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Diabetes mellitus remains the leading cause of end-stage kidney disease

worldwide. Inadequate glucose monitoring has been identified as one of the

gaps in care for hemodialysis patients with diabetes, and lack of reliable

methods to assess glycemia has contributed to uncertainty regarding the

benefit of glycemic control in these individuals. Hemoglobin A1c, the

standard metric to evaluate glycemic control, is inaccurate in patients with

kidney failure, and does not capture the full range of glucose values for patients

with diabetes. Recent advances in continuous glucose monitoring have

established this technology as the new gold standard for glucose

management in diabetes. Glucose fluctuations are uniquely challenging in

patients dependent on intermittent hemodialysis, and lead to clinically

significant glycemic variability. This review evaluates continuous glucose

monitoring technology, its validity in the setting of kidney failure, and

interpretation of glucose monitoring results for the nephrologist. Continuous

glucose monitoring targets for patients on dialysis have yet to be established.

While continuous glucose monitoring provides a more complete picture of the

glycemic profile than hemoglobin A1c and canmitigate high-risk hypoglycemia

and hyperglycemia in the context of the hemodialysis procedure itself, whether

the technology can improve clinical outcomes merits further investigation.
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Introduction

The world-wide incidence and prevalence of end-stage kidney disease (ESKD) have

been increasing annually, with type 2 diabetes mellitus the leading cause of ESKD in most

developed countries (1) . The global prevalence of diabetes in the ESKD population

increased from 19.0% in 2000 to 29.7% in 2015, and the incident population from 22.1%

to 31% (2).
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Insufficient glucose monitoring has been identified as one of

the gaps in care for hemodialysis patients with diabetes (3, 4).

Both a previous American Diabetes Association Diabetic Kidney

Disease Consensus Conference report (5) and the recent 2020

KDIGO Clinical Practice Guideline (6) have highlighted the

importance of meeting recommended glucose targets. However,

the benefit of glycemic control in patients with diabetes and

ESKD continues to be debated (7, 8), and there is uncertainty

regarding appropriate glucose targets. In the ESKD population,

the lack of reliable methods to assess glycemia has hindered the

attainment of optimal glycemic control (9).

The recent American Diabetes Association guidelines have

highlighted the increasingly important role of continuous

glucose monitoring (CGM) in glycemic management in the

general diabetes population (10, 11). A recent consensus

conference has recommended that CGM training programs be

expanded to all healthcare professionals involved in

multidisciplinary diabetes management (12). The focus of this

review is to evaluate the increasing role of CGM in

diabetic ESKD.
Glucose homeostasis in ESRD

Type 2 diabetes constitutes about 90% of all cases of diabetes,

and results from tissue insulin resistance with impaired

peripheral glucose uptake and dysregulated hepatic glucose

production, and progressive pancreatic beta-cell dysfunction

(13, 14). The development of chronic kidney disease (CKD)

often alters the typical natural history of diabetes. Diabetes

physiology in the ESKD patient is different and more complex

than in the general diabetes population, with significant

alterations of both glucose and insulin homeostasis (15). The

result may be wide glycemic excursions with frequent

hypoglycemia and hyperglycemia (16). Factors which

contribute to the complex abnormalities in glucose

homeostasis include abnormal insulin metabolism with

reduced renal insulin clearance, increased insulin resistance,

and the effects of the dialysis procedure.
Assessment of glycemic control
in ESKD

Historically, the assessment of glycemic control has relied

upon two categories of testing: serum biomarkers (hemoglobin

A1c [HbA1c], glycated albumin, fructosamine), and capillary

blood glucose measurement (self-monitoring of blood glucose

[SBGM]) (17) (Figure 1).

Long-term glycemic markers have limitations in end-stage

kidney disease (18). The NKF-KDOQI guidelines for diabetic

CKD have acknowledged that there is a deficiency in data for

validating markers in patients with reduced kidney function
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(KDOQI) (19). As reported by the recent Kidney Disease:

Improving Global Outcomes (KDIGO) guidelines, HbA1c is

known to be inaccurate in patients with advanced kidney

impairment (3). In the general diabetes population, a wide

range of mean glucose concentrations is possible for any

HbA1c value, which has been termed “the fallacy of average”

(20). Furthermore, HbA1c measurements tend to run lower in

advanced CKD with resultant under-est imation of

hyperglycemia (15). Factors contributing to lower HbA1c

values in ESKD include reduced erythrocyte lifespan/time

available for glycosylation of hemoglobin, anemia, and

exposure to erythropoiesis-stimulating agents (21, 22).

The role of tight glycemic control in improving clinical

outcomes in ESKD remains controversial (23, 24). Using

different retrospective ESKD database analyses, Kalantar-

Zadeh (9) and Williams (8) found that glycemia, when

considered as a continuous variable, was associated with

poorer survival only at extremes of HbA1c. The optimal target

HbA1c range for patients with diabetes on dialysis therefore

differs from that of the general diabetes population, i.e. <7% (25).

The Kidney Disease Outcome Quality Initiative (KDOQI)

Clinical Practice Guidelines for Diabetes have highlighted the

higher mortality risk in hemodialysis patients with HbA1c levels

<6.5 or >8.0% (9). The 2020 KDIGO guidelines indicate that

glycemic control must be individualized, with tighter (HbA1c <

7%) or looser (HbA1c > 8%) targets based on comorbidities, risk

of hypoglycemia, life expectancy, and other factors (3, 22).

Alternative measures to HbA1c, including glycated albumin

and fructosamine, have been proposed for the ESKD population.

Data from Freedman et al. suggested that increasing

concentrations of glycated albumin, but not of HbA1c,

predicted hospitalization and survival in patients with diabetes

undergoing dialysis (26). Some recent studies have shown an

association between glycated albumin levels and one-year

mortality, and suggested potential superiority over HbA1c (27,

28). Limited evidence suggests that the target range for glycated

albumin in ESKD patients should also exceed the reference

range (27).

HbA1c does not capture the full range of glucose values in

patients with diabetes. Alternative established glucose metrics,

including patterns of hyper/hypoglycemia and glucose

variability, are known to contribute to clinical outcomes in

the general diabetes population (20, 29–31). Patients with

diabetes and ESKD frequently experience wide glycemic

excursions, with both hyperglycemia and hypoglycemia (16).

Frequent SMBG has been regarded as an essential element of

diabetes management and, until the introduction of CGM, was

the cornerstone of intensive diabetes management regimens.

Fingerstick SMBG is associated with improvements in HbA1c,

with reduced hyperglycemic excursions and rates of

hypoglycemia (32). However, SBGM is limited by patient

inconvenience and potential discomfort, cost, and variable

device accuracy (33).
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Continuous glucose monitoring

CGM has emerged as an innovative and important

alternative to SBGM in diabetes management (12, 34). CGM

devices measure the interstitial glucose concentration every 1-15

minutes (frequency varies depending on device type), providing

a more comprehensive picture of postprandial glucose excursion

and also unmasking hypoglycemia particularly in the overnight

period (35). CGM devices generate a set of metrics that are

valuable in assessment of glucose control, and can be used in

clinical practice to complement the HbA1c measurement (36–

42) (see below). Multiple subsequent randomized clinical trials

have now shown unequivocal improvement in hemoglobin A1c

with reduction in hypoglycemia with use of CGM by individuals

with type 1 and type 2 diabetes (10, 35, 43–47). Improvements in

the advances in the accuracy and ease-of-use of CGM devices

have established this technology as a replacement for fingerstick

SMBG and as the new gold standard in glucose monitoring

(48–51).
The hemodialysis treatment

Effect of the hemodialysis treatment on
glucose levels

It is widely recognized that plasma glucose levels decrease

significantly during the hemodialysis procedure. Sudha et all

measured capillary blood glucose levels, just before dialysis and

2 hours after dialysis, and compared with fasting and postprandial

glucose levels on–off dialysis days (52). There was a significant

(35.8%) decrease in blood glucose levels two hours after dialysis in

comparison to predialysis levels (from mean level of 258mg/dL/

14.3 mmol/L to 165 mg/dL/9.2 mmol/L). Abe et al. evaluated

changes in plasma glucose levels specifically between pre- and
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post-dialyzer sites during hemodialysis (53). Results confirmed

removal of glucose by the dialysis procedure. In hemodialysis

patients with diabetes, CGM data indicate that on dialysis days

mean glucose levels are lower and that glucose fluctuations, as

indicated by standard deviation and mean amplitude glycemic

excursion (MAGE) are greater than on days without hemodialysis

(54). A component of glucose homeostasis unique to the

hemodialysis procedure is the presence of dextrose, chemically

identical to glucose, as a constituent of the dialysate fluid (6, 55).

Addition of dextrose protects from severe hypoglycemia.
Effect of the hemodialysis treatment on
insulin

The hemodialysis procedure is known to result in removal of

circulating insulin while at the same time improving insulin

sensitivity. An understanding of the impact of these effects

underscores the potential value of CGM in the chronic

hemodialysis setting.

Insulin clearance
For patients requiring hemodialysis, insulin is frequently

administered prior to the hemodialysis session. Administered

insulin contributes to the intradialytic decrease in plasma

glucose level noted above, but circulating insulin is removed

by hemodialysis so that blood insulin levels decrease (53). The

molecular size of circulating plasma insulin monomer (5.8kDa)

would indicate that filtration through the membrane would

contribute to its removal. Adsorption of insulin onto the

dialyzer membrane is an additional factor (56).

Insulin sensitivity
Tissue insensitivity to insulin is a common feature of ESKD,

especially in individuals with type 2 diabetes (57, 58). The

mechanism remains unclear, but contributing factors may
FIGURE 1

Measures for assessing glycemic control in ESKD patients with diabetes (17).
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involve circulating pro-inflammatory cytokines (59). Skeletal

muscle is the primary site accounting for insulin resistance in

patients with uremia (60). Uremic insulin resistance is known to

improve after initiation of chronic renal replacement therapy

(61, 62). Using a modified euglycemic clamp methodology

Sobngwi et al, evaluated the insulin requirements necessary to

achieve euglycemia in the pre-, intra-, and post-hemodialysis

period and noted a 25% lower exogenous insulin requirement

immediately after the dialysis procedure (62).

Net effect
The net effect is to make diabetes management less

predictable in the ESKD patient. In general, clinical research

studies suggest a prototypic peri-dialytic paradigm of

hypoglycemia followed by rebound hyperglycemia shown in

Figure 2 (63). In addition, circadian changes in plasma glucose

levels may differ between dialysis and non-dialysis days.

Of clinical relevance, the signs and symptoms of

hyperglycemia will be modified, with increased thirst, fluid

overload, and hyperkalemia expected but not polyuria or

volume contraction. Hemodialysis patients, particularly with

type 2 diabetes, rarely develop diabetic ketoacidosis (63).

Development of hypoglycemia unawareness due to recurrent

hypoglycemia (64) is an additional risk in the ESKD patient on

dialysis. Hypoglycemia has recently been associated with the
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occurrence of cardiac arrhythmias in patients with diabetes and

CKD (65).

Glycemic variability
ESKD patients with diabetes are known to have greater

fluctuations than dialysis patients without diabetes (54).

Glycemic variability – i.e., fluctuations of measures of glycemic

control over a given interval of time - has been termed the “third

component of dysglycemia” in diabetes (66). Accumulating data

suggest that glycemic variability is an independent risk factor for

diabetes complications (67, 68). Glycemic variability may be

evident in both long-term measures (serial determinations of

HbA1c), or in short-term measures (based on serial measures

using CGM or blood glucose measurements), as shown in

Figure 3 (68). Both glucose and HbA1c variability have been

shown to predict hospitalization risk in ESKD (69).
Interstitial fluid and its compostion

CGM devices measure interstitial fluid glucose. The

interstitial compartment comprises approximately eighty per

cent of extracellular water, the remainder comprising the

plasma compartment (70). The main solute constituents

(excluding glucose) of these body fluid compartments are
FIGURE 2

Circadian changes in plasma glucose level in hemodialysis patients with diabetes on dialysis day (dark line) and non-dialysis day (light line).
*P<0.05; **P<0.01. (Adapted with permission from (63). HD, hemodialysis; SD, standard deviation).
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electrolytes (71). Interstitial fluid homeostasis is considered to be

regulated at the local tissue level. Fluid exchange homeostasis

between the plasma and interstitium is governed by the

interaction of key components of Starling’s hypothesis, such as

the interstitial hydrostatic pressure (72). The pressure/volume

status of the interstitium is determined by a complex interaction

involving fluid inflow (blood capillary filtration), fluid outflow

(lymphatics), and the interstitial compartment’s tissue

compliance (73). Interstitial fluid pressures are slightly

negative in healthy controls, and positive in CKD patients

with edema (74). This increase in interstitial fluid pressure in

CKD would be expected to result in reduced transcapillary

filtration into the interstitium, preventing further fluid influx,

and/or increased unidirectional outward lymphatic flow (73).

Glucose dynamics between the plasma and interstitial fluid may

be considered a “two-compartment” model (75). Glucose

diffuses from the capillary endothelium to the interstitial

compartment (76), driven by the glucose concentration

gradient across capillaries, with a time lag in the passage of

glucose from blood to the interstitium (77).

In individuals with kidney impairment, extracellular fluid

volume, interstitial fluid volume and interstitial pressure are

significantly elevated (73, 74). It is likely that there is distortion

in glucose homeostasis caused by nonequilibrium conditions

between the vascular compartment and the extracellular

compartment (57). Although the time lag in the distribution of
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glucose from blood to the interstitium under normal conditions

has been investigated (77, 78), changes during the hemodialysis

procedure are uncertain.
Glucose sensor technology

In recent years,advances in sensor technology have set the

stage for more widespread adoption of CGM into diabetes care

(79). Among Current FDA-approved CGM devices are the

Abbott Freestyle Libre (Abbott Diabetes Care, Alameda CA),

Dexcom G6 (Dexcom, San Diego CA) and Medtronic Guardian

(Medtronic, Northridge CA) CGM devices. These devices

typically consist of a transcutaneous sensor probe that is

inserted into subcutaneous tissue and measures glucose

concentrations in the interstitial fluid; the glucose

measurement technology in these sensor probes is

electrochemical and utilizes the enzyme glucose oxidase, which

generates hydrogen peroxide and an electron flow proportional

to the glucose concentration. Because of the specificity of glucose

oxidase for beta-D-glucose, these sensors are not expected to be

subject to interference by other monosaccharides and

polysaccharides [80. However, acetaminophen at doses in

excess of 1gram every 6 hours and high dose ascorbic acid can

affect performance of the Abbott Freestyle Libre (81). Local skin

reactions from adhesive tape that secures the transmitter to the
FIGURE 3

Short-term glycemic variability, represented by within-day measures of blood glucose as determined by SBGM and CGM. Modified with
permission from 68).
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skin can occur (82, 83). Another approved device, the Eversense

CGM (Senseonics, Germantown MD) is clinician-implanted,

with need for an office-based procedure for insertion/removal

every 90 days (84), and functions non-enzymatically, utilizing a

hydrogel that fluoresces on glucose binding. Studies indicate that

mannitol and tetracycline can interfere with its accuracy (85).

Traditionally, CGM devices required that the patients

perform fingerstick capillary blood glucose measurements for

calibration (86). However, the Abbott Freestyle Libre and

Dexcom G6 are factory-calibrated, and there is no need for

regular calibration to ensure CGM accuracy.
Evaluation of CGM accuracy

The measurement accuracy of CGM devices is assessed using

plasma glucose as the reference standard (Figure 4). The mean

absolute relative difference (MARD) between CGM

measurements of and matched reference values is the

commonly used metric to evaluate device accuracy. A MARD

¾ 10% is widely cited as the desired goal in CGM device

accuracy (30, 88). However, it is noteworthy that many of the

studies demonstrating the clinical benefits of CGM were

conducted with devices with MARD that did not meet this

cut-point (35, 89–91).

Research has revealed that paired glucose concentrations in

the capillary and venous compartments and the interstitial space

will differ when the glucose is changing rapidly (78). Because of
Frontiers in Clinical Diabetes and Healthcare 06
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individuals with high glucose variability and at the extremes of

the glucose range (92, 93). This is an important consideration in

the evaluation of studies of device accuracy. In patients with

chronic kidney disease, data correlating CGM and plasma

glucose to validate the accuracy of CGM are limited. Riveline

evaluated the relationship between CGM and blood glucose

measurements in nineteen hemodialysis patients on

hemodialysis studied over four days (94). There was a high

correlation between mean values using the two techniques

(Figure 5), and the correlations were similar in dialysis and

non-dialysis patients.

Mambelli et al. found very good accuracy of the Abbott

Libre CGM in patients with type 2 diabetes on hemodialysis,

with 97% of measurements in A+B regions of the Clarke error

grid (95). In contrast, another study in patients with type 2

diabetes on hemodialysis by Yajima et al. showed poorer

accuracy with the Abbott Libre CGM (96). The accuracy in

patients on hemodialysis is not affected by hydration status

measured via impedance spectroscopy (97). A small study in

twelve patients (98) showed better MARD at the beginning of

the dialysis treatment (r=0.731) compared to the end of the

treatment session (r=0.513), and overall 90% of the paired

measurments were in the zones A/B (clinically accurate or no

risk from error) of the Clarke error grid. A recent study

evaluating the Dexcom G6 CGM in patients with type 1 and

type 2 diabetes during dialysis showed an overall MARD 13.8%

(interquartile range 4.9-18.2%) when CGM was compared to
FIGURE 4

Measured CGM data and paired blood glucose measurements (BG profile) in a patient with diabetes (Adapted with permission from Ref (87).
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matched SBGM measurements (99). In a meta-analysis of 524

routine dialysis patients with diabetes from 23 studies, Wang

et al. confirmed a good correlation of CGM and BGM values

(r=0.837) (100).
Interpretation of CGM

The latest international guidelines on CGM for analysis and

treatment goals were published in 2019 (36). “Time-in-range”

describes the percentage of time spent with CGM reading

between 70-180mg/dL/3.9-10.0 mmol/L). For most adults with

diabetes, the consensus recommendations suggest that an

appropriate goal is to achieve a percent time-in-range goal of

over 70 percent, if achievable without undue risk of

hypoglycemia (36, 101). Recommended treatment goals for

patients with diabetes and comorbid conditions, such as

chronic kidney disease, includes maintaining time-in-range

>50% and time-below-range (<70 mg/dL3.9 mmol/L) <1%

(36),. Several metrics exist for assessment of short-term,

glucose variability (39), including the percent coefficient of

variation (%CV), which is predictive of risk for severe

hypoglycemia. In the past, CGM data were used to derive an

“estimated A1c” calculated from mean glucose levels. However,

in order to reduce confusion with measured HbA1c values, this

predicted value of HbA1c is now referred to as a glucose
Frontiers in Clinical Diabetes and Healthcare 07
management indicator (GMI) (31). CGM data indicate that

the laboratory HbA1c may over-estimate the mean glucose in

black persons compared to white persons (102).
CGM clinical studies in the
ESRD population

Clinical studies using CGM in the ESKD population have

explored: (1) changes in glucose levels with hemodialysis; (2)

comparison of CGM to standard glycemic markers in the setting

of ESKD; and, (3) clinical benefit to be derived from use of CGM

in diabetes management in the ESKD population.

(1) The advent of CGM has confirmed two known glycemic

patterns in patients undergoing hemodialysis treatments. Several

studies have demonstrated that glucose levels overall are lower

on the day of the dialysis treatment. Using 24-hour CGM data,

Kazempour-Ardebili et al. reported roughly 25% lower mean

glucose values in type 2 patients during the day of dialysis (103).

The average 24-hour glucose levels on nondialysis days was 38 to

187mg/dL (2.1 to 10.4 mmol/L) higher, compared to the average

on dialysis days. The most common glucose nadir and risk of

asymptomatic hypoglycemia was within 24 hours following

dialysis. Euglycemic clamp data indicate a 25% reduction in

basal insulin requirements the day after dialysis compared to the

day before (62). In the meta-analysis by Wang et al, the average
FIGURE 5

Correlation between mean glucose levels obtained through glucose meters and CGM in hemodialysis type 2 diabetes (dark circles) and
nondialysis type 2 diabetes (light circles) (Ref (94).). Correlation in the entire patient group (r = 0.84; P<0.00001). Correlation in hemodialysis
type 2 patients (dark line) (r = 0.90; P<0.0001). Correlation in nondialysis type 2 patients (light line) (r = 0.81; P<0.0001).
frontiersin.org

https://doi.org/10.3389/fcdhc.2022.1025328
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org


Williams et al. 10.3389/fcdhc.2022.1025328
CGM values were significantly lower during dialysis in

comparison with predialysis CGM values in patients with

diabetes (MD: -2.11mmol/L or -40.3mg/dL, p=0.0003) (100).

Divani et al. have shown using CGM in 36 diabetic hemodialysis

patients the glucose variability as determined by coefficient of

variation and hypoglycemia are higher on dialysis days (104).

(2) Several studies have evaluated the comparative clinical

performance of CGM with HbA1c in diabetic patients with

chronic kidney disease, including patients on hemodialysis.

Two recent reports on predialysis patients have addressed the

question of accuracy of long-term markers such as HbA1c,

using its correlation with CGM as the primary outcome

measure. Presswala evaluated CGM and HbA1c in CKD

patients with type 2 diabetes and eGFR levels 78-45mL/min,

using mean glucose levels over 14 days and mean HbA1c levels

at the end of the CGM period. The Pearson correlation

coefficient was 0.82, and the correlation was not affected by

the severity of CKD (105). In a similar clinical study, Zelnick

reported an overall Pearson coefficient of 0.78 (28). In contrast,

a much weaker correlation in ESKD was reported by Riveline et

al, who compared mean CGM values and hemoglobin A1c in

dialysis and nondialysis patients with diabetes. The correlation

between mean CGM and hemoglobin A1c values in

hemodialysis patients was only 0.47, p=0.042. Poor metabolic

control was identified using CGM data, which was not

suspected based on HbA1c levels, even after correction for

anemia (94).

The longitudinal association of glucose levels with the

HbA1c was reported in 37 diabetic hemodialysis patients who

used CGM over seven days to assess glycemic control (106). The

area under ROC curve (AUC) for HbA1c to detect poor glycemic

control was 0.776, indicating a fair association of HbA1c with

average glucose levels. In the meta-analysis by Wang et al, the

correlation coefficient between CGM and HbA1c in diabetes

patients on dialysis (converting values from individual studies to

Fisher’s z-scores) was =0.523 (100).

(3) To date there has been limited investigation on the

potential utility of CGM in the management of diabetes in

patients with ESKD. In the DIALYDAB pilot study reported

by Joubert et al. (107), fifteen hemodialysis patients with diabetes

used two different glucose measurements – SBGM (three per

day) and CGM – each for a period of six weeks, to guide their

insulin therapy. SBGM and CGM profiles were remotely

analyzed by a diabetes specialist, who then provided

therapeutic input to dialysis physicians. Use of CGM was

associated with a greater number of alterations in the insulin

regimen, improved glycemic control, and fewer episodes of

hypoglycemia. Kepenekian et al. evaluated the use of CGM as

a tool to guide treatment decisions in a multi-center study of 28

diabetic hemodialysis patients (108). Use of CGM allowed

intensification of CGM-adapted insulin therapy over three
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months, with significant reductions in CGM-derived glucose

levels and Hb A1c, despite no increase in symptomatic

hypoglycemia. In a randomized crossover trial in adults with

type 2 diabetes requiring dialysis, Boughton et al. have

demonstrated that use closed loop insulin therapy - with an

insulin pump, CGM and control algorithm to adjust insulin

delivery is associated with improved time-in-range (3.9-10.0

mmol/L) and less hypoglycemia (109)
Goals in the ESRD patient

Available guideline recommendations designed to

address the use of CGM data to optimize clinical outcomes

do not specifically include patients on dialysis (36). The

consensus recommendations for lower risk patients with

diabetes are shown in Figure 6. In comparison, it is

recommended that patients with diabetes and higher risk

due to comorbid conditions such as renal disease maintain

time-in-range (70-180 mg/dL/3.9-10.0 mmol/L) >50% and

t ime-be low-range (<70 mg/dL/3 .9 mmol /L) <1%,

(Figure 6) (36).
Current eligibility criteria

Despite the growing body of evidence supporting CGM use

in type 1 diabetes and, more recently, the broader type 2 diabetes

population, current eligibility criteria required by public and

many private insurers are making access to this technology

difficult for the ESKD diabetic population (36). There is a need

for outcome studies demonstrating the potential benefit of CGM

to provide the evidence base to support broader coverage of this

technology by payers (110).
Conclusion

Glucose management in ESKD patients with diabetes

mellitus imposes challenges on both the patient and the

dialysis provider. Evidence that current Hb A1c-based

indicators of glycemic control adequately predict outcomes

related to morbidity and mortality in diabetic ESRD patients

remains insufficient. Closer glucose monitoring of glycemia

would appear to be essential in ESKD because of various

factors that impact glucose metabolism, related to abnormal

glucose and insulin homeostasis. The more intensive and

automated glucose monitoring facilitated by CGM technology

may be of particular value in hemodialysis patients, insofar as

hemodialysis exaggerates the state of glycemic variability. Until
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recently, CGM has been inadequately studied in the ESKD

population. As a result, it is important that the CGM

innovation be validated and its utility determined in the ESKD

population. There is a need to better understand how CGM

metrics can impact clinical outcomes in the hemodialysis

population. In the meantime, CGM is an accurate diagnostic

tool that should empower hemodialysis care providers to

recognize and mitigate high-risk hypoglycemia and

hyperglycemia in the context of the hemodialysis procedure itself.
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