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How generalization relates to the
exploration-exploitation tradeo�

Troy M. Houser*

Department of Psychology, University of Oregon, Eugene, OR, United States

It is known that animals foraging in the wild must balance their levels of

exploitation and exploration so as to maximize resource consumption. This

usually manifests as an area-restricted search strategy, such that animals tend

to exploit environmental patches and make long excursions between patches.

This optimal foraging strategy, however, relies on an underlying assumption:

nearby locations yield similar resources. Here, we o�er an explanation as to

how animals utilize this assumption, which implicitly involves generalization.

We also describe the computational mechanisms hypothesized to incorporate

factors of exploitation, exploration, and generalization, thus, providing a more

holistic picture of animal search strategies. Moreover, we connect this foraging

behavior to cognition in general. As such, we suggest that cognitive processes,

particularly those involved in sequential decision-making, reuse the computational

principles grafted into neural activity by the evolution of optimal foraging. We

speculate as to what neurobiological substrates may be using area-restricted

search, as well as how a model of exploitation, exploration, and generalization

can inform psychopathology.

KEYWORDS

explore-exploit dilemma, generalization (psychology), Gaussian process (GP),

reinforcement learning, uncertainty, optimal foraging

Introduction

Generalization is the use of previously acquired knowledge in novel situations (Taylor

et al., 2021). The notion that the response to novel stimuli is a decaying exponential function

of physical similarity to learned stimuli has been posited as a first principle of psychology,

or the universal law of generalization (Shepard, 1987), and indeed this notion has withstood

the test of time and rigorous experimentation across species and cognitive domains (Sims,

2018). The significance of generalization is apparent in everyday life: By generalizing, we

know where to look for the milk in a new grocery store, we know what restaurants might

be good in a new city, we know how long to wait for the bus at a new bus stop, etc. In

fact, generalization may very well be ubiquitous in human cognitive processes given that

we must always generalize from the past to the future (Stephen and Bergson, 2018). While

its utility and characteristics are well-described, the origins and evolutionary functions of

generalization are less understood. It is important to understand the evolutionary basis

for generalization as it might shed light on the neurobiological mechanisms supporting

generalization, as well as inform the treatment of a number of psychiatric disorders that

show signs of maladaptive generalization processes. In this paper, we outline a conceptual

framework that is meant to illustrate how generalization plays an integral role in the tradeoff

between exploration and exploitation which is itself a result of optimal foraging.

How animals forage optimally and resolve the exploration-exploitation dilemma in

doing so has become a topic of recently revivified interest (Hunt et al., 2021). One reason for

this recent surge is the realization that the exploration-exploitation dilemma is ubiquitous in

decision-making. In sequential decision-making tasks, where options are considered serially,
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subjects must choose whether to engage with the current option

or search for a better option (Hayden et al., 2011; Kolling et al.,

2012, 2016). Sequential decision-making maps on nicely to the

exploration-exploitation dilemma, where choosing the current

option corresponds to exploiting what is already known and

searching for a better option corresponds to exploration. Moreover,

sequential decision-making tasks themselves have recently become

popular in neuroscience, psychology, and economics because they

resemble real-world settings, such as employment (accept the

currently offered job or keep going to interviews), dating (stay

with the current partner or try a new one), Internet search, and

foraging. Foraging in particular is a key analogous behavior because

it provides an evolutionary explanation for the other sequential

decision-making behaviors. That is, assuming that animals that

had to forage for food were constantly faced with choosing to

explore or exploit, there is a strong evolutionary basis for this

dilemma to crop up in everyday decision-making. If we view

evolution as an optimization process (Smith, 1978), then it stands to

reason that significant deviations from optimal foraging may result

in maladaptive behaviors, which is already apparent in the vast

literature demonstrating physical and mental health detriments

from abnormal responses to uncertainty in the environment (Gao

and Gudykunst, 1990; Grupe and Nitschke, 2013) and reward

processing (Vrieze et al., 2013; Der-Avakian et al., 2016; Safra et al.,

2019). Moreover, there is a considerable number of psychiatric

disorders associated with maladaptive generalization processes,

including posttraumatic stress disorder (Aupperle et al., 2012),

semantic dementia (Knibb and Hodges, 2005), and depression

(Silberman et al., 1983). Together, assuming that generalization

plays a role in how animals balance exploration and exploitation,

animal foraging is a behavior crucial to understanding higher-order

cognition and mental health, which is what we attempt to show in

the current paper. In what follows, we first detail a computational

model that sets the stage for uniting animal foraging and “mental

navigation” under a common conceptual framework. This machine

learning model has interesting psychological interpretations and

affords quantification of a complex behavioral phenomenon, as well

as individual differences in a number of finer-grained cognitive

processes. We next connect the computational principles afforded

by the machine learning approach to an evolutionarily ancient

foraging strategy that we posit led to its reuse in (abstract)

cognitive domains. Finally, we speculate on the neurochemical

and neurobiological underpinnings of certain relevant phenomena

outlined throughout and how these biological processes relate to

psychiatric conditions, which can in turn inform treatment options

and future research.

Computational mechanisms of
generalization-based explore-exploit
behavior

Modeling exploitation

Biological systems are resource dependent. This means that

living things require other things from their environment in order

to continue living. As such, foraging for food is necessary and

learning how to find food efficiently is an adaptive skill that assumes

that there is a systematic distribution of food that even can be

learned. Fortunately, natural distributions of resources do tend to

be patchy (e.g., forests, herds, bodies of water), and animals have

evolved search strategies that approximate optimal computations

for foraging in patchy environments (Krebs et al., 1974, 1978).

In the ethology literature, optimal foraging is studied by

presenting animals with a series of patches with depleting resources

and the animals must decide whether to spend time exploiting

the current patch or exploring alternative patches. Hence the

exploration-exploitation dilemma. Optimal foraging theory suggests

that it is beneficial to balance both of these factors. The marginal

value theorem (MVT) is an optimal principle that describes the

most economic strategy to balance resource consumption with

energy expenditure in patch foraging (Charnov, 1976) and has

been used extensively in the ethology literature. Specifically, MVT

says that optimal decision-making simply requires comparing

immediate reward feedback from engaging with a current patch

to a threshold that is the cost incurred from the time required to

engage with the current patch. The incurred (opportunity) cost

is a measure of overall environmental richness, as one needs to

compute the long-run average of expected rewards while foraging

in the environment for time equal to the time required to engage

with the current patch. In other words, if the expected immediate

reward from the current patch is greater than the expected average

reward from foraging in the environment instead, then one should

exploit. If the expected long-run average reward obtained while

foraging instead of exploiting is greater, then one should explore.

MVT thus makes the quite simple prediction that opportunity cost

can be known by tracking average reward in the environment (Niv

et al., 2006, 2007; Constantino and Daw, 2015). MVT however is a

myopic decision strategy, for it compares one-step reward averages

(Constantino and Daw, 2015), meaning animals using MVT are

more prone to learn via trial-and-error.

An alternative reward-learning computational architecture

is the temporal difference (TD) algorithm from reinforcement

learning theory that captures learning the non-immediate value

of sequentially encountered options via an incremental update

(Rescorla-Wagner) rule that chains rewards to earlier predictors

to estimate future reward (Sutton and Barto, 1998). There is

a remarkable wealth of neural and behavioral support for TD

learning across species, most notably in midbrain phasic dopamine

responses (Montague et al., 1996; Schultz et al., 1997). TD

learning differs from classical operant conditioning models because

it defines value as the cumulative future reward that follows

a decision. In this way, TD learning is suitable for modeling

decision-making during foraging and in real-world settings. It is

calculated as:

Qit+1 = Qit + α (γ rt − Qit) (1)

where Q represents the subjective value estimate for stimulus i at

time t, r is the observed reward, α is the learning rate, and γ ∈ [0, 1]

is a temporal discount factor. α simply scales the prediction error

δ = γ rt − Qit such that the value of α is how much of the

prediction error is retained in memory. The prediction error itself

represents the discrepancy between predicted values for stimuli and

observed values for the same stimuli. Thus, for every timepoint,
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subjective value is updated in proportion to the magnitude of the

prediction error.

Temporal difference learning has proved to be one of the most

successful pairings of computational modeling and neurobiology,

for midbrain neurons release dopamine in proportion to the

predicted value of upcoming stimuli (Schultz et al., 1997). Implicit

in this algorithm is the importance of uncertainty, or prediction

error. Larger prediction errors lead to larger learning rates, for

it requires the model to update previous values by a larger

amount (Behrens et al., 2007). Temporal difference learning always

converges to the true stimulus values; however, people often

deviate from this linear learning trajectory in important ways.

For example, there are asymmetric learning rates for rewarding

vs. punishing stimuli (Muller et al., 2021), the value function

to be learned can be non-linear and learning itself is often

distributed (François-Lavet et al., 2018). Further, when the number

of states (e.g., a spatial location, a physiological state of being,

or a mental state of mind) is large the time it takes to learn

the value function is infeasible for animals. Thus, traditional

temporal difference learning is computationally intractable in high-

dimensional spaces. This translates to the fact that predicting the

future is computationally intractable, and thus, every decision that

animals make is equipped with some uncertainty. To capture the

influence of uncertainty on decision-making, we can cast temporal

difference learning in its Bayesian form, which makes independent

and normally distributed predictions of state values as opposed to

point estimates. When option j is selected at time t the posterior

meanm and variance v are updated according to:

mjt = mjt−1 + δjtGjt

(

yt −mjt−1

)

(2)

vjt =
(

1− δjtGjt

)

vjt−1 (3)

where δjt = 1, yt is the observed reward (equivalent to rt from

above) and Gjt is the Kalman Gain which is defined as:

Gjt =
vjt−1

vjt−1 + θ2
, (4)

where θ2 is the error variance. Error variance is an inverse

sensitivity parameter, where smaller values result in more

substantial updates to the posterior mean. This model is known

as a Bayesian Mean Tracker (BMT) and it captures learning in

dynamic environments. The Kalman Gain is what separates BMT

from temporal difference learning, as it represents the relative

importance of the prediction error given the prior subjective value

estimate, which enables it to modulate the form of the convergence

over time. By estimating posterior mean and variance, BMT

captures the distinct influences of exploitation and exploration,

respectively. How are factors of exploration and exploitation

combined to make a decision?

Modeling exploration

The way we treat uncertainty remains a topic of debate due to

its varied effects on behavior. For example, animals often display

tendencies to explore novel environments, attend to novel stimuli,

and even trade reward for information (Tolman and Honzik,

1930; Nunnally and Lemond, 1974; Blanchard et al., 2015). Real

world consumers will choose newly packaged goods over the

same goods in old packaging (Steenkamp and Gielens, 2003) and

rodents will withstand electroshocks to experience novelty (Nissen,

1930). Interestingly, there is also substantial evidence suggesting

that animals tend to display novelty avoidant behavior. The mere

exposure effect illustrates this, as it characterizes the preference

people show for repeated over novel objects (Zajonc, 2001).

Moreover, self-directed learning paradigms have demonstrated

that people choose options with more robustly known outcomes

(Markant et al., 2016).

Perhaps confusingly, both behaviors that favor and disfavor

novelty provide benefits. Treating novelty as rewarding in itself

leads to exploration and more adaptive choices in the long run.

One heuristic strategy that favors exploration and treats uncertainty

as reward is to assign an exploration bonus to options (Daw et al.,

2006; Friston et al., 2014). This is captured mathematically with

an upper confidence bound (UCB; Auer, 2003). The frequentist, or

count-based, expression of an UCB is:

Qucbit = β

√

log(t)

Nit
, (5)

where Nit is the number of times that option i has been visited

up until trial t, and β is a free parameter that scales the UCB.

β is the exploration bonus and by making it a free parameter,

computational models can capture individual differences in how

much people value the uncertainty of an option. Treating

uncertainty as equivalent to reward is implicit in a number of

motivational learning theories, such as intrinsic motivation (Leotti

and Delgado, 2011, 2014), exploratory motivation (Murty and

Adcock, 2017), information-seeking (Gottlieb et al., 2013), and

curiosity drive (Loewenstein, 1994), all of which have learning and

memory gains. A Bayesian UCB would simply be the square root of

the posterior variance v. An option’s overall value estimate is then

simply the posterior mean plus the UCB:

Qucb (s) = m (s) + β
√

v(s) (6)

Because Qucb leads one to choose more uncertain options, it is

taken as a measure of directed exploration, which is contrasted with

random exploration (Wilson et al., 2014), which is the temperature

of a softmax choice rule (Luce, 1963):

p (si) =
exp(Q(si)/τ )

∑

j exp(Q(sj)/τ ),
, (7)

Where, τ is called the temperature parameter and injects

stochasticity into the decision-making process. Intuitively, soft

maximization differs from UCB because UCB values will differ

depending on the number of times that a given stimulus was

seen or visited whereas soft maximization, all else (e.g., reward)

being equal, produces the same probabilities regardless of how

many times in the past one saw the stimulus. This use of the

temperature parameter contrasts with its more traditional usage

as controlling the tradeoff between exploration and exploitation.

Using the temperature parameter to control the tradeoffmeans that

when τ is low, one exploits and when it is high, one explores. Here,
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τ can be low (indicating little random exploration), while directed

exploration is still high. Recent work has shown exploitation and

both forms of exploration to be dissociable with distinct effects

on decision-making in ecologically valid tasks (Wilson et al., 2014;

Gershman, 2018a,b, 2019; Tomov et al., 2020; Bhui et al., 2021),

are underpinned by dissociable genetic components (Gershman

and Tzovaras, 2018) and neural activity (Warren et al., 2017;

Zajkowski et al., 2017; Dubois et al., 2021), and are associated

with distinct psychopathologies (Smith et al., 2022). For example,

lower levels of directed exploration have associated with problem

gambling (Wiehler et al., 2021), trait somatic anxiety (Fan et al.,

2021), and depression (Smith et al., 2022) and the combination

of both directed and random exploration has been shown to

be optimal for reward learning (Wilson et al., 2014; Gershman,

2018a, 2019; Tomov et al., 2020). On the other hand, there are

nontrivial advantages to being novelty averse. For instance, it is

sometimes better to avoid high-risk situations regardless of the

novelty that they offer (Schulz et al., 2018a; Stojic et al., 2020).

Moreover, random exploration may reflect increased confusion or

worse overall learning (Wu et al., 2020) and has been linked to

impulsivity (Dubois and Hauser, 2022). Directed exploration can

be detrimental in contexts with short time horizons, though this

is speculation based on the findings that directed exploration in

healthy adults increases with increased time horizons (Wilson et al.,

2014; Wu et al., 2022) and that directed exploration correlates

with temporal discounting (Sadeghiyeh et al., 2020). Finally, in

self-directed learning studies, people show enhanced learning and

memory for objects associated with lower levels of uncertainty

(Voss et al., 2011a,b; Houser et al., 2022). How can we reconcile

these seemingly disparate threads of research on animal responses

to novelty?

Modeling generalization

To explain the co-occurrence of novelty preference and novelty

avoidance, Gershman and Niv (2015) proposed that contextual

influences shape the way uncertainty is processed. For example,

one may be novelty seeking in a candy store, where the rewards are

plentiful, but novelty averse in a dark forest with snakes and spiders.

Using the context, or the structural form, from a previously learned

environment to inform decision-making in a novel environment

is a way to speed up learning and maximize reward (Wu et al.,

2018, 2020, 2021; Bhui et al., 2021). This ability to leverage learned

information in a new situation is generalization (Taylor et al.,

2021). Thus, generalization can be viewed as an arbitrator between

exploration and exploitation given the current context. A number

of recent studies have demonstrated the adaptive advantages that

generalization has on goal-directed (Schulz et al., 2018a,b,c, 2020;

Wu et al., 2018, 2020, 2021; Stojic et al., 2020), concept (Shi et al.,

2008, 2010; Lucas et al., 2015), and social (Naito et al., 2022)

learning, and across development (Schulz et al., 2019; Meder et al.,

2021; Giron et al., 2022).

Generalization offers learning of correlated features, states,

or values, such that knowledge of one informs knowledge of

those that are similar. A recently proposed non-parametric

Bayesian model (Gaussian Process) of function learning offers

an end-to-end computational architecture that characterizes

exploration, exploitation, and generalization (Lucas et al., 2015).

When combined with a sampling strategy and a decision rule,

this working model of reinforcement learning and decision-

making, i.e., goal-directed cognition, unveils how generalization

interrelates with the balance of exploration and exploitation. This

model offers a complementary approach to the value function

approximation approach in reinforcement learning (Schaul et al.,

2015). In fact, Gaussian Processes can be interpreted as universal

function approximators, and have a number of psychologically

interpretable components.

A Gaussian Process (GP) defines a multivariate normal

distribution over functions f (s) that map input s to output y = f (s).

The function corresponds to a random draw from the GP:

f ∼ GP
(

m, k
)

, (8)

where:

m (s) = E
[

f (s)
]

, (9)

and:

k
(

s, s
′
)

= E

[

(

f (s) −m (s)
)

(

f
(

s
′
)

−m
(

s
′
))]

. (10)

Here, m is the mean function, or simply a vector of averages

for each variable that is being measured (e.g., options, states)

and k is the covariance, or kernel, function that determines the

smoothness of relatedness between stimuli, thus expressing the

similarity between s and s′. The kernel is what enables the model

to learn correlated option values, i.e., generalize, and corresponds

exactly to Shepard’s universal law of generalization. That is, the

kernel function learns psychological distances between stimuli.

There are many options for kernel functions, but a common

choice is the radial basis function kernel (RBFK), which can

approximate any function:

k
(

s, s
′
)

= exp(−

∥

∥

∥
s− s

′

∥

∥

∥

r

2λ2
), (11)

Where, λ is called the length-scale parameter and captures

how smoothly correlations between s and s′ decay (Figure 1) as

a function of squared Euclidean distance when r = 2 or city

block distance when r = 1. f (s) is thus a random sample

from a distribution of latent functions that has incorporated the

pairwise covariances between variables, such that learning does

not happen independently for each variable. A brief tutorial on

Gaussian Process basics using R can be found at https://github.

com/troyhouser/gaussian-processes.

Putting the pieces together

Importantly, a GP model can simulate the learning process

from end-to-end. First, we calculate the pairwise similarities

between a set of training data:

Strain = k (s, s) + e, (12)
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FIGURE 1

Gaussian process ingredients. The panels on the left show Gaussian radial basis function tuning curves with di�erent values for the lengthscale

parameter. These plots demonstrate how larger lengthscales lead to wider generalization gradients. The panel on the top right reveals Gaussian

Process predictions for out-of-sample datapoints. The model was trained on sequential inputs x = [0.1, 2π ] with output labels y = sin(x). Then the

model was shown novel inputs x
′

= [−0.1, 0.1], for which it generated the plot at the top right panel. The blue line is the actual outputs for the novel

inputs according to the function y = sin(x), the black line is the model’s mean function, and the dotted red lines are 5th and 95th percent quantiles.

Gray lines represent random samples from the distribution. 3D grids in the bottom right represent two randomly sampled functions from a

2-dimensional Gaussian Process.

Where, e is noise and s are stimuli whose values have been

learned. We then obtain a precision matrix P by inverting Strain,

S−1
train. Next, we project the matrix of pairwise similarities between

novel stimuli s′ and the training set Stest.train = k(s
′

, s) onto P,

which will map the novel stimulus values into the similarity space

of training data, describing the influence that training labels y have

on the novel stimuli. This yields the posterior mean function:

m
(

s
′
∣

∣

∣
Dt

)

= Stest.trainPyt (13)

m
(

s
′
∣

∣

∣
Dt

)

= Stest.train [Strain + e]−1 yt (14)

m
(

s
′
∣

∣

∣
Dt

)

= k
(

s
′

, st

)

[

k (st , st) + σ 2I
]−1

yt (15)

Where, I is the identity matrix. The posterior mean is the

expected value estimates for novel stimuli s′ (Figure 1). To obtain

the posterior variance, we subtract the similarities between novel

and training data from the pairwise similarities between novel data

alone Stest = k
(

s
′

, s
′
)

+ e:

v
(

s
′
∣

∣

∣
Dt

)

= Stest − Stest.trainPS
T
test.train (16)

v
(

s
′
∣

∣

∣
Dt

)

= [k
(

s
′

, s
′
)

+σ 2I]− k(st , s
′

)
[

k (st , st) + σ 2I
]−1

k
(

st , s
′
)T
(17)

which captures the uncertainty associated with the expected

value estimates. Now that we have calculated the posterior mean

and variance, we can obtain UCB estimates and transform these

value estimates into probabilities with the softmax equation.

Decisions are made by sampling options with probabilities equal

to the outputs of the softmax. There are three free parameters

in this model: λ, β , and τ , i.e., lengthscale, exploration bonus,

and temperature. However, for the purposes of this paper, we

can think of them as generalization, directed exploration, and

random exploration, respectively. By estimating λ, the model learns

correlations in the environment, while estimating β accounts

for safe optimization techniques (Schulz et al., 2018a), e.g., only

exploring if certain conditions are met, and τ factors in certain

levels of stochasticity that have been found to be adaptive in goal-

directed tasks (Wilson et al., 2014; Gershman, 2018a, 2019; Luthra

et al., 2020; Tomov et al., 2020).

Recent studies employing the GP model are lab experiments

with humans, so it is possible that this leveraging of generalization

to maximize reward is a relatively recent evolution that emerges

with advanced cognition. We think it far more likely, however,

that generalization is an evolutionarily ancient strategy for

boosting adaptive decision-making. Specifically, we propose that

the area-restricted search (ARS) foraging strategy (Tinbergen et al.,

1967) resolves the exploration-exploitation dilemma by using

generalization processes.

Bridging physical and mental
navigation via boundedly rational
computational mechanisms

Imagine being hungry and alone in a forest. The only

knowledge you have is that resources tend to be distributed in

patches. What is the most effective search strategy? It would be

to make long quasi-linear excursions until stumbling upon some
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food, at which point you should concentrate your movements

to nearby locations. However, resources also naturally deplete,

which is why this strategy must be constantly recycled. That

is, after a patch has been exhausted of its resources, one must

make another long excursion. Excursions following patch depletion

should be long because of the natural patchiness of resources.

This is called area-restricted search (ARS) and it is a hallmark of

foraging in evolutionarily distinct taxa such as protists, nematodes,

insects, birds, and mammals, including humans (Hills et al., 2004;

Hills, 2006; Dorfman et al., 2022). In short, ARS is the cycling

between directed exploration (long, quasi-linear excursions) and

focused exploitation (exhausting a patch of its resources). It was

first reported by Laing (1937) who noted that parasitoid wasps

reduce their movement speed and increase their turn rate upon

contacting its host eggs. In other words, this parasitic creature

focuses its exploration to the area it previously found a viable

host. Since then, ARS has been noted in a broad range of species

(Chandler, 1969; Glen, 1975; Bond, 1980; Eveleigh and Chant,

1982; Strand and Vinson, 1982; Hoffmann, 1983a,b; Schal et al.,

1983; Ferran et al., 1994; Einoder et al., 2011). Many computational

models have also suggested that ARS emerges when animals are

in a patchily-distributed environment and that it approximates

patterns predicted by MVT (Adler and Kotar, 1999; Scharf et al.,

2009). Humans foraging in a virtual reality environment also

demonstrate ARS (T. T. Hills et al., 2013). Particularly telling, Ross

and Winterhalder (2018) found that blowgun hunters slow down

and increase their turning angle as a function of prey encounters in

the wild.

ARS is not the only foraging strategy that animals exhibit.

Certain conditions such as the absence of accurate sensory cues

must be met for animals to use ARS (Dorfman et al., 2022);

however, the widespread use and evolutionary preservation of

ARS makes it possible that it was a primary driver of higher-

order cognitive processes (Hills, 2006). For example, memory is

required to exploit a previously exhausted patch, inhibition is

needed to avoid searching a patch for too long, and temporal

interval estimation is necessary to maintain the delicate balance of

exploration and exploitation. An overlooked cognitive process that

we suggest is fundamental to ARS is generalization.

An implicit assumption that ARS makes is that nearby locations

yield similar resources. In order to even make this assumption, it is

logically necessary to be able to generalize information associated

with one location to nearby locations. In terms of patch foraging,

upon encountering a patch with food, an animal generalizes

the food that a particular location affords to the entire patch,

enabling animals to subsequently exploit the patch. That is, the

naturally spatially-correlated distribution of resources led to major

advantages for those animals that evolved generalization capacities,

for generalization enables equivocating outcomes of two actions

or states, one of which was learned previously and one that is

completely novel.

The important intuition that ARS behavioral patterns

contributes to both goal-directed behaviors and generalization

processes is that learning of environmental states does not occur

independently. The spatial correlations of natural resources likely

led to the evolution of cognitive processes that generalize in

accordance with spatial distributions, which is exactly what the

universal law of generalization embodies. In Figure 2, we show the

three steps of the GP model, including how agents may represent

the environment in terms of exploitation, exploration, and their

combination. The actual resource distribution was an example

reward function from (Wu et al., 2020), which varied the strength

of correlation between mean reward values as a function of the

distance between locations.

Neurobiological substrates

While a central nervous system is not necessary for ARS

patterns, a common neural network seems to underly ARS in

animals (Dorfman et al., 2022). One study showed that C. elegans

performs ARS in response to food deprivation (Hills et al.,

2004), which is inhibited by the dopamine antagonist raclopride

or the genetic mutation-induced ablation of dopaminergic

neurons. Specifically, the prevention of dopamine synthesis

modulates turning frequency in response to food deprivation,

implicating dopamine in the direct control of responses to food

deprivation. This was further supported by the finding that

exogenously supplied dopamine restored ARS in worms with

ablated dopaminergic neurons (Hills et al., 2004). Dopamine

controls these behavioral responses by acting on glutamatergic

signaling pathways (Zheng et al., 1999). Specifically, the dopamine-

activated second messenger cAMP leads to phosphorylation of

AMPA-type ionotropic glutamate receptors that ultimately results

in a net activation of DARPP-32 (Yan et al., 1999). DARPP-32

is a phosphoprotein that mediates responses to naturally positive

stimuli (Scheggi et al., 2018) via modulation of excitability and

plasticity in striatal neurons (Fienberg et al., 1998; Schiffmann,

1998). Essentially, DARPP-32 increases the gain of neurons

expressing the D1 receptor, leading to higher levels of exploitation.

Exploratory behaviors have been localized to prefrontal brain

regions (Daw et al., 2006; Averbeck, 2015; Ebitz et al., 2018),

specifically, the frontopolar cortex (Averbeck, 2015; Hogeveen

et al., 2022; FPC). One study used TMS to lesion the right FPC

and found that it selectively inhibited directed but not random

exploration (Zajkowski et al., 2017). Moreover, random exploration

is likely driven by diffuse noradrenergic projections from the locus

coerulus (Cohen et al., 2007). Substantiating this claim, van Dooren

et al. (2021) showed that arousal increases exploratory behavior.

Interestingly, increasing noradrenaline with atomoxerine (Warren

et al., 2017) or propranolol (Dubois et al., 2021) reduces random

exploration, though this may be due to the nonlinear relationship

between tonic norepinephrine release and cognition (Valentino

and Foote, 1988; Berridge and Waterhouse, 2003; Aston-Jones

and Cohen, 2005a,b; Cohen et al., 2007; Warren et al., 2017).

Random exploration in particular requires more work to elucidate

the neurobiological mechanisms and fine-grained processes that

underpin its realization. For example, how is exploration by chance

under cognitive control? Do all brain regions downstream of

locus coerulus perform random exploration in some form? An

intriguing simulation study of the mutual evolution of cognition

and environmental patchiness suggests that it is adaptive to explore

randomlywithin patches (Luthra et al., 2020), in which case random

exploration is likely better explained as random exploitation.

That is, because animals generalize reward throughout a patch,
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FIGURE 2

Visualization of Gaussian process model steps. The left side shows the actual resource’distribution. Numbers represent the rewards/resources

obtained by sampling that location. The model proceeds in three steps: (1) obtain posterior estimates of both mean and variance, (2) compute the

upper confidence bounds for each location, and (3) apply a softmax choice rule to obtain choice probabilities for each location. The model

generalizes information from directly experienced to novel locations, enabling it to learn the entire reward function faster. The upper confidence

bound also biases decision-making to novel locations, which is applied adaptively in this GP-ARS model. In other words, the GP-ARS agent chooses

from novel options that are nearby locations previously learned to predict high reward.

randomly exploring the patch is more of an exploitative behavior.

Assuming that this interpretation of random exploration is correct,

at least in a nontrivial amount of cases, this would warrant

further studies on the hierarchical nature of patch foraging in a

reinforcement learning context (i.e., random exploitation assumes

that the option being exploited is the entire patch, not individual

states within a patch).

While there has been a considerable amount of work focused

on uncovering the neural correlates of both exploration and

exploitation, there has been much less attention dedicated to

understanding how generalization facilitates the tradeoff between

exploration and exploitation adaptively. Though future empirical

work will be needed to confirm our prediction, we hypothesize

that ARS is dependent upon functional connectivity between

the hippocampus and midbrain dopaminergic hubs (e.g., ventral

tegmental area, substantia nigra, and striatum). This makes sense

because the GP-ARS model is describing reinforcement learning in

environments with correlated states or features, thus necessitating

goal-directed cognition from the midbrain and generalization

processes from the hippocampus. There is no work examining

hippocampal-midbrain coupling through a GP-ARS lens, however,

there are some existing studies that support this interpretation.

Multiple fMRI studies have found that generalization gradients

are underpinned by hippocampal-midbrain functional connectivity

(Kahnt et al., 2012, 2015), and one study found that blocking

dopamine receptors narrows generalization gradients (Kahnt et al.,

2015). Shohamy and Wagner (2008) also found hippocampal-

midbrain coupling using an acquired equivalence paradigm, known

to require generalization to arbitrary stimuli.

Together, the existing literature points to a network of brain

regions, including the hippocampus, dopaminergic midbrain, and

prefrontal cortex, that supports ARS in physical and psychological

spaces, perhaps via the GP model introduced above.

Discussion

Evolution is a story of biological optimization, whereby living

systems adapt to a co-evolving environment, and in doing so,

are continually faced with the challenge of obtaining resources

to go on living. While factors of exploitation and exploration

have been known to shape decision-making under naturalistic

demands, it was relatively recently discovered that generalization

plays an equally fundamental role. Imagine learning that the

Starbucks on 7th Street is now selling pumpkin spice lattes.

We will likely generalize the knowledge that the Starbucks

on 7th Street is selling pumpkin spice lattes to all Starbucks

stores, enabling us to infer what stores that we have never

had experience with are selling. Moreover, the reason that

generalization is used from an evolutionary standpoint has rarely

been considered. The evolutionary impetus for generalization is

crucial for understanding a host of psychiatric conditions that

present with maladaptive generalization strategies. In the present

paper, we attempted to unite decision-making, a computational

model, and generalization’s evolutionary origins in a common

framework. Additionally, we outlined possible neurobiological

substrates responsible for the complex computations underlying

value-based learning with correlated states. The central prediction
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made here was that these computations evolved because of area-

restricted search strategies and are reused for cognitive search

strategies in abstract, psychological spaces induced by neural

activity. By decomposing choices into exploitation, random and

directed exploration, and generalization, we think the GP model

can cover a wide range of decision types in both laboratory and

real-world settings, describe individual differences in cognition,

and provide a more thorough understanding of the origins of, and

treatment options for, psychiatric disorders. For example, it is an

open question of why people with panic, anxiety, and posttraumatic

stress disorders overgeneralize (Dunsmoor et al., 2009, 2011;

Dunsmoor and Paz, 2015; Dymond et al., 2015; Struyf et al., 2017).

This could result from novelty avoidance or perceptual distortions,

in which case beneficial cognitive-behavioral treatments might

include exposure therapy or discrimination training, respectively.

By characterizing people’s decision-making with a GP model,

researchers can obtain estimates of the influences of both novelty

(β) and perceptual distortion (λ), thereby informing a more

nuanced treatment plan.

Limitations

The hypotheses and theory as presented here suffers from

limitations. First, the integration of large-scale cognitive processes

such as exploration, exploitation, and generalization will likely

require a thorough explanation of the biophysical mechanisms

underlying how such signals combine to shape decision-making,

which we have not provided here. Such an explanation will

likely require models characterizing differences in dopaminergic

signaling when it is influenced and not influenced by hippocampal

generalization processes. Similarly, the current paper lacks an

explanation for how hippocampal-midbrain coupling integrates

with exploratory signals in the prefrontal cortex.
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