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Electric vehicles (EVs) represent a new paradigm for a sustainable transportation
future with the potential to offer unparalleled energy security, environmental
cleanliness, and economic prosperity for all humanity. However, rapid
development and adaptation of this new transportation approach depend on
addressing multiple challenges, including the development of new materials and
coatings that can meet the more stringent thermal, electrical, and tribological
requirements of EV drivetrains. Specifically, the operating conditions of moving
mechanical assemblies (i.e., bearings, gears, among others) in EVs differ radically
from those found in conventional internal combustion (IC) engines—thus giving
rise to notable reliability issues. In particular, as the function of bearings and gear
systems shift frommostly load-carrying (in IC engines) to the torque-transferring
mode in EVs, durability concerns of these assemblies due to severe deformation,
wear, micro-pitting, fatigue, and scuffing may worsen—as electric motors can
generate maximum torque at near zero speeds but maximum efficiency at
around 90% speed (this is opposite of conventional IC engines, which
generate high torques at high speeds). These conflicting requirements require
a different set of lubricant-material combinations to circumvent such problems
under high loads and low-speed conditions of EVs. Therefore, new materials,
coatings, and lubrication strategies need to be developed and implemented for
future EVs to become tribologically viable and reliable. Accordingly, EV drivetrains
can potentially benefit from advanced functional coatings that have already
significantly improved the functionality of moving components of IC engines.
The main objective of this article is to draw attention to some of the tribological
issues in EVs and how advanced functional coatings can help resolve these issues
due to their unique thermal, electrical, mechanical, and tribological properties,
ultimately making EVs more durable and reliable.
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1 Introduction

The protection of moving mechanical surfaces against wear and other types of
degradations goes back to the period of early civilization (Rosenkranz et al., 2021).
Some of the examples include the uses of naturally abundant products (such as
gypsum, clay, tallow, animal fats, olive oil, etc.) on the wheels of carriages, chariots or
in the bottom of sleds to move people or heavy stones and statues from one place to another
(Ludema, 2001). Since then, the search for and practice of producing hard and self-
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lubricating materials intensified (especially during the 19th and 20th
centuries) and reached a point where they can be produced as thin or
thick coatings using physical and chemical vapor deposition (PVD
and CVD), plasma spraying, electron beam- and/or laser-based
cladding/deposition methods (Figure 1) (Holmberg and
Matthews, 2009). In particular, PVD and CVD are well-
established for applying highly functional nanostructured and
composite thin solid coatings on all kinds of tools and other
mechanical components at industrial scales. Thicker coatings
produced by electro-plating, sol-gel, and thermal diffusion
processes like carburizing, nitriding, and boriding are also
extensively used to enhance anti-friction, -wear, and -seize
properties of tribological components in manufacturing,
aerospace, power generation, and automotive fields (Campbell
et al., 1966; Sliney, 1982; Booser, 1983; Erdemir, 2001; Erdemir
and Voevodin, 2010; Scharf and Prasad, 2013; Ang and Berndt,
2014; Vazirisereshk et al., 2019). Among others, hard chrome
electro- and/or electroless-plating together with thermal and/or
plasma-sprayed coatings were widely used to enhance the wear
resistance (abrasive, adhesive, erosive, and corrosive wear) of critical
machine tools and automotive components for a very long time
(Oswald, 1970; Chagnon and Fauchais, 1984; Gérard, 2006; Ang and

Berndt, 2014; Berger, 2015; Jacques et al., 2021). The hard chrome
plating has now been severely restricted mainly because of the
hexavalent chromium (which is highly carcinogenic) used during
the plating process.

Appreciating the importance of surface engineering and
coatings in combating friction and wear, researchers and
practitioners alike intensified their work on tribological coatings
after the 1980s. They developed far more advanced coatings that
have markedly enhanced the performance, efficiency, and reliability
of all kinds of manufacturing tools and moving mechanical
components (Sliney, 1982; Scharf and Prasad, 2013). These more
advanced coatings were also suitable to withstand more extreme
tribological conditions involving sub-zero or very high temperatures
(several hundred Celsius), high vacuum (space), radiation, high-
pressure environments (e.g., natural gas or refrigerator
compressors), severe contact pressures (several GPa), etc., where
conventional coatings could not function (Roberts, 1990; Dugger
and Totten, 2017; Zhu et al., 2019; Aouadi et al., 2020). In particular,
these coatings afforded impressive property enhancements in
machining and manufacturing, while some also sparked the
interest of automotive companies. They were already using all
kinds of relatively thick plasma-sprayed coatings as barriers to

FIGURE 1
Summary of the different classes of protective coatings and their corresponding deposition approaches. Modified with permission from (Marian
et al., 2021).
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thermal degradation, but since the 2000s, with the cost-effective
large-scale manufacturing of low-friction and high wear-resistant
coatings (i.e., diamond-like carbon (DLC), chromium nitride,
titanium nitride, and a host of other superhard and self-
lubricating nanocomposite coatings), the usage of these coatings
in engine and drivetrain components increased tremendously and
played a major role in further enhancing their performance,
efficiency, and durability (Cha and Erdemir, 2015; Vetter, 2015;
Tung and Wong, 2021).

The coating field has continued to evolve rapidly during the last
three decades, especially with the latest advances in PVD
incorporating pulse DC, high-power impulse magnetron
sputtering, cathodic arc, and femtosecond pulse laser ablation
(Erdemir, 2005; Holmberg and Matthews, 2009; Anders, 2014;
Jacques et al., 2021; Al-Asadi and Al-Tameemi, 2022). Coatings
produced by these methods have become far more effective and
functional in tribological applications, providing superior physical,
chemical, and mechanical properties. As a result of these advances,
machine tools and other industrial components now last much
longer, consume less energy, and thus ensure a cleaner environment.
Undoubtedly, the coatings field will continue to expand in the
coming years and potentially play a crucial role in advancing
many engineering fields. Coatings have already been essential to
extend and improve the efficiency and reliability of conventional
vehicles based on IC engines (Vetter et al., 2005; Cha and Erdemir,
2015; Tung and Wong, 2021). They can equally play pivotal roles in
the advancement of electric vehicles (EVs), enabling unparalleled
reliability (lasting nearly for the lifetime of such vehicles) and
improved efficiency (through ultra-low friction), thus enabling an
environmentally friendly, and efficient form of transportation in
coming decades.

This review article will mainly concentrate on the potential uses
of coatings in rapidly expanding manufacturing and the use of EVs
in general and their moving mechanical components in particular.
These vehicles have lately become popular and are expected to reach
more than 60 million sold by 2040 (Muratori et al., 2021). We will
particularly emphasize the potential benefits of functional coatings
in terms of tribology, electrical and thermal management issues,
reliability, and environmental benefits. In the following section, we
will describe how state-of-the-art coatings can potentially increase
the functionality of various EV components (like bearings, gears,
seals, etc.) and give some examples where coatings already show
great improvements in wear resistance, especially under electrified
contact conditions.

2 Major requirements for coatings in EV
applications

As with conventional IC engine vehicles, combating wear,
corrosion, fatigue, scuffing, and fretting-related failures is very
important in EVs. Increasingly harsher or more extreme
operational conditions in EVs (especially for their drivetrains
involving high torque, high speed, and elevated temperatures)
make using functional coatings ideal for achieving a smooth, safe,
and long-lasting operation. In addition to these tribological
challenges, a new set of thermal, electrical, and material-oriented
challenges exist that require the use of functional coatings. Current

advances related to the development of multi-component and hence
functional coatings can be useful for these more challenging
applications. Specifically, they can simultaneously meet most
tribological, thermal, and electrical challenges, making such
vehicles more durable and reliable. For instance, to help with the
electrified conditions creating charge breakouts and accelerating
degradation of materials, coatings could be tailor-made of highly
conductive or insulating materials to eliminate drivetrain failures
associated with stray electricity and electrical discharges at rolling/
sliding interfaces of bearings and gears (Farfan-Cabrera, 2019).
Furthermore, through the design and incorporation of multi-
component and functional nanocomposite coatings, other key
features, including lubricity, thermal conductivity, catalytic
reactivity, and self-healing properties, can be improved in a
combinatorial manner.

In EVs, electric motors (such as brushless DC motors,
synchronous brushed motors, induction motors, synchronous
permanent-magnet motors, reluctance motors, etc.), power
electronics (AC/DC and DC/DC converters, etc.), drivetrains
(single-speed or two-speed gear transmissions), and batteries can
generate huge amounts of heat (Kim et al., 2019). Switching from a
400-V to 800V architecture may also bring additional challenges
both thermally and electrically. The proper selection and use of
highly thermally and electrically conducting coatings could be very
useful in alleviating such challenges. For example, in a multi-target
sputtering or arc-PVD system, these coatings can even be prepared
by incorporating highly thermally conductive metals (such as Ag,
Cu) into nanocomposite coatings or dopants to enhance the
resulting thermal conductivity of the coatings and hence prevent
thermally induced degradations. The inclusion of catalytic metals,
such as Cu, Ni, Co, among others, in the composite coating, besides
improvements in thermal and electrical properties, further promotes
their anti-friction and -wear properties through the formation of
carbon-based tribofilms from lubricating oils (Berman and Erdemir,
2021). Alternatively, nano-powders of such highly heat-conducting
metals and metal oxides can be used to produce colloidal nanofluids,
thus helping to alleviate the deleterious effects of high heat
(Goharshadi et al., 2013; Lee et al., 2019).

Concerning EVs, a variety of self-lubricating coatings exist that
can also help with friction and wear control (Berman et al., 2024).
Some of these may consist of layered transition-metal
dichalcogenide (like MoS2, WS2, and NbS2) as self-lubricating
materials (Scharf and Prasad, 2013; Miyoshi, 2019; Vazirisereshk
et al., 2019), while others may be prepared using graphite, hexagonal
boron nitride (h-BN), as well as other 2D materials like graphene,
black phosphorous, MXenes, etc. (Berman et al., 2015; Berman et al.,
2018a; Berman et al., 2019; Zhai and Zhou, 2019; Gao et al., 2021;
Ayyagari et al., 2022; Gao et al., 2023). One of the major challenges
with these low-friction materials relates to substrate adhesion, the
uniformity of distribution, and their thickness across large areas on
coated surfaces. Since they tend to be soft (exceptions may relate to
the family of MXenes due to their inherent wear resistance), their
thickness should be limited and they may wear out over time, thus
losing their effectiveness and even inducing catastrophic wear. The
same argument applies to coatings made of pure metallic solid
lubricants (i.e., In, Ag, Pb, Sn, Bi, Sb, etc.). Specifically, these metals
wear out quickly due to their soft and highly deformable natures
(although their high electrical conductivity could be a desirable
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property as this property alone has been exploited very successfully
in rotating anode tube bearings of CT scans) (Danyluk and Dhingra,
2012; Reeves et al., 2013).

In the past, 0D nano-onions, nano-diamonds, and amorphous
carbon nano-spheres; 1D nano-tubes, -fibers, -rods, and -whiskers;
and 2D graphene, h-BN, metal dichalcogenides, andMXenes, as well
as larger nano-scale particles with various 3D architectures were all
shown to induce superior friction and wear properties. Some of these
were also used as nano-colloidal lubrication additives or self-
lubricating materials and coatings (Berman et al., 2013a; Berman
et al., 2013b; Berman et al., 2014a; Berman et al., 2018b; Ayyagari
et al., 2022). Prime examples are the uses of nano-fullerenes or
-flakes of transition metal dichalcogenides (such as MoS2 and WS2)
and carbon nano-onions, nano-tubes, graphene, nano-diamond
particles to combat friction and wear as well as anti-scuffing
agents under severe boundary conditions (Tenne, 2006;
Matsumoto et al., 2012). Even though still expensive, coatings
based on graphene and other 2D materials (e.g., MoS2, h-BN,
MXenes, black phosphorous, etc.) can also be considered to
properly control the thermal, electrical, and tribological
properties of EV drivetrains. Nano-colloids in a carrier oil or
fluid can certainly enhance the resistance to heat-related
degradations while reducing friction and wear. The relatively
high cost of these nanomaterials prevented their large-scale use
in conventional IC vehicles.

With the current advancements related to the design of robust
and multi-target deposition systems (both PVD and CVD), it
became possible to easily create multi-functional coatings and/or
architectures. By strategically selecting the coating ingredients, one
may also trigger high-entropy alloying effects, thus enabling
additional functionalities. Specifically, each discreet phase in
composite structure alone and in combination with other phases
provides a range of beneficial functionalities besides low friction and
wear (Murthy et al., 2023; Kumar, 2023; Macknojia et al., 2024).
Luckily, these coating systems with many targets are now more cost-
effectively available from multiple coating companies and have
become affordable and upscalable lately. In the past, CrN and
DLC coatings were used the most in IC engines (Vetter et al.,
2005), but it is possible that they can also be tailored to deliver coated
drivetrain components to be used in EVs.

Many other coating types or compositions have been
developed and tested for combatting friction and wear under
severe operating conditions. Chief among them are CrN, TiN,
ZrN, and various self-lubricating and nanocomposite coatings.
Compared to DLC, these coatings suffered from a few
shortcomings. For instance, most of them could not form
protective boundary films through tribochemical reactions with
anti-friction and -wear oil additives and hence could not help
reduce friction as DLC coatings were able to (Mehran et al., 2018).
In the case of composite solid lubricant coatings (i.e., MoS2), they
were found to be vulnerable to environmental degradation and
aging. If the ambient temperature is high, they would also degrade
or oxidize, hence losing their effectiveness. For example, at high
relative humidities, the friction coefficients of MoS2 substantially
increase, and their wear lives become considerably short (Winer,
1967; Macknojia et al., 2023; Cairns et al., 2023). Once the first
signs of wear occur, low-friction materials are difficult to re-apply
or replenish.

During the last century, several kinds of other solid lubricants
(i.e., waxes, manganese phosphate, polytetrafluoroethylene (PTFE),
low and high-density polyethylenes, PEEK, etc.) were developed and
used to control friction and wear (Kurdi and Chang, 2018). In EVs,
their highly dielectric nature and low friction could make them
appealing. However, due to their soft nature, they may wear out very
quickly, which limits their overall applicability and durability.
Among other solid lubricant coatings, if it were possible to
deposit, polycrystalline diamond coatings could be desirable since
they can resist wear, dissipate heat, and provide high dielectric
properties to tribological surfaces. Since most EV drivetrain
components are made of bearing or gear quality steels, the
deposition of polycrystalline diamond coatings on these
substrates is rather difficult, if not impossible. The only other
solid lubricant coating that looks promising relates to diamond-
like carbon (DLC), which resembles the amorphous form of carbon,
as it can provide low friction and wear, and ensure excellent
insulation against electrical discharges at the contact interfaces.

Combatting friction and wear has come a long way during the
last century. Lately, low-friction materials and coatings have
significantly influenced such advances. With the emergence of
EVs in recent years, a new opportunity exists for coatings to play
a major role in the safe, smooth, and long-lasting operation of these
vehicles’ drivetrains. In the following sections, some solid lubricant
coatings will be discussed in more detail, along with their
performance characteristics under electrified conditions. In
addition to the relatively thin PVD and CVD coatings, a variety
of nanomaterials with 0 to 3D dimensions have been applied as
novel self-lubricating materials on moving surfaces (Zhmud and
Pasalskiy, 2013; Berman et al., 2014b; Chen et al., 2019; Manu et al.,
2021; Marian et al., 2021; Martin and Ohmae, 2022; Marian et al.,
2022; Wang et al., 2022; Shirani et al., 2023a). In short, we will
highlight some potential applications of these coatings in EVs.
Among others, DLC coatings have now been widely used in IC
engines to achieve higher efficiency and reliability in numerous
components. Hence, a particular emphasis will be placed on DLC
and other promising coatings that can afford superior performance
under severe application conditions of EV drivetrains. Farfan-
Cabrera et al. (Farfan-Cabrera et al., 2023) demonstrated the
effectiveness of hydrogenated-DLC (H-DLC) in withstanding
severe electrical environments in lubricated contacts in contrast
to AISI 52100 bearing steel, see Figure 2. H-DLC generated lower
CoF and negligible wear for both unelectrified and electrified
conditions compared to the bearing steel pair.

3 Potential benefits of tribological
coatings in EV applications

Most tribological coatings are designed to control friction and
wear of interacting surfaces in relative motion. For friction control,
various self-lubricating coatings (i.e., transition-metal
dichalcogenides, DLCs, soft metals, etc.) have been developed
and used extensively in the past (Scharf and Prasad, 2013). Hard
coatings made of transition metal nitrides, carbides, and borides are
preferred for wear control, especially in metal-cutting and -forming
operations. Some of these can also enable low friction, as in the case
of DLC coatings. All in all, superior friction and wear properties of
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tribological coatings can benefit the performance, efficiency, and
reliability of drivetrain components of EVs. In addition, they can
also provide superior thermal, electrical, and oxidational properties,
which will be useful in addressing thermal management, electrical
discharge, corrosion, and oxidational challenges.

In EV drivetrains, the great majority of relative motion is in the
form of pure rolling (in the case of ball and roller bearings) and/or
mostly rolling and sliding (in the case of gears) (Farfan-Cabrera,
2019; Hemanth et al., 2021). Solid lubricant coatings like MoS2 can
benefit these applications by providing easy shear to such contact
interfaces to minimize energy losses due to high-torque and high-
speed operational conditions of bearings and gears. Likewise, DLC
coatings can reduce friction and wear, thus increasing the efficiency
and reliability of drivetrain components of EVs. They have already
been used in ICE vehicles to control friction and wear under severe
contact conditions of valve lifters and fuel injector systems
(Gangopadhyay, 2015; Kano, 2015). These coatings may also
work equally well in EVs by providing low friction and wear
combined with a high dielectric constant or insulating properties
to minimize the deleterious effects of electrical discharges or arcing
at interacting surfaces. It is important to remember that if DLC or
other hard coatings fail or fracture due to severe cyclic loading, they
may trigger much-accelerated wear due to a third-body
wear mechanism.

On the other hand, metal-based solid lubricant coatings (In, Ag,
Pb, Sn, Au, etc.) can potentially enhance the electrical conductivity
of the contact interface to provide an easy path for electrical
discharge, thus avoiding or reducing surface damage. Their easy
shear character can help to tailor friction and wear as needed. Some
of these coatings, like Ag, are routinely used in rotating anode X-ray
tube bearings of CT scanners to provide excellent lubricity, dissipate
heat and discharge electricity across the rolling surfaces at high
speeds (Danyluk and Dhingra, 2015). As already reported, these
metallic solid lubricants have multiple slip systems, which tend to
work even under severe shear conditions, thus inducing excellent
wear resistance (Donnet and Erdemir, 2004).

As with most other tribomaterials, most existing tribological
coatings may also interact with the chemical species in their
surrounding. For instance, self-lubricating coatings made from
transition metals and DLCs interact with oxygen and humidity in
the environment (Kim et al., 2006; Eryilmaz and Erdemir, 2008;
Domínguez-Meister et al., 2019; Vazirisereshk et al., 2019; Babuska

et al., 2022). Such an interaction gives rise to rapid degradation of
these coatings and diminishes their effectiveness in combatting
friction and wear. Coatings made of transition metal
dichalcogenides work best in dry, vacuum, or non-reactive
environments. Depending on the type, DLC coatings may or may
not work in humid or dry test environments. In reality, it has been
demonstrated that highly hydrogenated DLC coatings work best in
dry and inert test environments, while hydrogen-free DLCs are
better applicable in humid environments (Erdemir and
Donnet, 2006).

Concerning their use in EV drivetrains, one has to consider
creating environments where the mentioned coatings will work best.
Since most gears and bearings in the drivetrains of EVs operate in an
enclosed or sealed box, it might be relatively easy to create the type of
environment in advance and occasionally replenish the type of gas
most desirable for these components’ functionality. To reduce the
environmental vulnerability of these coatings, one can also create
composite coating architectures that can provide a chameleon effect
(Muratore and Voevodin, 2009; Aouadi et al., 2020; Shirani et al.,
2020); this implies that the functionality of the composite coating
does not degrade or change much with changing environmental
conditions. Researchers have already demonstrated this for some
composite coatings intended for space applications. Through such
hybridization, it became possible to control or tune the electrical and
thermal properties of coatings. The thermal and electrical properties
of transition metal and DLC-based coatings can be fine-tuned by
incorporating highly electrically and thermally conducting metals
like Ag and Cu.

Some of the tribological coatings have already been tested under
different tribological conditions (lubrication regiomes) using
various types of oil-based lubricants in past years. In general, it
was found that the friction and wear performance of DLC coatings is
sensitive to the chemistry of the lubricating oils and additives. For
instance, the presence of polar additives (glycerol and other organic
friction modifiers) was shown to reduce friction and wear markedly
under severe boundary lubrication for hydrogen-free DLC coatings.
However, hydrogenated DLC coatings showed much higher friction
and relatively poor wear performance under similar sliding
conditions (Kano, 2006). Initial studies on graphene and other
2D materials demonstrated that they have a strong sensitivity to
the chemical nature of test environments or media (Ayyagari et al.,
2022). As with most solid lubricant coatings, the thermal and

FIGURE 2
A comparison of CoF and wear obatined for bearing steel, H-DLC and H-free DLC pairs under unelectrified and electrified lubricated conditions: (A)
coefficient of friction; (B) wear volume of ball samples. Modified with permission from (Farfan-Cabrera et al., 2023).
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electrical properties of these 2D materials also strongly influence the
resulting functionalities when employed on contact interfaces of
driveline components of EVs. For example, due to its very high
thermal and electrical conductivity combined with its superlubric
behavior under certain conditions (Berman et al., 2014c; Hu
et al., 2018; Lee et al., 2018), graphene and MXenes can benefit
the tribological performance of gears and bearings in EV
drivetrains.

Overall, the presence or absence of certain chemical species in
operating environments or additives in lubricants can notably
impact the functionality and durability of tribological coatings for
EV applications. Furthermore, the extent of contact pressure, speed,
and temperature of interfaces of driveline components in EVs can
become high, which also may negatively affect their durability. In
particular, if the temperature rises notably, the longer-term
functionality of DLC and transition-metal dichalcogenide-based
solid lubricant coatings may be compromised as they lose
effectiveness at elevated temperatures. In this regard, the
durability or functionality of hydrogenated DLCs dramatically
deteriorates at elevated temperatures as their disordered or
amorphous structures tend to crumble with the loss of excess
hydrogen in their structures, making them wear out quickly due
to reduced structural integrity (Erdemir and Fenske, 1996; Zeng
et al., 2015). In contrast, hydrogen-free DLC coatings can withstand
higher temperatures, which implies enhanced wear resistance at
elevated temperatures. To moderate these problems and/or further
improve the thermal stability of DLCs, nano-scale alloying or doping
with certain elements, such as Si, B, and N (Rajak et al., 2021),
appears to be a promising research avenue. Certain metal-doped
DLCs like W, Cr, and Ti can also provide additional benefits besides
lubrication in terms of superior thermal and electrical properties
that are also desired in electrified driveline systems (Figure 3).

4 Fundamental tribological
mechanisms of coatings under
electrified conditions

Most coatings are employed on interacting tribo-surfaces to
combat friction and wear. Mechanistically, when applied on a sliding

surface, soft solid lubricant coatings often deform or shear easily to
form a transfer layer on both rubbing surfaces. During relative
motion, the transfer layer shears easily to accommodate velocity and
involves energy-dissipating processes (Singer et al., 2003; Singer and
Pollock, 2012). A soft solid lubricant coating like MoS2 shears
through an interlayer shear mechanism, while the most dominant
shear mechanism of soft metallic coatings can be attributed to the
flow of the soft film followed by a quick recovery or recrystallization,
thus avoiding work hardening. In contrast, the underlying shear
mechanism of hard DLC coatings connects to slip events right at the
contact interface.

Under electrified conditions, the governing tribological
mechanisms may change depending on the type of coatings and
lubricant being used. If the coating is made out of a transition metal
dichalcogenide, like MoS2, the vulnerability to enhanced oxidation
and rapid degradation may occur. Electric currents passing through
may accelerate oxidation or corrosion processes thus inducing and/
or accelerating failure. Hence, if the lubricant possesses high
conductivity and reduced breakdown voltage, the electrical
discharges occurring at the tribological interfaces will be less
severe (Berman et al., 2024). Moreover, Using an inert
environment is expected to slow down coating degradation due
to oxidation. The passage of current through these coatings is
another potential problem. Specifically, current discharge at the
contact interface may cause ohmic or resistive heating (because of
the semi-conductive nature of such coatings), which, in turn,
induces chemical and structural alteration, thus impairing the
overall performance or durability of the coating and lubricant
system. Doping such coatings with Ag, Cu, and Au can help
resolve these problems, which has already been successfully
demonstrated for MoS2 coatings applied in space applications.

In the case of highly electrically conducting coatings like Ag, In,
Sb, etc., the passage of electricity through contact interfaces may not
create notable problems. Some of these coatings are already used in
electrical contacts to enable high electrical conductivity, while their
easy shear properties can ensure good solid lubrication properties.
However, due to their thin natures, their lifetimes and beneficial
effects may be limited. In a best-case scenario, it will be most
desirable to blend or introduce such metals into hard nitride and
carbide coatings in a nanocomposite architecture, which provides

FIGURE 3
Different classes of the DLC coatings.
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good electrical conductivity and good shear properties to achieve
low friction and wear simultaneously.

Regarding DLC coatings, their performance largely depends on
the composition. Some of the best-performing DLC coatings, such as
tetragonal amorphous carbon (ta-Cs), are produced by cathodic arc
deposition (Kano, 2014; Vetter, 2015). Due to their extreme
hardness (approaching well over 50 GPa), they provide excellent
protection against wear. They are also thermally more durable and,
hence, could be used in piston rings to reduce friction and wear.
However, under electrified conditions, these coatings may
experience major problems. Specifically, their predominantly
amorphous microstructures may contain some pockets of
graphitic micro-droplets or particles with high electrical
conductivity. Most of these are scattered across the top surface
but some may extend from the surface to the underlying substrates.
When these DLC (H-free DLC) coatings are used under electrified
conditions, these particles act as short circuits for electricity to pass
through, and in the long run, such a discharge destroys the entire
coating, as shown in Figure 4 (Farfan-Cabrera et al., 2023).
Fragmented or chipped ta-C films tend to accelerate wear due to
a third-body wear process (Farfan-Cabrera et al., 2023). Conversely,
if the DLC (H-DLC) film is produced by plasma-enhanced CVD or
sputtering, these failures are unlikely to occur due to the dense and
uniform structure preventing current leakages or passage from the
surface to the substrate material generating excessive wear and
removal of the coating. A comparison of the CoF and wear
generated by unelectrified and electrified pin-on-disc tests for
H-DLC and H-free DLC is shown in Figure 2. Consequently, by
designing and selecting themost appropriate solid lubricant coatings
for the electrified contact interfaces in EV drivetrains, significant
improvements in tribological performance are feasible.

For all coatings discussed above, one must also consider the
effects induced by the test environment, temperature, and other
extrinsic factors. As briefly mentioned, the performance of many
tribological coatings is also controlled by environmental species like
water and oxygen. Again, under electrified conditions, they can
accelerate oxidation and/or corrosion. In the case of DLCs, these
species can also interfere with friction and wear. Concerning MoS2

coatings, humidity is detrimental to tribological performance as it
accelerates the oxidation of the coating, thus limiting its lifetime.
Adverse environmental effects may be further exacerbated if the
ambient temperature is high, as most solid lubricants have a limited
temperature range. Metallic coatings may provide better tribological
properties due to reduced environmental and thermal sensitivities,
while their shear properties may even increase at elevated
temperatures, thus enabling better lubricity (Erdemir, 2001).
Multiple slip systems available in their crystalline structures can
ensure much better shear due to the lack of work-hardening and
rapid recovery. When some of these metals are incorporated into
transition metal nitrides and carbides or other metal-based matrices
as nano-scale phases, they can trigger catalytic effects (Erdemir et al.,
2016; Berman and Erdemir, 2021; Shirani et al., 2021; Shirani et al.,
2022; Al Sulaimi et al., 2023; Shirani et al., 2023b; Jacques et al.,
2023). Specifically, they crack long-chain hydrocarbon molecules of
lubricating oils during rubbing to produce a self-replenishing
carbon-rich tribolayer at the contact interface, ensuring stable
friction and low wear (Figure 5).

5 Application methods for
tribological coatings

Strong adhesion, uniformity of coating thickness, and structural
density are some of the key requirements of all tribological coatings.
Due to the much severe operating conditions of EVs, such
requirements will be far more important. Fortunately, there have
been major advances in PVD and CVD coating processes in recent
years and hence, they can reliably meet these requirements by
providing strong bonding/adhesion, uniform thickness, and
coating composition across the coated surfaces (even on curved
or odd-shaped surfaces of bearings and gears). Most of the highly
functional tribological coatings for severe conditions (such as metal-
cutting and -forming) are now produced by these methods (Deng
et al., 2020; Alhafian et al., 2021; Al-Asadi and Al-Tameemi, 2022).
They can ensure excellent coating-substrate adhesion and provide
structurally dense and chemically stoichiometric coatings on most

FIGURE 4
Comparison of the wear tracks produced in hydrogen-free DLC under (A) unelectrified and (B) electrified conditions. Adapted with permission from
(Farfan-Cabrera et al., 2023).
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substrate materials. They can also induce a uniform film thickness,
dense structural morphologies, desirable surface roughness, and
chemical stoichiometry, which all play a crucial role in the
tribological performance of the resulting coatings. All these
coating attributes are essential for their functionality under
electrified conditions.

Among the major PVD approaches, DC or RF magnetron
sputtering, ion-plating, cathodic arc PVD, and pulse laser
deposition (PLD) are used to deposit many types of solid
lubricant coatings for tribological applications. Coatings produced
by conventional PVD and CVD methods occasionally have some
structural and chemical issues, including coatings with an open
columnar morphology leading to an easy fracture along the column
boundaries, especially under severe loading conditions (Spalvins,
1987). Furthermore, coatings with open columnar structures wore
out faster and were vulnerable to environmental degradation.

To alleviate these problems, researchers have developed novel
methods such as pulse DCmagnetron sputtering, cathodic arc-PVD,
PLD, and high-power impulse magnetron sputtering (HIPIMS)
(Anders, 2008; Gudmundsson et al., 2012) to densify and/or
nanostructure the film morphology (Berman et al., 2014a). The
tribological coatings produced by these methods cannot be
deformed or fractured along their grain boundaries or removed
easily from the surface due to interfacial failure or delamination,
even under severe tribological conditions. Due to these notable
structural, mechanical, and adhesive properties, modern tribological
coatings of today could benefit the performance, reliability, and
efficiency of EV drivetrains. Advanced deposition approaches may
also help to further improve the underlying adhesion, which can
notably contribute towards enhanced durability. Due to the highly

energetic nature of their plasmas, the film microstructure consists of
densely packed nano-scale grains and induces a smooth surface
finish, which is also desirable to establish and maintain superior
tribological performance.

Among these methods, pulse DC, arc-PVD and HIPIMS
magnetron sputtering are among the most widely used
commercial methods at present. In particular, HIPIMS can
provide a high-rate sputtering capability and a highly ionized and
energetic plasma, allowing for the generation of very thin or thick
coatings in monolithic or nanocomposite forms. Using multiple
targets, one can produce composite coatings made of nano-to-micro
scale layers of hard/hard, hard/soft, and soft/soft phases, providing
unique multifunctionality (Hovsepian et al., 2004; Erdemir et al.,
2005). Coatings may also be produced in a nanocomposite form, in
which various nano-scale phases are combined or mixed uniformly
across the coating thickness (Sánchez-López and Fernández, 2008).
Consequently, the generation of catalytically active nanocomposite
coatings is rather straightforward. These coatings can ensure a wide
range of multifunctionality for the bearings or gears in EV
drivetrains, in addition to their beneficial catalytic activity.

Cathodic-arc PVD is widely used to deposit tribological
coatings, especially ta-C coatings. It uses high-current/low-voltage
power sources to create arcing on the target surface under the
influence of overlapping electrical and magnetic fields. Extreme
heating ejects atoms and/or clusters from the surface in the form
of highly ionized species, which subsequently deposit on the
negatively biased substrates (Sanders and Anders, 2000; Anders,
2008; Martin, 2009). Some of the major drawbacks of cathodic-arc
PVD relate to the generation and transfer of micro/macro-droplets
from the surface of the target material to the surface of the substrate

FIGURE 5
Summary of tribocatalytic nanocarbon film generation concept for ultralow friction and wear. Solid, liquid, or gaseous carbon sources or precursors
on the left are introduced to the catalytically active interface (in themiddle), subsequently, these precursors are converted to self-lubricating solid carbon
forms on the right. Reproduced with permission from (Berman and Erdemir, 2021).
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material; this often leads to a rough surface finish and both
structurally and compositionally non-uniform coating
microstructure (Panjan et al., 2020). These coatings may not be
acceptable for EV applications, as initial tests under electrified
conditions confirmed that micro-droplets in DLC films caused
short circuits and eventually rendered them useless. To prevent
the problems associated with micro-droplets, researchers developed
a range of filtering techniques that were effective in preventing most
of the larger droplets from reaching the substrate surface, while
smaller ones were still able to escape and cause a non-uniform
microstructure and chemistry. Besides the arc-PVD and HIPIMS,
PLD is also available for the production of tribological coatings
(Zabinski et al., 1994). However, this method suffers from problems
connecting to scalability, uncontrollable surface roughness, and
substrate selection. It is mostly used as a research tool at present.
Due to line-of-sight issues, PLD may not be suitable for the curved
surfaces of bearings and gears used in EVs.

As for CVD methods, the deposition of certain solid
lubricant coatings is possible. Plasma-activated or -enhanced
CVD has been around for a long time and is widely used to
deposit DLC films (Erdemir and Donnet, 2006; Erdemir and
Martin, 2018). There are also a host of other types of CVD
methods, including hot-filament or microwave CVD (mostly
used for the deposition of diamond coatings), metal-organic
CVD, and atomic layer deposition for very thin layers or clusters
(Bachmann and van Enckevort, 1992; Scharf et al., 2009; Doll
et al., 2010). If it were possible to produce diamond coatings on
drivetrain components of EVs, they would certainly be highly
desirable. However, these coatings cannot be homogenously
deposited on ferrous metals such as steel bearings and gears,
hence, they will not be applicable to EVs. The production of
these coatings also requires high temperatures, i.e., 1000C.
Electron-beam deposition, plasma spraying, and high-velocity
oxyfuel methods are also available for the deposition of thicker
coatings, whose potential for EV applications is unknown but
might be worth exploring.

In general, the aforementioned PVD and CVD methods hold
great promise in producing highly functional tribological
coatings for EV drivetrain applications. They can also allow
nano-scale alloying or the creation of nanocomposite with a
multi-functional character that can enhance the overall
tribological performance. Both methods can produce DLC
coatings, which have already been used in multiple industrial
applications, including traditional IC engines (Sánchez-López
and Fernández, 2008). In particular, nano-alloyed or composite
coatings were shown to be durable in tribological applications
(Polcar et al., 2012). Cathodic-arc and HIPIMS can create
coatings with excellent interfacial properties (smooth
interfaces and good adhesion) as well as highly desirable film
morphology and chemistry. These more advanced methods are
available for large-scale productions at reasonable costs. They
have multiple targets, from which the same or different types of
metals can be sputtered at the same time or in sequence to achieve
multi-layered or nanocomposite coatings easily. These methods
allow for very close control of the resulting structural
morphology and density, surface topography, and chemical
stoichiometry of the resulting coatings, leading to an increased
wear life and reliability in EV applications.

6 Summary and future prospects

In the foregoing, we attempted to provide a comprehensive
overview of tribological coatings that may be useful in enhancing the
tribological performance of EV drivetrains. We can summarize the
key points raised as follows.

1. The coating field has emerged over the past several decades and
there now exist many types or classes of thin, thick, soft, and
hard coatings that can be considered for friction and wear
control in EVs.

2. Softer solid lubricant coatings (e.g., MoS2, Ag, etc.) could be
beneficial for enhancing lubrication, especially under high-
torque conditions.

3. Hard coatings (e.g., DLCs, nanocomposite metal nitride,
carbide coatings, etc.) may be used to achieve longer wear
lives under high-stress rolling/sliding conditions.

4. Using coatings, the electrical and thermal conductivity of
contact interfaces may also be optimized, and hence, the
damage due to electrical discharges or arcing may be avoided.

Overall, compared to traditional internal combustion-engine-
based vehicles, EVs present far more stringent operating conditions
tribologically, thermally, and electrically. Therefore, the proper
design and application of multi-functional tribological coatings in
EV applications may lead to superior performance, reliability, and
efficiency in future EVs.

Some of the future perspectives on the uses of coatings for EV
applications are.

1. Due to the presence of stray electricity floating through the
system, some coatings (e.g., highly electrically conducting
metals like Ag, Cu, etc.) may suffer from accelerated
oxidation and/or corrosion as well as thermal cycling.
Accordingly, such coatings must be optimized in their
thickness, structural nature, and composition (perhaps
considering their alloy forms).

2. Oxygen and moisture in the air may degrade the performance of
soft and hard tribological coatings. Hence, nano-scale doping or
alloying may be needed to reduce their environmental sensitivity.
Alternatively, the operating environment may be changed to an
inert gas, such as N2 to decrease environmental degradations.

3. Alternatively, one can consider adaptive or chameleon-type
coatings with strategically selected ingredients affording
greater environmental compatibility besides multifunctionality
and good lubricity.

4. Due to high torque and contact pressures in EV drivetrains,
coatings without strong bonding can rapidly delaminate or
wear out and thus become useless. Hence strong coating-to-
substrate adhesion is imperative for long service lives.

5. Modern PVD and CVD methods with HIPIMS, pulsed DC,
and cathodic arc can provide a very strong bonding between
coatings and driveline components. Such more advanced
methods should be used to produce the coatings on EV
components.

In conclusion, there now exist a variety of tribological coatings
used in all kinds of industrial applications, including engines. Under
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the very harsh operating conditions of EVs involving a wide range of
electrical, thermal, and tribological issues, coatings can equally make
a positive difference by providing superior performance, efficiency,
and durability.
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