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An energy-e�cient process of
non-deterministic computation
drives the emergence of
predictive models and
exploratory behavior

Elizabeth A. Stoll*

Western Institute for Advanced Study, Denver, CO, United States

Cortical neural networks encode information about the environment, combining

data across sensory modalities to form predictive models of the world, which

in turn drive behavioral output. Cortical population coding is probabilistic,

with synchronous firing across the neural network achieved in the context

of noisy inputs. The system-wide computational process, which encodes

the likely state of the local environment, is achieved at a cost of only 20

Watts, indicating a deep connection between neuronal information processing

and energy-e�cient computation. This report presents a new framework for

modeling non-deterministic computation in cortical neural networks, in terms

of thermodynamic laws. Initially, free energy is expended to produce von

Neumann entropy, then predictive value is extracted from that thermodynamic

quantity of information. The extraction of predictive value during a single

computation yields a percept, or a predictive semantical statement about the

local environment, and the integration of sequential neural network states

yields a temporal sequence of percepts, or a predictive syntactical statement

about the cause-e�ect relationship between perceived events. The amount of

predictive value available for computation is limited by the total amount of energy

entering the system, and will always be incomplete, due to thermodynamic

constraints. This process of thermodynamic computation naturally produces a

rival energetic cost function, which minimizes energy expenditure: the system

can either explore its local environment to gain potential predictive value, or

it can exploit previously-acquired predictive value by triggering a contextually-

relevant and thermodynamically-favored sequence of neural network states. The

system grows into a more ordered state over time, as it physically encodes the

predictive value acquired by interacting with its environment.

KEYWORDS

cortical neuron, cortical computation, predictive processing, integrated information,

thermodynamic computation, information thermodynamics, von Neumann entropy,

incompleteness and uncertainty

1 Introduction

Animals collect data about the world through multiple sensory modalities,

transducing physical events in the local environment into electrical signals, then

passing these data to dedicated processing centers within the central nervous system

(Hubel and Wiesel, 1959; Fettiplace, 2017). In the cerebral cortex, information is

integrated across multiple sensory modalities and compared with contextually-relevant
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predictions or expectations (Schultz and Dickinson, 2000;

Lochmann and Deneve, 2011). This computational process

informs the selection of behavior (Arnal et al., 2011; Wimmer

et al., 2015). However, the mechanisms underlying information

integration and predictive modeling at the systems level are

currently not well understood.

Cortical neural networks encode both the state of the local

environment and the divergence from expectations set by a

predictive model (Melloni et al., 2011; Kok et al., 2012). Critically,

any information that is found to have useful predictive value

(with reliable temporal contingency) is encoded into memory

storage through synaptic remodeling, which favors those same

patterns of neural activity to re-occur in a similar context

(Hebb, 1949; Turrigiano et al., 1998). Thus, neurons coordinate

memory storage and processing functions within a single

computational unit. Yet this synaptic remodeling is primarily

a feature of cortical neurons, not spinal neurons. Although

some spike timing-dependent plasticity occurs upon repetitive

paired stimulation (Nishimura et al., 2013; Urbin et al., 2017;

Ting et al., 2020) and after injury (Tan et al., 2008; Bradley

et al., 2019; Simonetti and Kuner, 2020) in spinal circuits,

cortical neurons engage in spontaneous synaptic remodeling

under standard physiological conditions (Kapur et al., 1997;

Huang et al., 2005; Zarnadze et al., 2016). The emergence of

a more ordered system state in cortical neural networks during

learning and development correlates with the construction of

predictive cognitive models (Kitano and Fukai, 2004; Gotts,

2016).

Uncovering the natural processes by which cortical neural

networks form predictive models over time may drive advances

in both the cognitive sciences and the field of computational

intelligence. As information is processed in cortical neural

networks, predictive value is extracted and stored, and output

behavior is selected in the context of both incoming sensory

data and relevant past experience. This massively parallel

computing process, which accesses predictive models stored in

local memory, is highly energy-efficient. Yet it is not currently

well understood how the cerebral cortex achieves this exascale

computing power and a generalized problem-solving ability at

an energetic cost of only 20 Watts (Sokoloff, 1981; Magistretti

and Pellerin, 1999). This energetic efficiency is particularly

surprising, given that cortical neurons retain sensitivity to

random electrical noise in gating signaling outcomes (Stern

et al., 1997; Lee et al., 1998; Dorval and White, 2005; Averbeck

et al., 2006), a property that should be expected to reduce

energy efficiency.

But importantly, prediction minimizes energetic expenditure.

In cortical neural networks, prediction errors provide an energy

efficient method of encoding how much a percept diverges from

the contextual expectation (Friston and Kiebel, 2009; Adams et al.,

2013). The “minimization of surprise” was proposed by Karl Friston

to be the guiding force driving the improvement of predictive

models, with new information continually prompting the revision

of erroneous priors (Friston et al., 2006; Feldman and Friston,

2010). This view— embodied by “the free energy principle”—

asserts that biological systems gradually achieve a more ordered

configuration over time by identifying a more compatible state

with their environment, simply by reducing predictive errors

(Bellec et al., 2020). It should be noted however that “free energy”

is a statistical quantity, not a thermodynamic quantity, in this

particular neuroscientific context. Likewise, the concept of “free

energy” has been employed in the machine learning field to solve

optimization problems through a process of gradient descent

(Scellier and Bengio, 2017). For the past 40 years, researchers have

striven to explain computation, in both biological and simulated

neural networks, in terms of “selecting an optimal system state

from a large probability distribution” (Hopfield, 1987; Beck et al.,

2008; Maoz et al., 2020). Yet a direct connection between noisy

coding and energy efficiency has remained elusive. A deeper

explanation of cortical computation, in terms of thermodynamics,

is needed.

In this report, a new theoretical model is presented,

tying together the concepts of computational free energy and

thermodynamic free energy. Here, the macrostate of the cortical

neural network is modeled as the mixed sum of all component

microstates—the physical quantity of information, or von

Neumann entropy, held by the system. The extraction of predictive

value, or consistency, then compresses this thermodynamic

quantity of information, as an optimal system state is selected

from a large probability distribution. This computational

process not only maximizes free energy availability; it also

yields a multi-sensory percept, or a predictive semantical

statement about the present state of the local environment,

which is encoded by the cortical neural network state. These

multi-sensory percepts are then integrated over time to

form predictive syntactical statements about the relationship

between perceived events, encoded by a sequence of cortical

neural network states. This energy-efficient computational

process naturally leads to the construction of predictive

cognitive models.

Since energy is always conserved, the compression of

information entropy must be paired with the release of thermal

free energy, local to any reduction in uncertainty, in accordance

with the Landauer principle (Landauer, 1961; Berut et al., 2012;

Jun et al., 2014; Yan et al., 2018). This free energy can then

be used to do work within the system, physically encoding the

predictive value that was extracted from some thermodynamic

quantity of information. This computational process allows a non-

dissipative thermodynamic system to grow into a more ordered

state over time, as it encodes predictive value. The amount of

predictive value available during a computation is limited by

the total amount of energy entering the system over that period

of time, and will always be incomplete, due to thermodynamic

constraints. The system will therefore respect the second law of

thermodynamics andmaintain some amount of uncertainty during

predictive processing.

This new approach offers a theoretical framework for

achieving energy-efficient non-deterministic computation in

cortical neural networks, in terms of thermodynamic laws.

It is also consistent with the extraordinary energy efficiency

of the human brain. In addition to this broad explanatory

power, this new approach offers testable hypotheses relating

probabilistic computational processes to network-level dynamics

and behavior.
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2 Preliminaries

2.1 Justification for the approach

This approach applies several established principles in

computational physics to model the entropy generated

by the cerebral cortex as both a thermodynamic and a

computational quantity. A step-by-step logical justification

for this approach follows.

1. Entropy is both a computational quantity and a

thermodynamic quantity. It is both a quantitative measure

of all possible arrangements for the components of a

thermodynamic system, and the amount of free energy

expended to generate that quantity of information.

2. The brain is both a thermodynamic system and a

computational system. The amount of thermodynamic

entropy generated may be considered equivalent to the

amount of computational entropy generated, with both

represented by the von Neumann entropy of the system.

3. Cortical neurons allow random electrical noise to gate

signaling outcomes, with the inherently probabilistic

movement of electrons contributing to the likelihood of the

cell reaching action potential threshold (Stern et al., 1997; Lee

et al., 1998; Dorval and White, 2005; Averbeck et al., 2006).

The inter-spike interval cannot be predicted by upstream

inputs alone; random electrical noise materially contributes to

the membrane potential.

4. Since cortical neurons allow statistically random events to

affect the neuronal membrane potential, each cell should be

modeled as a statistical ensemble of component pure states

(von Neumann entropy) rather than a binary on- or off-state

(Shannon entropy). The state of each neuronal membrane

potential in the system is then themixed sum of all component

electron states.

5. A statistically random ensemble of neurons across the

cortex fires synchronously, encoding a multisensory percept

(Beck et al., 2008; Maoz et al., 2020). Wakeful awareness is

characterized by this periodic activity at gamma frequencies

(Csibra et al., 2000; Engel et al., 2001; Herrmann and Knight,

2001; Buzsaki and Draguhn, 2004).

6. Since the ensembles of cortical neurons which fire

synchronously at periodic intervals are statistically random,

these cells should be modeled as a statistical ensemble of

component microstates (von Neumann entropy) rather than

a statistical ensemble of binary computational units (Shannon

entropy). The state of the network is then the mixed sum of

all component neuron states.

7. Cortical neurons must generate a lot of entropy, since

empirical studies have shown they allow random electrical

noise to affect the membrane potential (Stern et al., 1997; Lee

et al., 1998; Dorval and White, 2005; Averbeck et al., 2006).

8. Cortical neurons must not generate a lot of entropy, since

empirical studies have shown them to be highly energy-

efficient (Sokoloff, 1981; Magistretti and Pellerin, 1999).

9. The only way that Steps 7 and 8 can both be true is

if cortical neurons generate entropy through noisy

coding, then compress that thermodynamic and

computational quantity by identifying correlations in

the data.

10. von Neumann entropy can be compressed, as the system

interacts with its surrounding environment and finds a

mutually compatible state with that surrounding environment

(Glansdorff and Prigogine, 1971; Hillert and Agren, 2006;

Martyushev et al., 2007).

11. This process of information compression is equivalent

to the extraction of predictive value; predictive value

is a thermodynamic quantity, which can be extracted

from the total amount of information entropy generated

by a far-from-equilibrium non-dissipative system

(Still et al., 2012).

12. The quantity of information compression is equivalent to the

quantity of predictive value extracted during the computation.

13. The quantity of non-predictive value is equivalent to the

net quantity of entropy generated by the system during

the computation.

14. The quantity of predictive value extracted during the

computation is equivalent to the correlations extracted (by

the encoding system) from the total quantity of information

during the computation.

15. In accordance with the Landauer principle, the quantity

of information compression during the computation is

equivalent to the quantity of free energy that is recovered by

the system during the computation (Landauer, 1961; Berut

et al., 2012; Jun et al., 2014; Yan et al., 2018).

16. Any free energy recovered by the system during information

compression can be used to do work. This work may

involve encoding the predictive value acquired during the

computational timeframe into the physical state of the

encoding system.

Definitions: Information is a distribution of possible system
states, given by the von Neumann entropy of the system, or

the mixed sum of all component pure states. Predictive value

is a measure of correlation between system states, and the
“correlation” between the encoding system and its surrounding

environment is equivalent to the predictive value the encoding
system has extracted upon interacting with its surrounding

environment. Internal system states which match external system

states have high predictive value, while internal system states
which do not match external system states have low predictive

value. When an internal system state “matches” an external

system state, the external system state is parameterized by

the internal system state, such that the predicted external

system state is effectively represented by the internal system

state.

In summary, cortical information processing can be

effectively described in terms of von Neumann entropy.

Here, the system generates information as both a

thermodynamic and a computational quantity, and the laws

of thermodynamics apply to any exchange of free energy and

entropy within the system (Figure 1). The limits imposed

by these laws are explored in the results section of this

report.
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FIGURE 1

A summary of key principles of this theoretical framework. The cortical neural network (system A) interacts with its surrounding environment (system

B). During this thermodynamic computation, system A encodes the most likely and consistent state of system B. Critically, the far-from-equilibrium

system A traps energy from system B to do work and create heat. In doing so, the first law of thermodynamics is satisfied: energy is neither created

nor destroyed, and this value remains the sum of all free energy and temperature-entropy. Yet the distribution of all potential and kinetic energy

across the system, represented by the Hamiltonian operator, can be optimized during the computation. The trial Hamiltonian always maximizes

thermodynamic free energy and minimizes entropy, compared with the reference Hamiltonian. Critically, some amount of entropy or uncertainty will

always remain at the completion of a thermodynamic computation. For this reason, the second law of thermodynamics is always satisfied: the

entropy of system A plus the entropy of system B will always increase over time. Yet the entropy of the combined system can be minimized, as

correlations are identified between the two systems, leading to information compression in accordance with the subadditivity rule. In summary,

thermodynamic quantities are always constrained by the first and second laws of thermodynamics, even as the two systems evolve into a more

mutually compatible state over time.

2.2 Entropy is a description of the system
macrostate

For a classical thermodynamic system, the macrostate of the

system is a distribution of microstates, given by the Gibbs entropy

formula. With this classical approach, each computational unit

is in a binary 0 or 1 state, and the neural network is modeled

as a function of these component microstates. Here, kB is the

Boltzmann constant, Ei is the energy of microstate i, pi is the

probability that microstate occurs, and the Gibbs entropy of the

system is given by S. This relationship is provided in Equation 1:

S = −kB
∑

pi ln pi. (1)

Yet in cortical neural networks, a statistically random ensemble

of cells fires synchronously at periodic intervals (Beck et al., 2008;

Maoz et al., 2020). Therefore, the macrostate of the system is

better described as a statistical ensemble of all component pure

states, given by the von Neumann entropy formula (Bengtsson and

Zyczkowski, 2007). With this method, each computational unit has

some probability of being in a 0 or 1 state, as a function of its

fluctuating membrane potential. Indeed, the membrane potential

of each cortical neuron is affected by coincident upstream signals

and random electrical noise (Stern et al., 1997; Lee et al., 1998;

Dorval and White, 2005; Averbeck et al., 2006). This uncertainty,

or the information encoded by each computational unit, can also

be modeled as a statistical ensemble of component pure states,

given by the von Neumann entropy formula, which is provided in

Equation 2:

S(ρ) = −Tr (ρ ln ρ) , where ρ =
∑

px |ψx〉 〈ψx| . (2)

Here, entropy is a high-dimensional volume of possible system

states, represented by the trace across a density matrix ρ. ρ is

the sum of all mutually orthogonal pure states ρx, each occurring

with some probability px. As the encoding Thermodynamic System

“A” is perturbed, by interacting with its surrounding environment,

Thermodynamic System “B,” the density matrix undergoes a

time evolution, from ρAB → ρ′AB. During this time evolution,

consistencies can be identified between the two particle systems

(Schumacher, 1995; Bennett and Shor, 1998; Jozsa et al., 1998;

Sciara et al., 2017). This non-deterministic process leads to the

selection of a mutually-compatible system state. Here, entropy is

additive in uncorrelated systems, but it is subtractive in correlated

systems, as mutual redundancies in system states are recognized

and reduced. This leads to the subadditivity rule:

S(ρAB) = S(ρA) + S(ρB)

= S(ρ′A) + S(ρ′B) ≥ S(ρ′AB).
(3)

A cortical neural network is a far-from equilibrium

thermodynamic system that actively acquires energy to

accomplish work. That work involves encoding the state of

the surrounding environment into the physical state of the system

itself. This theoretical approach models the encoding process as a

thermodynamic computation. The macrostate that results from

this thermodynamic computation is not a deterministic outcome;

rather, an optimal system state is selected in the present context

from a large probability distribution. The most thermodynamically

favored and "optimal" system state is the one that is both most

correlated with the surrounding environment and most compatible

with existing anatomical and physiological constraints. The

physical compression of entropy, during a computation, causes the
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system to attain a more ordered state, as it becomes less random

and more compatible with its surrounding environment.

3 Methods

3.1 Thermodynamic constraints on
irreversible work

Thermodynamic System “A”—a cortical neural network

identifies an optimal state in the context of its surrounding

environment, Thermodynamic System “B,” by selecting the

most consistent arrangement of microstates to encode the state

of its surrounding environment. This mechanistic process of

thermodynamic computation can be modeled with a Hamiltonian

〈H〉t , which is the sum of all potential and kinetic energies in a non-

equilibrium system. The Hamiltonian operates on a vector space,

with some spectrum of eigenvalues, or possible outcomes. This

computational process resolves the amount of free energy available

to the system Gt , which is the total amount of energy in the system

Ĥ less the temperature-entropy generated by the system TSt . This

relationship is provided in Equation 4:

Gt = Ĥt − TSt . (4)

The quantity of energy represented by the Hamiltonian remains

the same over the timecourse, but the way energy is distributed

across the system may change. This relationship between the

Hamiltonian and the density matrix (or distribution of possible

system states) is given by Equation 5:

ρ′AB = UρABU
† , where U = exp(−iĤt) . (5)

If no time has passed, or no interactions take place, the

Hamiltonian is merely the sum of all degrees of freedom for all

probabilistic components of the system. If however some time

has passed, or interactions have taken place, the Hamiltonian Ĥ

represents the time-dependent state of the system. This description

of the system state is provided in Equation 6:

ih̄
dψ

dt
= Ĥψ = Eψ . (6)

The computation results in energy being effectively

redistributed across the system, with some trial Hamiltonian

maximizing free energy availability. That trial Hamiltonian—

which maximizes the correlations between internal and external

states, and therefore minimizes entropy or uncertainty— will be

thermodynamically favored. Yet the full account must always

be balanced - with the total amount of energy in the system,

represented by the Hamiltonian, being the sum of all free energy

Gt and temperature-entropy TSt . The free energy of the trial

Hamiltonian 〈H̃〉t must be greater than or equal to the free

energy of the reference Hamiltonian 〈H〉t . This is known as the

Bogoliubov inequality:

G̃t = 〈H̃〉t − TSt ≥ Gt = 〈H〉t − TSt . (7)

During the computation, entropy is minimized and the free

energy is maximized, as correlations are extracted between the

encoding system and its surrounding environment. However, there

are thermodynamic limits to this computational process. The

Jarzynski equality, relating the quantity of free energy and work in

non-equilibrium systems, holds (Jarzynski, 1997a,b). There simply

cannot be more work dissipated toward entropy generation than

the amount of energy expenditure. This relationship provides an

equivalency between the average work dissipated to create entropy

(an ensemble of possible measurements, given by W̄), and the

change in Gibbs free energy (given by 1G), after some time

has passed, with β = 1/kBT. This relationship between energy

expenditure and entropy is given by Equation 8:

exp(−βW) = exp (−β1G) . (8)

The overline marking the W term in this equation indicates

an average over all possible realizations of a process which

takes the system from starting state A (generally an equilibrium

state) to ending state B (generally a non-equilibrium state). This

average over possible realizations is an average over different

possible fluctuations which could occur during the process, e.g.,

due to Brownian motion. This is exactly what is being modeled

here, since the Hamiltonian accounts for all fluctuations affecting

the membrane potential of each computational unit within the

system. As a result of this noisy coding, the neural network has

some distribution of possible system states, with one realization

providing the best match for the surrounding environment. Each

realization yields a slightly different value for the amount of free

energy expended to do work. Both the reference Hamiltonian

(which represents all possible paths for the system) and the trial

Hamiltonian (which represents the actual path taken by the system)

provide the sum of all free energy and temperature-entropy, but the

trial Hamiltonianmaximizes available free energy of the system and

minimizes net entropy generation. So, the average work dissipated

(given by the reference Hamiltonian) may be greater than the

quantity of free energy expenditure; however, the specific work

dissipated (given by the trial Hamiltonian) will always be less than

or equal to the quantity of free energy expenditure.

Another strict thermodynamic equality, the Crooks fluctuation

theorem, holds here as well—as in any path-dependent system state

(Crooks, 1998). This rule relates the probability of any particular

time-dependent trajectory (a → b) to its time-reversal trajectory

(b → a). The Crooks fluctuation theorem requires all irreversible

work (1Wa→b) to be greater than or equal to the difference in free

energy between events and time-reversed events (1G = 1Ga→b −

1Gb→a). This theorem stipulates that, if the free energy required to

do work is greater for the reversed sequence of events, compared

with the forward sequence of events, the probability of forward

events will be more likely than time-reversed events. This theorem,

relating thermodynamic energy requirements with the probability

of an event occurring, is given by Equation 9:

Pa→b

Pb→a
= expβ (1Wa→b −1G) . (9)

Any physical structure engaging in physical work will dissipate

some amount of free energy toward entropy. However, this energy
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is not irreversibly lost (Callen and Welton, 1951). Indeed, the

energy expended to create entropy cannot disappear, since energy

can never be created nor destroyed. And since energy is always

conserved, any compression of information entropy must be paired

with the release of free energy. This conservation law, embodied by

the first law of thermodynamics and the Landauer principle, has

been empirically validated in recent years (Landauer, 1961; Berut

et al., 2012; Jun et al., 2014; Yan et al., 2018). Any compression of

information entropy, or reduction of uncertainty, must be paired

with the release of free energy. This free energy can then be used to

do thermodynamic work within the system. This workmay involve,

for example, encoding the most likely state of the surrounding

environment into the state of the neural network.

3.2 Thermodynamic foundations of
predictive inference

Entropy is a natural by-product of thermodynamic systems:

a measure of inefficiency in doing work. Entropy is also a

description of the physical system state: a vector map of all possible

states for all atoms in a thermodynamic system after some time

evolution. These two definitions are tied together in a system

whose “work” is computing the most optimal system state to

encode its environment. It is worth noting again that information

compression is a known physical process that generates a discrete

quantity of free energy (Landauer, 1961; Berut et al., 2012; Jun et al.,

2014; Yan et al., 2018). This conversion of physical quantities is

given by the Landauer limit, which provides the amount of energy

released by the erasure of a single digital bit. That thermodynamic

quantity of information is given by Equation 10:

〈W〉 = kBT (log2) . (10)

This concept can be extrapolated to computational systems

with any number of possible microstates that trap energy to do

computational work. The recently-derived Still dissipation theorem

demonstrates that the quantity of non-predictive information in a

system is proportional to the energy lost when an external driving

signal changes by an incremental amount within a non-equilibrium

system (Still et al., 2012). Here, the amount of information without

predictive value is equal to the amount of work dissipated to

entropy as the signal changes over a time course from xt=0 (the

immediately previous system state) to xt (the present state):

〈Wdiss [ xt=0 → xt] 〉 = kBT [ Imem(t)− Ipred(t)]

= kBT [ Inon−pred(t)]

= kBT [1I] .

(11)

This equation stipulates that the total amount of information

generated over some time evolution, subtracted by the amount of

information with predictive value, is the amount of non-predictive

information remaining after predictive value has been extracted.

This quantity is dissipated to entropy upon the completion of

the system-wide computation, and is therefore unavailable as free

energy to do work (Sonntag et al., 2003). Imem is equivalent to

the total amount of information generated, or the amount of

uncertainty gained by the system, over the timecourse. Ipred is the

quantity of predictive value extracted during the thermodynamic

computation. The net quantity remaining, Inon−pred, is the amount

of work that has been dissipated to entropy upon completion

of a thermodynamic computing cycle. That net quantity of non-

predictive information is equal to the quantity of uncorrelated

states between Systems A and B, which will always be greater than

or equal to zero:

〈Wdiss [ xt=0 → xt] 〉 = kBT [1I] ≥ 0

= kBT [ S(ρ′AB) ] .
(12)

As uncertainty increases, entropy is produced, and less free

energy is available within the system to do work. As uncertainty

decreases, entropy is compressed, and more free energy is available

within the system to complete tasks, such as remodeling synapses.

A system that encodes its environment can therefore become

more ordered by interacting with its local environment and

identifying correlations. It is even thermodynamically favored

for a system to take on a more ordered state over time,

as it encodes predictive value gained by interacting with its

surrounding environment (Glansdorff and Prigogine, 1971; Hillert

and Agren, 2006; Martyushev et al., 2007); indeed, the pruning

of neural pathways during learning and development would not

spontaneously occur if this were not the case.

Here, the spontaneous emergence of a more ordered

system state naturally emerges over time, from a process of

thermodynamic computation—as some quantity of information

entropy is generated and compressed, through the extraction

of predictive value. However, the first and second laws of

thermodynamics are always respected—energy is never created

nor destroyed, and there is always some net dissipation of energy

to entropy over time (Figure 2).

4 Results

4.1 The first law limits the amount of
predictive value in a quantity of information

In accordance with the second law of thermodynamics,

entropy must always increase over time. However, far-from-

equilibrium particle systems—which trap heat to do work—can

either increase or decrease disorder locally. To prevent a violation

of thermodynamic laws, free energy must be dissipated toward

work whenever the system state becomes more ordered. Any

reduction of uncertainty (kBT[1I] = T1S) must be balanced by an

increase in free energy (1G), to balance the total energetic account.

Any inefficiency in operations increases entropy, while a more

ordered system state increases the amount of energetic currency

available to do work.

The lower the value of T1S, the greater the amount of free

energy available to the system. The quantity of free energy can be

maximized in two ways: (1) if the system does not generate much

uncertainty or entropy (with the value of Imem(t) approaching

zero), or (2) if the entropy generated by the system over time t

has a large amount of predictive value that can be extracted (with

the value of Imem(t) − Ipred(t) approaching zero). The reduction

of possible system macrostates, or the compression of information
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FIGURE 2

A graphical depiction of free energy and entropy. (A) A single thermodynamic computation cycle is comprised of four distinct phases, with regard to

the free energy of system A (GA): (i) System A traps energy from system B, and (ii) System A uses this energy to generate entropy [These two steps

occur over the same time period, so that most free energy is distributed to entropy during noisy coding]. (iii) System A then compresses that quantity

of entropy by the amount kBT(Ipred), and partially recovers the original free energy expenditure through predictive processing. (iv) System A uses the

newly available free energy to perform dissipative work, physically encoding the newly acquired predictive value into its anatomy and physiology. (B)

The entropy of system A (SA) can also be mapped during these four distinct phases: (i) The entropy of System A does not change as a direct result of

trapping energy from system B. (ii) System A generates entropy as neurons engage in noisy coding [this value is S(ρA)]. (iii) System A then compresses

that entropy by the amount kBT(Ipred), releasing a proportional quantity of free energy during the predictive computation [this value is S(ρ ′A)]. (iv) The

entropy of System A then increases as it uses the newly available free energy to perform dissipative work, to physically encode the predictive value

acquired during the computation. (C) The value of the Hamiltonian operator is provided across all four stages of the computation. (D) The quantity of

energy distributed toward cellular work is provided across all four stages of the computation.

entropy, is equivalent to the extraction of predictive value. This

computational process is thermodynamically favored, because it

provides the system with more available free energy.

If the quantity of information contains internal consistencies,

that quantity is naturally reduced or compressed. Any redundant

or compressible entropy (e.g., possible system states that are

identical to previous system states) are highly predictable and

are easily accepted. Conversely, information that is unreliable or

anomalous (e.g., neural signals that are more likely to be errors

than accurate reporting of stimuli) reduce the amount of predictive

value available to the system, providing a measure of inefficiency or

wasted energy.

It is useful for a thermodynamic computing system to direct

attention toward a novel stimulus, in case that event provides

useful predictions about subsequent events. If predictive value

is successfully extracted from the information generated, there

is little net energetic cost to the initial energetic expenditure.

The free energy that is released by reducing uncertainty and

maximizing predictive value is recovered and made available to do

work within the system. In this model, a cortical neural network

continually acquires information about the local environment

through the sensory apparatus, encoding physical events into the

probabilistic macrostate of an ensemble of computational units.

Extracting predictive value from this “information” maximizes the

free energy that is available to the system. This free energy can be

used to implement structural change, leading to a more ordered

system state that encodes the predictive value acquired during

the computation.

Yet there is a limit to the amount of predictive value a system

can have. Any system that gains a more ordered state has reduced

the quantity of disorder or entropy; this may be true for a local,

non-closed thermodynamic system, but it cannot be true for a

closed system or the universe as a whole, because there must

be some external energy source driving this computational work.

The total information created by the system is limited by the

amount of energy entering the system1E. Of the total information

generated by the thermodynamic system, some amount will have

predictive value, but the predictive value available will be limited

by the total quantity of information held by the system. If the

quantity of predictive value gained is greater than the amount of

caloric energy expended to generate entropy, then the quantities in

Equations 11, 12 would be negative, and energy would be created
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by the thermodynamic system through the act of information

processing alone. Since the creation of energy is explicitly forbidden

by the first law of thermodynamics, the amount of predictive value

is limited by the amount of energy available to the system. As

such, any thermodynamic system gaining a more ordered state by

extracting predictive value must generate an incomplete predictive

model.

If a thermodynamic computing system were ever to reach

perfect predictability for all computable statements, with Imem(t) =

Ipred(t), all memory in the system would be erased, and there would

be no information remaining to have predictive value. Therefore,

no memory can continue to exist for any period of time with 100%

predictive efficiency. If the value of Imem(t)− Ipred(t) were to reach

zero, all system memory would be erased.

This simple model demonstrates that extracting predictive

value is both a thermodynamic process and a computational

process. The first law of thermodynamics limits the amount of

energy expended toward and recovered from entropy; this total

quantity of energy turnover is constrained by the net quantity

of energy entering the system. Since the physical process of

compressing information is dependent on parsing predictive value,

as provided in Still’s equation, the quantity of disorder lost through

computation must be equivalent to the amount of predictive value

extracted by the system. Yet some disorder must always remain. If

a system is perfectly ordered and perfectly predictive, it will cease

to operate, because continued thermodynamic operation requires

some uncertainty.

4.2 The predictive value in any set of
computable statements will always be
incomplete

In mathematical logic, any set of axioms which makes

statements of truth is inherently limited and necessarily

incomplete. It is useful to consider this rule on its own terms,

before assessing whether it applies to physical systems performing

logical operations. Gödel’s first incompleteness theorem provides

that there will always be statements within a set of axioms which

are true but cannot be proven or disproven within the set of

axioms itself. Gödel’s second incompleteness theorem states that

any set of axioms cannot contain any proof for the consistency of

the set of axioms itself. As such, any logical system that evaluates

both the internal consistency or "truth" of computable statements

and the relationship of these statements to each other is necessarily

incomplete (Gödel, 1931; Raatikainen, 2015).

These two incompleteness theorems assert that a set of axioms

cannot be both completely true and completely known. Any

number of statements can be held to be semantically true; the

limit applies to full knowledge of their syntactical relationships.

Equations 11, 12 show that this law of mathematical logic must

be true for any thermodynamic computing system. Over time, any

number of semantical statements may be decided by a system.

If the system does not hold all semantical statements about the

universe, then there will also be syntactical relationships that are

not known, and its knowledge is incomplete. If the system does

hold all semantical statements about the universe, then knowing all

syntactical relationships between these axiomatic statements would

complete the predictive value of the system. Once all knowledge is

complete, the thermodynamic system becomes completely ordered.

With no uncertainty, there would be no remaining entropy,

all entropy would be converted to free energy, and the system

would become disordered once again. Continued thermodynamic

operation requires uncertainty, and thus, incompleteness.

This result is perhaps not surprising, as the relevance of

incompleteness in relation to computing was formally addressed

a century ago by the Entscheidungsproblem, or decision-problem,

proposed by Hilbert and Ackermann, which posed the question

of whether an algorithm or computer could decide the universal

validity of any mathematical statement (Hilbert and Ackermann,

1928). Church and Turing quickly recognized there could

be no computable function which determines whether two

computational expressions are equivalent, thereby demonstrating

the fundamental insolvability of the Entscheidungsproblem and

the practicality of Gödel’s incompleteness theorems in terms of

computable statements (Church, 1936; Turing, 1936). Here, it

is demonstrated that incompleteness is a fundamental limitation

during the thermodynamic extraction of predictive value.

If no true-false decision can be made with regard to the

relationship between computable statements, then the predictive

value Ipred of the system is incomplete. As a result, some amount

of work must be dissipated to 1I, as unresolved information

which simply cannot be reduced (yet) into a decisional outcome.

Given the physical impossibility of computing the universal truth

of all syntactical relationships between semantical statements,

there will always be some value of Inon−pred and therefore a

net positive amount of free energy dedicated to 1I during a

thermodynamic computation, in accordance with the second law

of thermodynamics. Yet it is possible to minimize this quantity

of 1I, as predictive value is extracted: If a decision can be made,

uncertainty is reduced and the system state encoding that predictive

statement is selected from a distribution of possible system states.

4.3 A single thermodynamic computation
yields a predictive semantical statement

In this model, a neural network selects an optimal system

state, by extracting predictive value to make consistent statements

about its surrounding environment. By parsing for predictive

value, the encoding system takes on a more compatible

state with its surrounding environment during the process of

thermodynamic computation.

Although entropy is generated by the system, predictive value

can be extracted, reducing the distribution of possible system states.

During each computation, noise is filtered out and anomalies

are detected; the most appropriate system state is selected, in

the context of the surrounding environment. This computation

is based on both incoming sensory data and the biophysical

properties of each encoding unit.

During the computation, incoming sensory data is noisily

encoded into the neural network and integrated into a system

macrostate. That probability distribution (a physical quantity of

information) is defined as the mixed sum of all component

microstates, which evolve over time t. The system state is then

resolved as consistencies are reduced and predictive value is
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extracted. During this computational process, information is

compressed, free energy is released, an optimal system state is

selected from a large probability distribution, and all other possible

system states are discarded.

This computation effectively encodes a semantical statement

about the local environment, or a "percept," such as a simultaneous

flash of light and a loud noise. Because this semantical statement is

essentially a predictive model of the state of the world at the present

moment, constructed from multiple sensory inputs, a reasonable

decision in the context of any remaining uncertainty is to orient

attention toward any novel or anomalous stimuli, in order to

gather more information which might hold additional predictive

value. Critically, any information gathered that is not consistent

with previously-gathered information or concurrent information is

likely to be discarded. This efficiency may lead to perceptual errors,

particularly in the presence of unexpected events.

A multi-sensory percept is a “predictive semantical statement

about the surrounding environment,” which corresponds to

synchronous firing across the neural network (Figure 3A). A

sequence of multi-sensory percepts, corresponding to a sequence

of neural network states, can be integrated across the time

domain. These longer computational cycles enable the construction

of “predictive syntactical statements about reality” or predictive

cognitive models of the likely cause-effect relationship between

perceived events (Figure 3B).

4.4 A sequence of thermodynamic
computations yields a predictive syntactical
statement

While entropy can decrease during the course of a

computational cycle, through the extraction of predictive

value, some amount of non-predictive value will always remain. In

short, not all entropy can be compressed in a single computational

cycle, because not all predictive value can be extracted. The

relationship of that percept to subsequent events remains uncertain.

This uncertainty can only be reduced by extracting additional

predictive value. The system may integrate a temporal sequence

of neural network states, encoding a temporal sequence of

semantical statements, and extract a prediction regarding the likely

cause-effect relationship between these perceived events. thereby

creating a predictive model of the syntactical relationships between

semantical statements.

During a single thermodynamic computation, the neural

network encodes the most likely state of its surrounding

environment. These computations can also be integrated over time,

corresponding to a sequence of neural network states which encode

a likely sequence of events occurring in the environment. Now,

the amount of information held by the neural network is given

by integrating the distribution of system macrostates over a longer

timescale t, with this thermodynamic quantity equivalent to the

net amount of free energy expended to produce entropy over

multiple computational cycles. Any entropy that is not compressed

or discarded during a single computational cycle remains available

for further parsing.

Over the course of a single computational cycle, only semantical

truth statements can be ascertained (e.g., there is a bright flash and

a loud noise, with the coincident stimuli both emerging from the

same approximate location). In that instant, there is no predictive

value to assign syntactical relationships between these stimuli and

any subsequent outcomes (e.g., these stimuli immediately precede

some aversive or rewarding outcome for the observer). If these

stimuli have been previously observed, with no adverse outcome,

the stimuli may be tolerated (e.g., this combination of percepts is

likely to be part of the annual fireworks display). Alternatively, if

the stimuli have been previously observed, with an outcome that

potentially affects survival, a decision can be taken to reduce the

expected risk (e.g., this combination of percepts is likely to indicate

gunfire nearby). If the stimuli are novel, they may be attended

carefully. In the absence of contextually-relevant knowledge, gained

from prior experience, the system must integrate information over

multiple computational cycles and extract predictive value. Any

new information gained by the system about its environment

during a single computation has uncertain predictive value; this

information cannot be fully reduced and therefore must be

stored in working memory. However, the immediately subsequent

moment may yield more information, permitting the system

to assign some predictive syntactical relationship between the

previously-acquired information and the incoming information

(e.g., the neural network can decide whether this perceived stimulus

combination is likely to indicate an innocuous or life-threatening

event, and direct movement according to this cognitive model). If

a stimulus has high predictive value, gained from prior experience,

it may be thermodynamically favored for some particular sequence

of neural network states to ensue, triggering stereotyped behavior

in that context (Figures 3C–F).

Overlapping computational cycles may occur, with different

timescales, as neural network states are temporally integrated.

Short sequences of events may be fused together tightly, with the

amount of predictive value determined in part by the salience and

temporal contingency of sensory cues. Longer sequences of events

may be tied together by common contextual cues or patterns of

sensorimotor input-output behavior; these extended computations

may include a multitude of shorter sequences. In each case, the

extended computation includes semantical statements which are

predicted to be syntactically related in some way. By integrating

individual computations, each with some value of Inon−pred, into

a sequence of computations, the system can extract additional

predictive value.

A series of events with high predictive value will compress

the quantity of entropy, thereby releasing free energy into the

system to do work. Indeed, any time the system gains predictive

value, it must balance the account by dissipating free energy

toward work. Free energy is dissipated toward work, for example,

as the system undertakes spontaneous structural remodeling

to gain a more ordered system state, thereby encoding the

predictive value acquired through lived experience. This synaptic

remodeling process thermodynamically favors the re-occurrence

of sequential neural network states and stereotyped behaviors in

predictable contexts. This emergence of a more ordered state

allows the organism to more easily navigate familiar environments,

minimizing inefficiency and maximizing available free energy.
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FIGURE 3

The proposed thermo-computational process naturally yields perceptual content, cognitive models, and an exploration/exploitation dynamic in

behavior, as the neural network extracts predictive value from information. (A) A multi-sensory percept is a predictive semantical statement about the

surrounding environment, e.g., “there is an orange striped cat” or “there is a black striped cat.” It is thermodynamically favored for any neural network

that selects an optimal system state from some probability distribution, by interacting with its surrounding environment, to select the system state

that is most correlated with its surrounding environment. However, inaccuracies may occur, given time constraints, energy constraints, or

neuropathological deficits. (B) A cognitive model is a predictive syntactical statement about cause-e�ect relationships between perceived events,

e.g., “Petting this cat may lead to a rewarding experience, resulting in a feeling of contentment and lower energy dissipation” or “Petting this cat may

lead to a risk of injury, resulting in potential scratches and the dissipation of energy toward wound healing.” These predictive models of cause and

e�ect allow the observer to hone stimulus-evoked behavior. However, inaccuracies may occur, particularly when predictors do not yield consistent

outcomes. (C, D) Incoming sensory data may be highly uncertain, and so risk and reward cannot be accurately predicted in a given situation.

Previous experience may provide relevant insight which can be applied to the present situation. (C) Petting a cat when it shows passive behavior,

characterized by a relaxed posture and minimal eye contact, has previously resulted in reward for the observer, paired with the encoding of reward

expectation in the nucleus accumbens. (D) Petting a cat when it shows aggressive behavior, characterized by a tense posture and direct eye contact,

has previously resulted in injury to the observer, paired with the encoding of injury expectation in the amygdala. (E, F) An exploration/exploitation

dynamic emerges from one simple rule: the minimization of energy dissipation. (E) Knowledge is gained through exploratory behavior (which

requires energy expenditure) and extraction of reliable predictive indicators (which leads to partial energy recovery). Imem is the total amount of

energy distributed toward information generation; Ipred is the amount of predictive value in that information (and the amount of energy recovered as

information is compressed); Inon-pred is the net entropy created during the computational cycle. The free energy released during information

compression is used to do the work of encoding predictive value through synaptic remodeling. (F) Knowledge, previously gained through lived

experience, can be exploited in new circumstances (permitting the system to save energy). In the above example, the observer may reasonably

predict a high risk of injury and a low risk of reward when approaching a cat making direct eye contact. This predictive indicator is stored in the

neural network, thermodynamically favoring a sequence of neural activity and a contextually appropriate behavioral response upon stimulus

presentation. The photo of a ginger striped cat, by Stéfano Girardelli, was provided under a creative commons license on Unsplash; the photo of a

black striped cat, by Zane Lee, was provided under a creative commons license on Unsplash; the photo of a wounded hand, by Brian Patrick Tagalog,

was provided under a creative commons license on Unsplash; the photo of a happy woman, by Kate Kozyrka, was provided under a creative

commons license on Unsplash; the line drawing illustrations were provided by pch.vector on Freepik.
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4.5 Thermodynamic computation yields a
trade-o� between exploration and
exploitation

In this model of thermodynamic information processing, a

single computation yields a “semantical” statement, while temporal

sequences of neural network states encode “syntactical” statements.

Over a lifetime, the neural network steadily acquires amore ordered

state but cannot achieve full predictive value, due to the constraints

discussed in Sections IVA and IVB.

Any information generated will be parsed for predictive value

— and the more predictive value extracted from the information,

the more free energy is released to do work. As the system performs

work to remodel itself into a more organized state, disorder is

reduced, less entropy or uncertainty is produced, and more free

energy is available to the system—as long as the system continues

to navigate familiar contexts.

This computational process is highly energy-efficient, because

consistency minimizes uncertainty and maximizes free energy

availability. In this model, a thermodynamic computing system

will both expand its quantity of information, by engaging in

exploratory behavior to acquire predictive value, and reduce

its quantity of information, by exploiting previously-acquired

predictive value and favoring previous patterns of neural activity.

These two processes perform in opposition, with any decisional

outcome relying on the minimization of energy dissipation. The

rival energetic cost function leads a neural network to explore

its environment, gaining predictive value, and to engage in

habitual patterns of behavior, exploiting that predictive value in

familiar contexts.

Each computation cycle culminates in a decision, with any

output behavior dependent upon this rival energetic cost function.

If the system predicts its own knowledge to be insufficient to

navigate the present situation, the system will further explore

its environment to gain information. If predictive value can be

extracted, the information is compressed and there is little net

energy expenditure to do that work, although there is an up-front

expenditure. The system then remodels itself to encode that newly-

acquired predictive value. If the system predicts its own knowledge

to be sufficient to navigate the situation, the system will exploit any

relevant previously-gained predictive value to select a contextually-

appropriate action. If patterns of neural firing and behavior are

readily activated by a familiar stimulus, with minimal uncertainty

during the task, little net energy expenditure is needed to compute

the decision.

4.6 Predictions

This theoretical approach to modeling non-deterministic

computation in cortical neural networks makes some specific

predictions with regard to the energy-efficiency of the brain

(Stoll, 2024), the spontaneous release of thermal free energy upon

information compression (Stoll, 2022a), and the contribution

of these localized thermal fluctuations to cortical neuron

signaling outcomes (Stoll, 2022b). This approach also makes

specific predictions about the expected effects of electromagnetic

stimulation and pharmacological interventions on perceptual

content (Stoll, 2022c). Some further predictions of the theory,

prompted by the present model, include.

4.6.1 Thermodynamic computation leads to
maximal energy e�ciency

In this model, cortical neurons engage in a physical form of

computation, generating information through noisy coding, then

compressing that thermodynamic and computational quantity by

extracting predictive value. Here, each computational unit within

the network is modeled as encoding von Neumann entropy (the

mixed sum of all component pure states) rather than Shannon

entropy (a simple binary 0 or 1 state). As such, much of the energy

acquired by the system is dissipated to entropy during noisy coding;

this places a limit on how much predictive value can be extracted

and how much cellular work can be done.

The system can instantiate an internal system state which

does not match previous internal states or current external

states, but that would lead to greater net energy expenditure,

or thermodynamic inefficiency (as provided in Equation 3).

Therefore, it is thermodynamically favored for the encoding system

to identify correlations with its surrounding environment, by

extracting predictive value and reducing uncertainty. During the

computation, the trial Hamiltonian will maximize free energy

availability and minimize net entropy production (as provided in

Equation 7). A key result of this model is that both thermodynamic

and computational entropy will be minimized, while the amount

of free energy dissipated toward physical work will be maximized.

Over time, this should lead to near-perfect energy efficiency

for the encoding system, with Wcellular approaches kBT[Ipred(t)]

approaches kBT[Imem(t)] approaches Ĥ. This leads to a falsifiable

statement:Wcellular < Ĥ.

4.6.2 Thermodynamic computation drives
synchronous firing of cells at a range of
frequencies

In this model, a thermodynamic computation yields a

predictive semantical statement regarding the most likely state

of the surrounding environment, in a manner limited by the

range and sensitivity of the sensory apparatus. As information

is compressed, a single system state is realized and all other

possible system states are discarded. Thus, the realization of a

multi-modal “percept” corresponds to the synchronous firing of

neurons across the network, at a periodic frequency tied to the

length of the computation. Yet the syntactical relationship of that

semantical statement to ensuing events remains uncertain. As

a result, these individual computations, yielding “percepts,” may

contribute to temporal sequences of neural network states, paired

with information content, yielding a predictive cognitive model of

causal relationships between perceived events. As predictive value is

extracted, information is compressed over these longer timescales.

Thus, these sequences of computations are predicted to result in

synchronous firing at much slower frequencies. During wakeful

awareness, both semantical and syntactical information is being

parsed, so both fast and slow oscillations should be observed. This

prediction of synchronous neural activity at nested frequencies
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is consistent with empirical observations in the cerebral cortex

(Chrobak and Buzsaki, 1998; Engel and Singer, 2001; Harris and

Gordon, 2015). During sleep, incoming sensory data is not being

evaluated and so only syntactical relationships between previously-

stored information is being parsed; as a result, sleep should be

characterized by synchronous activity only at slower frequencies.

This prediction is also consistent with empirical observation

(Steriade et al., 2001; Mitra et al., 2015). These synchronous

firing events are predicted to be disrupted by the absorption of

thermal free energy release at relevant frequencies, or the random

introduction of free energy.

4.6.3 Thermodynamic computation drives
spontaneous remodeling of the encoding
structure

The quantity of predictive value extracted during a

computation is equivalent to the amount of information entropy

compressed during that computation; this quantity must be exactly

balanced by the amount of free energy released into the system and

the amount of work then dissipated toward creating amore ordered

system state. This work is expected to involve locally optimizing the

system to encode the acquired predictive value (e.g., by remodeling

the neural network structure to thermodynamically favor a certain

pattern of neural activity in a familiar context). In short, the

extraction of predictive value should be paired with the dissipation

of work toward creating a more ordered system state which encodes

that predictive value. Of course, cortical neurons are already known

to spontaneously remodel their synaptic connections to encode

learned information (Hebb, 1949). This structural remodeling

is prompted by participation in network-wide synchronous

activity (Zarnadze et al., 2016) and has been shown to affect each

synapse in proportion to its initial contribution (Turrigiano et al.,

1998). While the molecular mechanisms underlying synaptic

plasticity are well-established, this theoretical model describes

the relationship between free energy, entropy minimization, and

spontaneous directed work, as uncertainty is resolved. Here, it is

predicted that spontaneous self-remodeling is a natural output of

a thermodynamic computation, in which predictive syntactical

relationships are encoded in sequences of neural network states.

Any unique sequence of neural activity is therefore expected to

uniquely match representational information content. Alterations

in information content should be paired with a conformational

change in the encoding structure, to store the freshly-parsed

information; conversely, any impairment to the encoding structure

should be paired with a loss of stored information content. If

instead the null hypothesis is true, and activity-dependent synaptic

remodeling can be entirely explained by classical mechanisms, then

this process should not be localized to synapses that have reduced

uncertainty and should not be dependent on parsing predictive

value to maximize free energy availability.

4.6.4 Thermodynamic computation yields an
exploration/exploitation dynamic in behavior

In this model, the system identifies a compatible state with

its surrounding environment, by maximizing predictive value or

consistency. To gain predictive value, it is necessary to collect

data from the environment, parse that dataset for predictive value,

compress information, and subsequently encode that predictive

value into the encoding structure, so this encoding system state

is favored to repeat in a similar context. It is useful to attend

to any incoming data that does not match existing predictive

models, because this discrepancy signals a valuable opportunity to

update the cognitive model with this new information. Therefore,

a decision on how to act, given the incoming information, will

rely on a rival energetic cost function: If knowledge is predicted

to be sufficient to navigate the situation, the organism is unlikely

to engage in exploration to gain additional predictive capacity. If

knowledge is predicted to be insufficient to navigate the situation,

the organism is likely to engage in exploration. Any change

in the predicted risk of energy dissipation for exploration or

non-exploration in a given context will shift the probability

of exploration.

4.6.5 Thermodynamic computation carries the
risk of predictive error

This model of thermodynamic computation is extraordinarily

energy-efficient. However, two types of inefficiencies can occur.

If existing knowledge is not exploited in familiar situations, time

and energy may be wasted. If the consistency and predictive

power of a new cognitive model is ignored in favor of holding

onto a previous cognitive model, time and energy may also be

wasted. While the former leads to unnecessary dissipation of

energy toward exploration, the latter leads to potentially missing

critical information. Some organisms may select the short-term

savings gained by holding onto a previous cognitive model over

the potential long-term energetic savings gained by deconstructing

that cognitive model and constructing an improved model in

its place.

To explore what might be true about the world, it is necessary

to sacrifice time and energy resources for uncertain reward, with

the prediction that this process will be worthwhile in the long term.

In this theory, mental exploration takes thermodynamic work and

some individuals may opt not to engage in the process, with the

prediction there will be no payoff in doing so.

Exploration exposes the organism to uncertainty, thereby

generating information with potential predictive value,

while exploitation of knowledge that was previously gained

through exploration makes good use of that predictive value.

Ignoring incoming information may reduce energetic costs

in the short term, but this strategy can impair prospects

for survival in the longer term, so it is useful to accurately

assess when knowledge is insufficient. The organism must

compute the likely energetic cost of exploration against the

potential cost of making a predictive error. For this reason,

it is predicted that an individual capability for parsing

information - and discarding inaccurate cognitive models

in favor of more accurate cognitive models should provide

a selective advantage, leading to measurable differences in

survival outcomes, particularly when environmental conditions

suddenly shift.

Frontiers inCognition 12 frontiersin.org

https://doi.org/10.3389/fcogn.2023.1171273
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Stoll 10.3389/fcogn.2023.1171273

5 Discussion

The extraordinary energetic efficiency of the central nervous

system has been noted, particularly amongst theorists who query

whether this competence is intrinsically linked to the physical

production of information entropy (Collell and Fauquet, 2015;

Street, 2016) or the exascale computing capacity of the brain

(Bellec et al., 2020; Keyes et al., 2020). In this model, energy is

indeed being expended on entropy production—but rather than

being irreversibly lost, this quantity is parsed during a periodic

computational cycle of information generation and compression.

Since unlikely or unfamiliar system states may hold predictive

value, the quantity of entropy may be expanded to accommodate

a new system state, even at an energetic cost, in order to reduce

uncertainty in the longer term.

Interestingly, there are limits to the amount of predictive value

in a quantity of information. These limits are given by the first

law of thermodynamics. Indeed, any system that takes on a more

ordered state has essentially reduced its entropy over the course

of a computational cycle. But the amount of free energy that is

dedicated toward ordering the system state cannot be greater than

the amount of free energy that is gained through information

compression. Some amount of work must also be dissipated to

uncertainty, since having complete predictive value and continued

operation is thermodynamically impossible. As such, there are

intrinsic thermodynamic limits to the amount of work being done

by the system and thermodynamic limits to the completeness of its

predictive capacity.

A single computational cycle will both resolve the neural

network state in the present moment and generate a semantic

statement about the external environment, which is validated by

orienting toward incoming sensory information. These semantical

statements are held in working memory, and then integrated

with subsequent neural network states to compute any syntactical

relationships. Holding untrue semantic statements as true, and

attempting to use these statements to form syntactical relationships

with other semantical statements, is equivalent to energetic

inefficiency. Yet information content which may have accurately

reflected reality in some context could simply be inaccurate in

a different context; the ability of the system to recognize the

difference is largely determined by how effectively the neural

network structure had been remodeled to encode that information.

If the neural network remains adaptable, not completely ordered,

more nuanced complexities can be noted andmore predictive value

can be gained, at some energetic expense.

This process of thermodynamic computation results in a

rival energetic cost function, to maximize free energy. This

rival energetic cost function drives a system to either maximize

entropy production through exploration, to gain predictive value,

or minimize entropy production through exploitation, to make

effective use of previously-acquired predictive value. The system

must first expend energy to generate information, then recover

energy by compressing information. That free energy is then used

to remodel the encoding structure itself, to store that predictive

value, thus thermodynamically favoring the reoccurrence of

sequential system states in a relevant or familiar context. The

maximization of free energy is readily accomplished through

cycles of information generation and compression, or by relying

on the optimized system state that was already achieved by

that process. The timescales of computations may overlap, with

individual computations that encode multi-sensory percepts being

integrated into short sequences of neural network states which

encode possible relationships between perceived events. The overall

temperature and energy flux of the system remain constant,

permitting the non-equilibrium system to act as a net heat sink. In

this view, neural networks—acting in accordance with the laws of

thermodynamics—are expected to physically process information,

undergoing non-deterministic computation.

Physically compressing information, by extracting predictive

value, yields a single neural network state, encoding the likely

present state of the local environment. The incompleteness of

information compression in any single computational cycle leaves

some entropy remaining, which can then be parsed for predictive

value over longer timescales. By integrating information over longer

timescales, the neural networkmay integrate temporal sequences of

consistent system states to build predicted cause-effect relationships

between perceived events. These mental models—which make

predictions about the general structure and operation of the

physical world; the likely behavior of other people, animals, and

things in the environment; and the most effective way of acting

in response to certain stimuli — are expected to be formed by

thermodynamic computations occurring across the lifetime.

There is a long-standing ontological issue regarding the

relationship between information and entropy. Both concepts

describe the sum of all possible system states, so resolving this

issue lies at the heart of thermodynamic computing. Biological

neural networks are thermodynamic systems that produce entropy,

like any other particle system. Yet unlike other entropy-producing

thermodynamic systems—such as the steam engine—a biological

neural network computes information, reducing disorder or

randomness into a more optimal system state, with the system

growing increasingly ordered over time as it interacts with

its environment. In this model, neural networks both generate

information and parse that information for predictive value. It

is useful here to consider "information" as both the sum of

all possible system states (its mathematical definition) and the

meaning extracted from a messy dataset (its colloquial definition).

In this theoretical model, these are two stages of the same

computational process. As neural networks produce von Neumann

entropy, they are physically producing disorder—a set of possible

system states, or the mathematical definition of information.

However that information is only useful if predictive value is

extracted, a distribution of system states is compressed into a

single outcome, free energy is released back into the system, and

that free energy is used to remodel the encoding structure to

store that predictive value. In other words, any thermodynamic

system can create a distribution of possible system states, thereby

producing entropy. But only a thermodynamic system capable of

compressing that probability distribution into a single actualized

system state will then parse consistency or predictive value from that

information, store that predictive value for future use, and recall

those predictions in relevant contexts.

Interestingly, this model of information generation and

compression was first described in 1965 (Kirkaldy, 1965). The
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author, John Kirkaldy, states: “The evolution of the internal

spontaneous process may be described as a path on the saddle

surface of entropy production rate in the configuration space of the

process variables. From any initial state of high entropy production

the system evolves toward the saddle point by a series of regressions

to temporaryminima alternating with fluctuations which introduce

new internal constraints and open new channels for regression...

The state of consciousness is to be associated with the system

undergoing regression.”

The present report places this process within the established

groundwork of computational physics, with a thermodynamic

information compression process described by Ben Schumacher

and Peter Shor (Schumacher, 1995; Bennett and Shor, 1998). Yet

the Kirkaldy paper and the present report may be considered

equivalent. Kirkaldy focuses on the geometrical constraints of free

energy as a boundary condition in neural systems, with a single

saddle point serving as a global optimal result; meanwhile, the

present study focuses on thermodynamic trade-offs between local

minima at various timescales, with the system respecting the first

and second law of thermodynamics at each local decision point.

Kirkaldy models the system as opening new channels for search

by the random nucleation of internal constraints; meanwhile, the

present study models the intermediate states of higher entropy as

an uncertain neuronal membrane potential, which is resolved as all

local electron states are resolved. Both studies assume the brain is an

inherently probabilistic system, and must be modeled accordingly;

this assertion is supported by decades of neurophysiological

research, demonstrating that individual neuron signaling outcomes

and network-level dynamics are statistically random. Kirkaldy

demonstrates that a process of non-equilibrium thermodynamic

computation can cause the brain to spontaneously take on a

more ordered state during learning, but the present report is able

to explain perception, cognitive modeling, and decision-making

behavior in terms of predictive processing. Yet it is worth noting:

both of these reports only provide a systems-level description of

the information generation and compression process, and so they

require a stronger mechanistic basis at the cellular level, with these

probabilistic computations formulated in terms of Hamiltonian

operators (Stoll, 2022a), matrix mechanics (Stoll, 2022b), wave

mechanics (Stoll, 2022c), or mean field theory (Stoll, 2024). In all,

three major neuroscientific initiatives are needed: the development

of deeper physiological models which incorporate probabilistic

mechanics at the level of sodium ions at the neuronal membrane,

physiological verification of these new theoretical approaches, and

the integration of thermodynamic information processing into our

understanding of cortical neural network dynamics.

Critically, in both the Kirkaldy paper and the present report, the

outcomes of cortical neuron computations are non-deterministic,

but not completely random; these cells will encode the “best match"

between the system and its local environment. This approach fits

well with other recent models emphasizing the role of contextual

cues (Bruza et al., 2023) and cost calculations (Jara-Ettinger et al.,

2020) in decision-making.

Usefully, this new model introduces a thermodynamic basis

for optimal search strategies and predictive processing, with the

extraction of predictive value during the search process minimizing

the dissipation of free energy and maximizing the amount of

free energy available to do work. As a result, any far-from-

equilibrium thermodynamic system that traps heat to perform

computational work will inevitably cycle between expanding the

distribution of system states and pruning toward a more optimized

system state. This computational process naturally yields an

exploration/exploitation dynamic in behavior and the gradual

emergence of a more ordered system state over time.
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