
Frontiers in Clinical Diabetes and Healthcare

OPEN ACCESS

EDITED BY

Didac Mauricio,
University of Vic - Central University of
Catalonia, Spain

REVIEWED BY

Khaled Khazim,
Maccabi Health Care Services, Israel
Jun Eguchi,
Okayama University, Japan

*CORRESPONDENCE

Sanat Phatak

sanatphatak@gmail.com

RECEIVED 02 April 2023

ACCEPTED 13 June 2023

PUBLISHED 10 July 2023

CITATION

Phatak S, Ingram JL, Goel P, Rath S and
Yajnik C (2023) Does hand stiffness reflect
internal organ fibrosis in diabetes mellitus?.
Front. Clin. Diabetes Healthc. 4:1198782.
doi: 10.3389/fcdhc.2023.1198782

COPYRIGHT

© 2023 Phatak, Ingram, Goel, Rath and
Yajnik. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Hypothesis and Theory

PUBLISHED 10 July 2023

DOI 10.3389/fcdhc.2023.1198782
Does hand stiffness reflect
internal organ fibrosis in
diabetes mellitus?
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Fibrosis leads to irreversible stiffening of tissue and loss of function, and is a

common pathway leading tomorbidity andmortality in chronic disease. Diabetes

mellitus (both type 1 and type 2 diabetes) are associated with significant fibrosis in

internal organs, chiefly the kidney and heart, but also lung, liver and adipose

tissue. Diabetes is also associated with the diabetic cheirarthropathies, a

collection of clinical manifestations affecting the hand that include limited joint

mobility (LJM), flexor tenosynovitis, Duypuytren disease and carpal tunnel

syndrome. Histo-morphologically these are profibrotic conditions affecting

various soft tissue components in the hand. We hypothesize that these hand

manifestations reflect a systemic profibrotic state, and are potential clinical

biomarkers of current or future internal organ fibrosis. Epidemiologically, there

is evidence that fibrosis in one organ associates with fibrosis with another; the

putative exposures that lead to fibrosis in diabetes (advanced glycation end

product deposition, microvascular disease and hypoxia, persistent innate

inflammation) are ‘systemic’; a common genetic susceptibility to fibrosis has

also been hinted at. These data suggest that a subset of the diabetic population is

susceptible to multi-organ fibrosis. The hand is an attractive biomarker to

clinically detect this susceptibility, owing to its accessibility to physical

examination and exposure to repeated mechanical stresses. Testing the

hypothesis has a few pre-requisites: being able to measure hand fibrosis in the

hand, using clinical scores or imaging based scores, which will facilitate looking

for associations with internal organ fibrosis using validated methodologies for

each. Longitudinal studies would be essential in delineating fibrosis trajectories in

those with hand manifestations. Since therapies reversing fibrosis are few, the

onus lies on identification of a susceptible subset for preventative measures. If

systematically validated, clinical hand examination could provide a low-cost,

universally accessible and easily reproducible screening step in selecting patients

for clinical trials for fibrosis in diabetes.
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1 Introduction

Fibrosis refers to an excessive, non-physiological accumulation

of extracellular matrix (ECM) components in a body tissue (1). It

leads to irreversible stiffening, a compromise in tissue function and

cellular death of normal tissue. Fibrosis is a common final pathway

in many disease states and is estimated to contribute to nearly half

the deaths in the developed world (2). Despite considerable

mechanistic understanding of the processes involved, few

therapies have achieved success in reversing fibrosis (3). Until any

headway is made, most impact will be made from preventive

strategies, which necessitate early recognition (for effective

secondary prevention) or identification of those at risk (for

primary prevention).

The two major types of diabetes mellitus (henceforth, diabetes)

viz type 1 (T1D) and type 2 (T2D) have been epidemiologically

associated with accelerated fibrosis in various internal organs,

chiefly the kidney and heart, but also the lung and liver (3–10).

These conditions are common causes of morbidity and death in

diabetes. Pathologic cardiac remodeling in individuals with T2D,

termed, ‘diabetic cardiomyopathy,’ occurs independently of

coronary heart disease and manifests as diastolic dysfunction (7).

In addition, T2D is the most common cause of ‘cryptogenic’

cirrhosis in the developed world (11). A large percentage of

patients with T2D have undetected liver fibrosis and cirrhosis

(12). Diabetes is also an independent cause for adipose tissue

fibrosis (13).

Diabetes is associated with a variety of disease manifestations

occurring in the musculoskeletal system. Hand manifestations, in

the form of limited joint mobility (LJM), were initially described in

T1D (14, 15) but are seen in T2D as well. Diabetes is also associated

with an increase in prevalence of chronic flexor tenosynovitis and

trigger fingers, as well as carpal tunnel syndrome; collectively
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referred to as diabetic cheirarthropathy (16). Studies report

marked variability in prevalence from 5 to 60%, owing partly to a

heterogeneity in definition and study design (17–22). The presence

of the diabetic cheirarthropathy correlates with disease duration

and some micro-vascular complications but not glycated

hemoglobin (HbA1C) (23, 24). However there may be stronger

associations in subsets of patients: men, but not women with limited

joint mobility were found to have a higher risk of retinopathy in

type 1 diabetes (25). Even within diabetes related flexor

tenosynovitis, retinopathy and HbA1C correlated with a

particular histomorphology characterized by granulation tissue

and microvascular proliferation (26).
2 The hypothesis

We hypothesize that observed hand manifestations in diabetes

are clinical biomarkers of a susceptibility to multi-organ

fibrosis. (Figure 1)

While diabetes is associated with profibrotic outcomes, every

patient does not show these manifestations, implying that a subset

of patients with diabetes are more predisposed to multi-organ

fibrosis. Diabetes accelerates this underlying risk via various

mechanisms such as systemic inflammation, tissue hypoxia and

advanced glycation end-product deposition (27).

All the described entities occurring in the hand in diabetes are

essentially fibrotic in nature; biopsy studies have demonstrated

excessive collagen deposition in periarticular connective tissue

including tendon sheaths and increased collagen glycation (28).

Nomenclature depends on the anatomical structure in which

fibrotic inflammation or thickening is observed: the palmar skin

(LJM), sheaths offlexor tendons (flexor tenosynovitis) or the palmar

fascia (Duypuytren’s disease, DD) (16). Regardless of nomenclature,
FIGURE 1

Diabetes mellitus is associated with an increased risk of organ fibrosis. We hypothesize that soft tissue fibrosis in the hand reflects internal organ
fibrosis in a susceptible sub-population. ECM, extracellular matrix.
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these conditions result in preferential stiffness on the palmar aspect

of the hand, thus principally limiting finger and wrist extension. In

severe cases, flexion contractures ensue, leading to the ‘prayer sign’,

an inability to approximate the palms fully (22).

When severe, fibrotic hand manifestations are visible on non-

invasive clinical examination; even in subclinical hand involvement,

hand stiffness can potentially be quantified by measuring wrist and

finger extension. Since they externally represent the same process as

is occurring in internal organs, we believe that hand examination

may serve as a useful diagnostic or predictive biomarker for current

or future multi-organ fibrotic disease.
3 Evaluation of the hypothesis

Although no direct evidence exists yet to demonstrate our

hypothesis, we discuss several key associations that suggest a

multi-organ fibrosis susceptibility in diabetes.
3.1 Epidemiologically, fibrosis in one organ
associates with fibrosis in another organ

Individuals with a high probability of liver fibrosis using a non-

invasive fibrosis score had a five-fold risk of chronic kidney disease

(CKD) than those with a low probability (29) In the Multi-ethnic

study of atherosclerosis (MESA), liver fibrosis - as judged by a high

extracellular volume fraction (ECV) on liver T1 mapping magnetic

resonance imaging (MRI)- showed an association with

cardiovascular events and heart failure (30). Similarly, lung

stiffness as measured on spirometry was associated with an

increased risk of developing CKD (31). Such associations extend

to musculoskeletal system and soft tissue fibrosis: those with

Duypuytren’s disease have a three-fold risk of liver disease (20).

These associations across multiple conditions and various organ

systems using heterogeneous methods of assessing fibrosis, hint at

an underlying, common fibrosis syndrome. The condition likely

first manifests in one or two organs, with a higher likelihood in

developing in others as the disease progresses.
3.2 Shared mechanisms suggest common
pathways of fibrosis across organs

Fibrosis is histo-morphologically alike across tissues. Regardless

of precipitating factors, any fibrotic process has some common

pathological denominators including the presence of various

extracellular proteins, laid down by essentially the same kind of

cells, viz activated fibroblasts (32) Both tissue concentrations of these

cells as well as sources of derivation may differ, including epithelial,

mesenchymal, and endothelial (33). Fibrosis is also uniformly

associated with small vessel dysfunction and hypoxia, non-

infectious persistent type 2 inflammation and a consequent loss of

function (34). Individual studies in multiple profibrotic situations

have demonstrated a causative role of transforming growth factor –

beta (TGF-B) in fibrotic processes in all organs studied (35).
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3.3 Common genetics

Single nucleotide polymorphisms (SNPs) in TGF-B were able to

predict the progression of fibrosis in chronic kidney disease (36).

‘Natural experiments’ such as short telomere syndromes suggest

that genetic defects can lead to multi-organ fibrosis, commonly

involving the lung and bone marrow (37). The fact that not all

patients develop fibrotic manifestations in diabetes indicates a

possibly quantifiable genetic risk for developing a multi-organ

profibrotic state.
3.4 ‘Systemic’ and not local factors
contribute to fibrosis in diabetes

Diabetes is associated with increase in systemic persistent

inflammation (38), microvascular injury and hypoxia (39), all of

which are known to stimulate profibrotic pathways. Additionally,

advanced glycation end-products (AGE) stimulate ECM deposition

via non-enzymatic glycosylation and subsequent collagen

crosslinking, disruption of matrix-cell interactions, and

interference with the renin angiotensin system (40). All of these

putative mechanisms of fibrosis are ‘systemic’, implying the soft

tissue of the hand would be exposed to all of these factors in the

same way as the kidneys, heart and lungs, albeit with variable

intensities of exposure.

Much research is ongoing about mechanisms of organ fibrosis

in diabetes, and excellent reviews cover these in depth (27) Despite

common exposures like hyperglycemia and insulin resistance, and

common effector pathways via myofibroblast activation, multiple

pathways are implicated and offer potential targets in diabetes

related fibrosis. A large body of evidence suggests the central role

of the TGF-B pathway and resultant fibrogenic Smad signaling (27,

41). TGF-B may also act by epithelial and endothelial -to

mesenchymal transition (EndMT), both processes implicated in

multiple diabetic complications (42). Hyperglycemic exposure

increases the generation of cellular reactive oxygen species, and

these are implicated in cell dysfunction and pathogenic profibrotic

pathways (43). Profibrotic inflammatory cytokines are triggered by

hyperglycemia and are likely to play a role in diabetes related

fibrosis (27). Activation of the NLRP3 infalmmasome by

hyperglycemia has been implicated in furthering renal and

myocardial fibrosis (44). Experimentally blocking various

inflammatory cytokines, such as interleukin 17, IL 6 and Tumour

necrosis factor attenuate organ fibrosis and are thus likely to be

involved (45–47).

Different animal models of diabetes demonstrate fibrotic

responses. A rodent T1D model induced by streptozocin induces

cardiac and renal fibrosis, as is also seen in leptin resistant db/db

mice simulating T2D (48, 49). In the novel combination model of

streptozocin and diet induced diabetes, fibrosis severity depends on

genetic background in addition to the selection of diet (50). These

heterogenous fibrosis phenotypes, despite hyperglycemia being

common to all models, suggest that even in humans,

hyperglycemia accelerates organ fibrosis risk in those that are

already susceptible.
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3.5 Why choose the hand as a potential
clinical biomarker?

A bio-marker for a disease process is ideally rapid, inexpensive

and measurable in a consistent fashion and biologically plausible.

The current evidence in hand fibrosis reflecting internal organ

fibrosis is scant and ambiguous. However, since it demonstrates

tissue fibrosis, we believe it could be worth characterizing these

associations in more detail.

A considerable amount of literature regarding the importance of

mechano-sensing in initiating and propagating fibrosis now exists

(51). Physical changes in the tissue micro- and macro-environment

are known to induce tissue remodeling; extending the same effects

likely contribute to pathological remodeling (52). Mechanosensing

and consequent persistent physical stress-related signals have been

implicated in the transition from ‘normal’ repair to a profibrotic

process (53). Regardless of general physical activity and exercise, daily

living necessitates hand use. This requirement is encapsulated by the

predominance of hand-centric activities in various functional scores

and indices such as the health assessment questionnaire (54). Thus,

because hands are exposed to universal repetitive actions, we feel the

hand is an attractive and clinically-relevant model in which to assess

an underlying fibrotic state.

Tissue hypoxia is known to be a common micro-environmental

factor promoting fibrosis (27). Hypoxia related fibrogenic actions

commonly act via mediators such as Hypoxia inducible factor 1

(35). Distal extremities and digits are common sites that are exposed

to tissue hypoxia. The fingers of the hands are common sites on

which to measure hypoxemia using pulse oximetry. Finger

hypoxemia correlated with increased microvascular complications

such as retinopathy and nephropathy (55). The presence of diabetic

hand manifestations correlates with microvascular complications

(23). These associations indicate that hypoxemia, fibrosis and

microvascular disease seem to be interlinked, and the hand is a

potential site where all these processes are measurable.

Finally, the main advantage of looking at the hand is its clinical

accessibility: soft tissues that are affected in all of these

manifestations can easily be inspected and palpated non-

invasively. This accessibility contrasts with the feet, where the

thickness and tautness of the skin and the relatively larger

subcutaneous pad of fat precludes such granular clinical

examination. Hand involvement produces functional disability

and typically motivates patients to seek clinical attention. In a

large Taiwanese database, 9% of patients with diabetes sought

medical help for one of the syndromes in the hand (18).

Although these are symptomatic, it would also be useful to

evaluate the predictive value of subclinical stiffness that could be

systematically measured.
3.6 Disease models of multiple organ
fibrosis: lessons from systemic sclerosis

Systemic sclerosis is an autoimmune disease characterized by

inflammation, vasculopathy and multi-organ fibrosis (56). These

three processes are also seen in both types of diabetes, albeit in a less
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severe and slower trajectory (57, 58). Although the etiologies of both

these profibrotic diseases are distinct (systemic autoimmunity is not

demonstrable in diabetes mellitus), putative contributors to fibrosis

in both are systemic and not localized to a single organ. Organs

commonly involved are the lungs, kidneys and skin and soft tissue.

Hand involvement in systemic sclerosis includes skin, tenosynovial

and joint inflammation and fibrosis, leading on to hand movement

restrictions not unlike that seen in diabetes (59). Systemic sclerosis

uses a clinical accessible site, viz the skin, as a proxy of disease

severity; the two broad severity categories of the disease (limited and

diffuse cutaneous systemic sclerosis) are segregated based on the

extent of skin sclerosis over the upper limb. This clinical biomarker,

from a simple examination, serves to prognosticate and predict

fibrotic internal organ trajectories in systemic sclerosis (60). We

envisage that such a principle could potentially be extrapolated to

hand manifestations in diabetes mellitus.
4 Testing the hypothesis-
where are we?

Previous studies have hinted at associations of individual

fibrotic hand manifestations with diabetes complications; most

have concentrated on micro- and macrovascular organ

involvement (17). A systematic evaluation of hand stiffness,

including subclinical asymptomatic stiffness and its association

with internal organ stiffness, is, to our knowledge, yet to be done.

A clinical association of hand fibrosis with various internal organ

fibroses would be the first step. Within diabetes, are there patterns

in organ fibrosis? Cluster analyses could potentially help classify

patients with or without multi-organ fibrosis, and probe further into

patterns of organ involvement within the latter group (61). Large

datasets with at least one datapoint reliably conveying fibrosis in

each organ of interest would be essential.
4.1 Longitudinal studies

‘Snapshot’ evaluations may not fully provide adequate

information about multi-organ fibrosis. Despite a global

susceptibility, clinically relevant fibrosis is usually seen in one

organ system, often precipitated by an organ-specific injury such

as infectious hepatitis in liver fibrosis (62). Well-designed

longitudinal studies would be in a position to demonstrate

determinants, sequence and evolution of fibrosis in organ systems.

The starting point could be clinically evident fibrosis in one organ,

or a cohort of those genetically susceptible to fibrosis. The hand is a

potential screening tool to delineate a susceptible population in

such a study.
4.2 Measurement of hand fibrosis

To elucidate associations in more granular detail, it would be

useful to be able to quantitate the amount of fibrosis in the hand.

Fibrotic manifestations suffer from vagueness of definitions and an
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absence of consensus; the terms, “limited joint mobility” and

“prayer sign”, are at best, descriptive. Theoretically, functional

hand scores such as the Cochin hand scale or the Duruoz hand

index could serve as a measurable proxy for hand stiffness (63).

However, these scales mostly have been used in painful hand

conditions such as rheumatoid and osteo-arthritis; diabetic hand

syndromes are often asymptomatic and the indices would not pick

up subclinical hand stiffness restricting utility to a small fraction

with severe disease.

Although none exists as yet, clinical scores in the diabetic hand

measuring passive extension at various joints might encapsulate

hand stiffness in a more specific and semi-quantitative manner. The

HAMIS Score in systemic sclerosis does incorporate such

measurements, while also including disease specific features such

as digital ulcers and the modified Rodnan skin score (64).

While MRI descriptions of hand manifestations in diabetes exist

(65), these are limited to case reports there has been no attempt to

measure the amount of fibrotic tissue in the hand in a more

systematic manner. Ultrasound could be a promising tool in this

regard: an evaluation of patients with diabetic cheirarthropathy on

ultrasound revealed tendon sheath thickening of more than 1 mm

(66). Scores such as the Sharp/van der Heijde score or the simple

erosion score in rheumatoid arthritis attempt to measure erosive

and inflammatory disease activity and are now used widely in

clinical trials (67). Tenosynovitis is only one manifestation under

the cheirarthropathy umbrella. In order to measure hand fibrosis in

diabetes, we believe imaging scores that encapsulate skin,

tenosynovial and palmar fascia thickness would be important to

bring more precision to a clinical quantification.
4.3 Multi-organ imaging

Accepted and validated non-invasive methodologies for fibrosis

are different for each organ. Computed tomography (CT) scans and

spirometry are used for the lung, ultrasound and liver elastography

for the liver and cardiac MRI for the heart; nephrologists still

depend on biopsy for renal fibrosis. These methods also assess

different outcomes: elastic recoil in the liver, morphology and

diastolic function in the heart, morphology in the lung. This

heterogeneity makes unifying fibrosis across organ systems

challenging in large studies. MRI-based modalities hold promise.

The ongoing MICA and DEMISTIFI study is utilizing MRI images

from the UK Biobank Registry to dissect common mechanisms in

multi-organ fibrosis (68). Adding the musculoskeletal system to

such an analysis would be useful in assessing its potential as a

clinical biomarker of organ fibrosis. Unlike these studies that detect

structural or functional results of collagen deposition, newer

‘molecular’ imaging technologies rely on processes specific to

fibrosis, such as fibroblast activation or collagen deposition (69).

Such imaging with probes has shown promise in systemic sclerosis:

fibroblast activation on 68Ga-FAPI-04 PET-CT was associated with

fibrosis and disease progression. These exciting new modalities

could potentially be utilized to assess the fibrotic landscape in

diabetes, including the hand and other soft tissue.
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4.4 Genetic predisposition

Would examining the hand allow us to identify those who have a

genetic risk of organ fibrosis? Network analysis of microarray datasets

from nine different fibrotic disorders affecting different organs (such

as idiopathic pulmonary fibrosis and liver cirrhosis) demonstrated

common connective- tissue based networks active in all diseases,

despite different manifestations (70). This finding suggests a core set

of genes active in fibrosis and thus, a common genetic susceptibility to

organ fibrosis. The genes that had highest upregulation such as wild-

type p53-induced phosphatase 1 (WIP1) are involved in an

inflammatory-immune response. It would be interesting to see if

those with fibrotic hand manifestations demonstrate an upregulation

of these common, conserved pathways.
5 Discussion

Fibrosis in diabetes contributes to its burden of morbidity and

mortality; fibrotic diseases remain a research priority (71). Despite

this emphasis on research, successes in reversing fibrosis are few.

Apart from nintedanib and pirfenidone in idiopathic pulmonary

fibrosis, no other antifibrotic medication is widely accepted in

practice or has received regulatory approval. Cutting-edge

strategies, such as the use of chimeric antigen receptor (CAR)-T

cells have shown early results in targeting cardiac scar tissue (72).

Despite no established antifibrotics, many pharmacological

strategies are being attempted to reverse or prevent fibrosis in

diabetes, thus lending an urgency to developing a clinical outcome

measure. Although tight glycemic control in itself has been reduce

the progression of organ fibrosis (73), such results have not always

been replicated (74). Many classes of oral agents in diabetes show

evidence of antifibrotic actions in addition to that explained by their

glycemic effects. Sodium Glucose Co-Transporter 2 (SGLT2)

inhibitors such as empagliflozin reduce fibrosis in diabetic kidney

models through AGE receptors (75); Dapagliflozin acts on NF-KB

mediated inflammation and fibroblast activation, thus slowing

organ fibrosis progression (76). The DPP4 inhibitor Linagliptin

reduced myofibroblast conversion and reduced progression of renal

fibrosis (77). Blockade of the Renin- angiotensin system also

reduces fibrosis both in animal models and human participants,

by various actions such as growth factor inhibition and attenuation

of inflammation (78) Targeting AGEs holds promise in myocardial

fibrosis and arterial stiffness (79).

Since inflammatory pathways are considered upstream of

fibrosis, targeting inflammation may also have effects on diabetes

related organ fibrosis. Canakinumab, a monoclonal antibody

against IL-1B reduced heart failure rates, by possibly reducing

myocardial remodeling (80). The anti-inflammatory endogenous

peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (AcSDKP) has

antifibrotic effects and is being explored for its organ protective

effects (81).

We believe that advances in pharmaceutical science would be

helped by establishing clinical outcome measures for trials. While

genetic scores or advanced imaging technologies are potential
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methods to enrich cohorts by identifying those with early fibrosis

and characterizing ongoing fibrosis, these approaches are

developing and expensive technologies. An ideal screening tool at

the population level should be inexpensive, easily reproducible. If

hand fibrosis is validated rigorously as demonstrating systemic

fibrosis risk, the assessment would be a valuable first step to select

patients for clinical trials for up-and-coming strategies in primary

and secondary prevention of fibrotic morbidity. Hand fibrosis is

potentially quantifiable and could also be used as clinical outcome

in such trials.
5.1 Future directions

The road from hypothesis to validated clinical and imaging-

based outcome measures is long and winding (82). We believe that

development of such a measure encapsulating the specific

components of hand fibrosis would be the first step in future

before being able to attempt association studies and usage in

clinical trials. A detailed literature review would help find

potential metrics to base the outcome measure on; the HAMIS

score in systemic sclerosis is a candidate (64). We envisage that the

formal development of a new instrument for diabetic hand fibrosis

would require qualitative and quantitative methods, inputs from

patients themselves as well as domain experts such as hand

surgeons, diabetologists, neurologists and rheumatologists. It

would be important to narrow the theoretical model to

components that would serve as reliable indicators of fibrosis; we

believe that resistance to passive stretch of select joints would be

more specific for fibrosis than pain and gip strength. An involved

process including testing for content validity, reliability and

precision would follow before acceptance. Potential confounders

such as hand osteoarthritis, coexisting inflammatory arthritis or

skin disease will need due consideration. Such measures would pave

the way for exploring the hypothesis using imaging and

longitudinal studies.
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