). *p < 0.05.

pre-existing differences in perceived similarity ratings prior to

learning [post-bias vs. pre-bias Mdiff = 0.54; t(103) = 4.72,

p < 0.001, d = 0.46, 95% CI (0.26, 0.66)]. In comparison

to pre-learning, participants increased their similarity rating

for faces that shared a blended parent but belonged to the

same family category [t(105) = 1.86, p = 0.066, d = 0.18]

and decreased their similarity rating for faces that shared a

blended parent but belonged to different family categories [t(105)

= −4.30, p < 0.001, d = −0.42]. Participants who showed

better category learning during training showed stronger post-

learning category bias [R2
= 0.27, F(1, 102) = 37.71, p <

0.001], consistent with the notion that the bias is driven by

category learning.

No evidence for a category bias was found in the similarity-

inconsistent condition, neither in the full sample [Figure 4B,

middle panel, no difference between red bars; t(104) = −0.82, p

= 0.207, d = −0.08, 95% CI (−0.27, 0.11)] nor in the memory-

matched sub-sample [Figure 4B, right panel, no difference between

red bars; t(34) = 0.16, p = 0.44, d = 0.027, 95% CI (−0.30,

0.36)]. Consistent with the lack of bias among the top learners,

there was also no relationship between how well participants

learned the category labels during training and their subsequent

category bias [R2
= 0.01, F(1, 103) = 1.13, p = 0.29], as there

was little bias among both good and poor learners. Thus, even

when controlling for memory for category labels, a category-bias

in post-learning similarity ratings was only evident for categories

where members shared physical features. No evidence for category

bias was observed when stimuli within a category did not share

features, indicating that without a physical similarity structure, a

shared category label is not sufficient to induce a bias in perceived

similarity ratings.

Discussion

Categorization tasks utilizing artificial or photography-based

faces have decades of tradition (Etcovv and Magee, 1992; Calder

et al., 1996; Young et al., 1997; Stevenage, 1998; Goldstone and

Steyvers, 2001; Goldstone et al., 2001; Roberson et al., 2007; Ashby

et al., 2020; Ashby and Zeithamova, 2022; Bowman et al., 2022).

Here, we utilized blended faces because it allowed us to control the

similarity structure of the categories while offering stimuli that are

realistic looking and holistically perceived. We sought to determine

the degree to which perceived similarity ratings in the face-blend

categorization task used in our prior work (Ashby et al., 2020;

Ashby and Zeithamova, 2022; Bowman et al., 2022) are driven

by perceptual and strategic judgment biases. We tracked post-

learning category bias after a traditional feedback-based category

learning task under two learning conditions. In the similarity-

consistent condition, category membership was consistent with the

similarity structure among stimuli where category bias can reflect

a combination of a perceptual bias and a strategic judgment bias.

In the similarity-inconsistent condition, category membership was

orthogonal from physical features and any similarity rating bias

could be attributed to a strategic judgment bias alone. Results

showed evidence for a category bias in post-learning similarity

ratings, but only when items shared physical features within

categories. Thus, we replicated the findings of categorization-

driven biases, but also identified a boundary condition for this

effect, indicating that its emergence is conditioned on the existence

of a similarity structure within categories. Because no category bias

was observed in the condition where items shared labels but did

not share physical characteristics, the emergence of a category bias

in similarity ratings appears to largely reflect a change in perceived
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similarity and not merely a strategic decision to rate items with

shared labels more similarly.

Our new approach demonstrating a role of perceptual changes

in category-biased similarity ratings provides further support

for an attentional theory of category learning and category-

induced biases. Past work has postulated that learning category

information prompts individuals to shift their attention toward

category-relevant features and away from category-irrelevant

features (Nosofsky, 1986, 1987), which leads to changes in

perception to highlight within-category similarity and between

category differences (Goldstone, 1994a; Beale and Keil, 1995;

Kurtz, 1996; Livingston et al., 1998; Goldstone and Steyvers,

2001; Gureckis and Goldstone, 2008; Folstein et al., 2013a,b; Soto,

2019). For example, when one acquires a new category where

category membership depends on brightness but not size, increased

attention to brightness “stretches” that dimension, enhancing

perception of differences in brightness. In contrast, because size

is irrelevant for category membership, decreased attention to

the size dimension “shrinks” the perceptual space along the size

dimension, decreasing perception of size differences (Goldstone,

1994a). Within the context of the current task, imagine that one

of the category-relevant parents might have prominent eyebrows

but the three relevant parents do not differ much in their mouth

shape. The increased attention to eyebrows and decreased attention

tomouth shape after category learning would lead participants to be

more likely to perceive eyebrow differences (highlighting between-

category differences and within-category similarity of eyebrows)

and less strongly perceive mouth differences (making any within-

category differences of mouth shape driven by irrelevant parent

features less salient). Because faces are processed differently by the

brain compared to other types of objects (for reviews see Ruiz-

Soler and Beltran, 2006; Tsao and Livingstone, 2008; Behrmann

et al., 2016) and face perception may be “special” in that faces are

processed on a more holistic level than other types of stimuli (Farah

et al., 1998; for review see Piepers and Robbins, 2012), it will be

important to test generalization of current findings to other types

of stimuli. Nevertheless, as category-driven attentional biases have

been previously shown for many types of stimuli (Bornstein et al.,

1976; Bornstein and Korda, 1984; Livingston et al., 1998; Goldstone

and Steyvers, 2001; Franklin and Davies, 2004), the principles of

how category learning biases perception through stretching and

shrinking perceptual space along different dimensions may be

relatively universal.

Our behavioral data suggesting a bias in perception, consistent

with shifts of attention, further align with evidence for an

attentional shift as well as reports of category bias reflected

in the brain. For example, Mack et al. (2013) found neural

representations for category features distributed widespread across

the cortex but only when attention weights to individual stimulus

features were considered. Ashby and colleagues (2020) found

neural biases toward category-relevant information widespread

throughout the cortex when items shared physical features. The

current study contributes further support for the attentional theory

of category bias by demonstrating that category bias only emerges

under conditions where items within categories share physical

features, giving individuals category-relevant features to which they

may attend.

Although our findings are consistent with the proposals

that category learning results in attentional shifts from category

irrelevant to relevant features, creating perceptual biases, we cannot

completely rule out the possibility that strategic bias may still

contribute to the total bias observed for similarity-based categories.

For example, fast category learning in the similarity-consistent

condition may have allowed participants to engage in attentional

tuning to category-diagnostic features more extensively (Blair

et al., 2009; Chen et al., 2013; McColeman et al., 2014), which in

turn may have facilitated faster access to the associated category

labels during the rating task and greater impact of labels in

ratings. The differences in reaction times between conditions, even

when limited to the top learners in the similarity-inconsistent

condition, indeed indicate that the label became available to

participants much faster in the similarity-consistent than the

similarity inconsistent condition. Furthermore, the similarity-

inconsistent condition required rote memorization of face-label

pairs, which may not be sufficient to evoke a strategic bias. For

example, Fotiadis and Protopapas (2022) found facilitatory effects

of verbal labels on category learning but not for a paired-associate

task that did not involve similarity-based categories which may

more closely resemble the similarity-inconsistent condition in

the current study. As category labels may not have appeared as

meaningful information in the similarity-inconsistent condition,

the effect of the shared label may have been minimal on both

perceptual and strategic judgments when it was not strongly

activated by the stimulus (Lupyan, 2012). Conceptually consistent

with the Fotiadis and Protopapas (2022) study, our findings

demonstrate that shared category labels, per se, are not sufficient to

create category biases in similarity ratings when categories do not

align with similarity structure, providing a new boundary condition

on the effect of language on perception.

Our findings indicated that the role of strategic judgment in

perceived similarity ratings in the current task is likely limited.

In contrast, Goldstone and colleagues (2001) concluded that

category bias in similarity ratings measures not only the perceptual

similarity of the items themselves but also the similarity of their

associated labels and categories. One reason for the differences in

findings between Goldstone and colleagues (2001) and the current

study may be differences in experimental design. First, a category

bias (greater within- vs. between-category similarity) was already

present prior to learning in the Goldstone et al. (2001) study

because items within a category tended to be more similar than

items from different categories. Here, we only compared items

equated for physical similarity within and between categories to

ensure that the category bias, and subsequent changes in perceived

similarity, are due to category learning alone and cannot be

explained by pre-existing similarity differences. In fact, participants

in our similarity-inconsistent condition had to work against the

similarity structure among the stimuli to learn the category

assignments. Second, category bias that reflected a strategic

judgment bias in the previous study was measured indirectly

through similarity ratings to a separate, non-categorizable, neutral

face. Furthermore, participants were trained to learn category

information under conditions where shared similarity within and

between categories was present in varying degrees. In contrast,

we trained participants to learn category information using a

Frontiers inCognition 09 frontiersin.org

https://doi.org/10.3389/fcogn.2023.1270519
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Ashby et al. 10.3389/fcogn.2023.1270519

category similarity structure that held similarity constant within

and between categories (i.e., similarity-consistent group) or held

similarity orthogonal to within and between category designation

(i.e., similarity-inconsistent group), allowing for a direct and clear

measurement of category bias. Finally, the current study is the first

to our knowledge that measures the degree of strategic judgment

bias that may be inherent to similarity ratings by including

a comparison learning condition where physical similarity is

orthogonal to category structure and associated category labels.

Nevertheless, it will be important to explore the strategic bias

question in the future with other paradigms, including arbitrary or

“functional” categories where stimuli with no inherent similarity

structure are arbitrarily assigned to categories (Pan and Sakagami,

2012; Taylor et al., 2021), to fully determine the extent to which

verbal labels influence similarity judgments across a broader range

of category structures.

In our prior behavioral and neuroimaging work, we found

evidence for category biases in face similarity ratings even when

controlling for physical similarity (Ashby et al., 2020; Ashby and

Zeithamova, 2022; Bowman et al., 2022). These findings suggest

that when a degree of shared similarity exists and a verbal label

aligning with some of those shared features exists, the brain may

be hardwired to allocate a disproportionate amount of attention

to shared features. This effect may be one of the mechanisms

behind perpetuating social categories and stereotypes (Amodio,

2014). For example, racial biases may be driven by some physical

similarities within groups and differences between groups that are

then overexaggerated in people’s perceptions (Byatt and Rhodes,

2004). Objectively, the degree of variability across facial features

within various races is small (Goldstein, 1979a,b). However, when

individuals differ along some physical feature (such as skin color)

and a category label (such as race) becomes associated with that

feature, the feature can become emphasized in people’s perceptions.

In contrast, any features not aligned with category membership

become less perceptually salient or ignored. This would alter our

perceptions, highlighting within-category similarity and between-

category differences, and biasing us to perceive the categories as

more differentiated than they really are.

Interestingly, we also found that shared features were necessary

to induce a category bias in perception in the current study. Yet,

not all biases in the real world, such as religious bias or political

affiliation bias, can be tied to salient physical features. Therefore,

these results may indicate that different mechanisms could be

responsible for types of in-group/out-group biases that are not

grounded in physical similarity. Rather than relying on attentional

biases to category relevant features, biases that are not similarity-

based may work through associative inference, where value or

affect associated with one member of a category spreads to other

members of the category through associations (Pan and Sakagami,

2012; Wimmer and Shohamy, 2012; Martinez et al., 2016). More

broadly, our results indicate that category learning involving

similarity-based structure and learning involving arbitrary category

labels likely involve distinct mechanisms.
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