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Unhealthy diets and lifestyle result in various metabolic conditions including metabolic
syndrome and non-alcoholic fatty liver disease (NAFLD). Much evidence indicates that
disruption of circadian rhythms contributes to the development and progression of
excessive hepatic fat deposition and inflammation, as well as liver fibrosis, a key
characteristic of non-steatohepatitis (NASH) or the advanced form of NAFLD. In this
review, we emphasize the importance of nutrition as a critical factor in the regulation of
circadian clock in the liver. We also focus on the roles of the rhythms of nutrient intake and
the composition of diets in the regulation of circadian clocks in the context of controlling
hepatic glucose and fat metabolism. We then summarize the effects of unhealthy nutrition
and circadian dysregulation on the development of hepatic steatosis and inflammation. A
better understanding of how the interplay among nutrition, circadian rhythms, and
dysregulated metabolism result in hepatic steatosis and inflammation can help develop
improved preventive and/or therapeutic strategies for managing NAFLD.
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INTRODUCTION

With the ongoing pandemic of obesity, 25% of the population worldwide, including children,
adolescents and adults, are suffering from non-alcoholic fatty liver disease (NAFLD) (1). NAFLD is
characterized by excess accumulation of triglycerides in the hepatocytes (hepatic steatosis) due to
both increased inflow of free fatty acids and de novo lipogenesis. When the liver exhibits overt
inflammatory damage and fibrosis, NAFLD progresses to its advanced stage, nonalcoholic
steatohepatitis (NASH). The latter has increased risk to progress to liver cirrhosis and
hepatocellular carcinoma. Metabolic abnormalities related to unhealthy nutrition, such as central
obesity, insulin resistance, dyslipidemia and hypertension, are closely related to NAFLD (2).
Although the etiology and progression of NAFLD remain to be elucidated, more and more
studies have shown that the circadian clocks play a key role in the regulation of key aspects of
the pathogenesis of NAFLD (3, 4).

Circadian rhythms are widely present in animals and plants. In mammals, circadian rhythms
function to coordinate a diverse panel of physiological processes that are influenced by
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environmental rhythmic signals such as food and light. In
addition, circadian dysfunction is associated with sleep
disorders, elevated incidence of cancer, and metabolic
abnormalities. Located in the suprachiasmatic nucleus (SCN)
of the hypothalamus, the master clock plays an important role in
governing biological rhythms, coordinating the peripheral clocks
in peripheral tissues such as the liver, muscle, adipose tissue and
gastrointestinal tract. The master clock receives light and
generates timing signals to govern peripheral clocks, shaping
whole body’s circadian rhythms. Also, the master clock drives
circadian rhythms of behavior such as rest and activity cycles
while peripheral clocks play more important roles in
physiological regulation of each peripheral tissue (5, 6).

Recent studies have indicated that the misalignment of the
central clock and the peripheral clock results in dysregulated
metabolism of glucose and fat. Indeed, abnormal rhythmic cycles
are related to metabolic diseases such as obesity, diabetes and
NAFLD (7). Of note, the liver is considered a clock organ because
many genes related to metabolism in the liver exhibit diurnal
rhythmicity and are regulated by the circadian clock.
DESCRIPTION OF THE
MOLECULAR CLOCK

A large number of physiological events follow circadian
rhythmicity. At the cellular level, circadian rhythms are
generated by an auto regulatory transcriptional and
translational feedback loop (TTFL) consisting of the clock
genes Period (PER) 1, PER2, Cryptochrome (CRY) 1, CRY2,
brain and muscle aryl hydrocarbon receptor nuclear
translocator-like protein 1 (BMAL1), circadian locomotor
output cycles kaput (CLOCK) and their protein products (8–
12). In the core loop of the mammalian clocks, the CLOCK:
BMAL1 heterodimer binds to enhancer elements (E-boxes) to
initiate the transcription of PER, CRY and other clock-controlled
genes (CCGs). PER: CRY dimers accumulate in the nucleus over
the course of the day to inhibit the activity of the CLOCK:
BMAL1 heterodimer, thereby suppressing their own
transcription. PER and CRY also can be broken down by b-
transducing repeat-containing protein (b–TrCP) and F-box/
LRR-repeat protein 3 (FBXL3) respectively to reset the cycle.
In addition, the CLOCK: BMAL1 heterodimer also regulates the
transcription of REV-ERBs, which are nuclear receptors and
compete with retinoic acid-related orphan receptors (RORs) to
inhibit the transcription of BMAL1 and delay the transcription of
CRY1 (5, 13, 14).

Coordination at the cellular level is necessary for tissue-
specific oscillations that regulate circadian physiology (15–17)
and the alignment of these clocks between tissues is essential for
the maintenance of metabolic homeostasis. The possibility of
misalignment arises from the differential responsiveness of
tissues to the environmental cues that synchronize the clock
(zeitgebers). Although light is the dominant environmental
rhythmic cues that resents the master clock of the SCN, many
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other tissues are sensitive to cues derived from nutritional
rhythms (18).

The liver is involved in the decomposition of three major
macronutrients. About one tenth of the liver transcriptome are
expressed rhythmically (19). In the liver of wild-type (WT)
animals, the rhythm of a CLOCK: BMAL1 is coordinated
during the day, accompanied with histone acetylation and
RNA polymerase II accumulation, which triggers the peak of
transcription in the early phase of night (16, 20). While the
translation of inhibitory CRY and PER proteins increases, the
levels of CLOCK and BMAL1 decrease and CLOCK:BMAL1-
driven transcription is inhibited (20). This forms a core feedback
inhibitory loop of circadian clock. REV-ERBa, also functioning
to adjust CLOCK: BMAL1, reaches its peak expression at ZT8-10
in the liver, and returns to the lowest levels at ZT20-22. This
constitutes another negative feedback loop (14, 21). However, it
should be noted that only a very small number (less than 10%) of
rhythmic genes are common to the liver, kidney and heart
whereas most of rhythmic genes are tissue-specific (22, 23).
Upon reconstituting circadian expression of BMAL1 only in
the liver of BMAL1-/- mice, the liver recovered about 10% of
total hepatic rhythmic transcripts and 20% of oscillatory
metabolites, including oscillation for glycogen and NAD+

salvage metabolism (16).
Energy metabolism and nutrient absorption are integrated

with the peripheral clock of the liver (24). The amplitude of
BMAL1, a critical driver of metabolic homeostasis under
physiological conditions, is decreased in light and dark periods
in response to high-fat feeding, resulting in the dysregulation of
oscillation rhythms (25, 26). Global disruption of BMAL1 in
mice exhibited increased body weight and fat content and
decreased insulin secretion. When disrupting BMAL1 only in
the liver, mice did not show differences in body weight, fat
content and serum insulin levels compared to wild type mice.
However, the rhythmic expression of clock-regulated metabolic
genes such as glucose transporter 2 (GLUT2), glucokinase, liver
pyruvate kinase, phosphoenolpyruvate carboxykinase 1
(PEPCK1), carnitine palmitoyltransferase 1 (CPT1), etc. are
abolished. In addition, liver-specific disruption of BMAL1
increased glucose clearance and induced hypoglycemia (27).

Metabolism in the liver is closely synchronized with the clock,
making the pace of demand and supply consistent. For example,
upon food consumption after late-night fasting during sleep,
circadian clock provides rhythmic and baseline regulation and
repetitive activities, resulting in rapid consumption of glucose
in the morning to meet energy demand (4). Furthermore,
the liver acts as a transit point for toxins. For example, amino
acids (exogenous substances) are converted to ammonia
(transformation) and then urea (water soluble metabolites) in
the liver, which is a well-known process of detoxification. The
first step of transformation involves hepatic nuclear receptors
which are controlled by rhythmic expression, such as REV-ERB
and ROR subfamilies (28). Core clock and clock-controlled genes
regulate hepatic glucose metabolism. For example, in the liver,
glucagon stimulates gluconeogenesis by activating cAMP/cAMP-
response element binding protein (CREB) signaling during
October 2021 | Volume 2 | Article 691828
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fasting. PER inhibits glucagon-stimulated cAMP production to
decrease gluconeogenesis via interacting with G protein–coupled
receptors (29). Peroxisome proliferator-activated receptor
(PPAR), which is a family of nuclear receptor proteins serving
as the transcription factors to regulate gene expression related to
lipid metabolism, is controlled by the circadian clock. Hepatic
PPARa and PPARg are activated during day time and are
inhibited during night time, while hepatic PPARd is induced
during night time (28). REV-ERBa modulates the oscillation of
sterol regulatory element-binding protein (SREBP) activity,
which is involved in cholesterol and lipid metabolism. In
addition, REV-ERBa also is involved in the circadian
transcription of cholesterol-7a-hydroxylase (CYP7A1), which is
the key enzyme in bile acid synthesis (30).

Predictably, any factor that alters circadian rhythms can
cause hepatic metabolic dysregulation, in the course of time,
leading to metabolic diseases. In the liver, circadian mRNA and
protein expression of clock genes such as PER1, PER2, BMAL1
and CLOCK and circadian-related metabolic regulators, such
as AMPK, lipogenic enzymes, and gluconeogenic proteins are
changed in response to HFD feeding, leading to obesity and
insulin resistance (29, 31). Based on this, it is conceivable that
circadian rhythms control various metabolic processes in the
liver. When the phases of metabolic genes are misaligned,
diseases and disorders often occur.
NUTRIENT CONTROL OF THE
CIRCADIAN CLOCK

Nutrient supply and circadian rhythms are intimately linked.
Feeding a high fat diet (HFD) disrupts circadian rhythms and
causes an unexpectedly large-scale genesis of de novo oscillating
transcripts, resulting in reorganization of the coordinated
oscillations between transcripts and metabolites. The
mechanisms underlying this reprogramming involve both the
impairment of CLOCK: BMAL1 chromatin recruitment and a
pronounced cyclic activation of surrogate pathways through the
transcriptional regulator peroxisome proliferator-activated
receptor g (PPARg) (32). An in vivo study revealed that it takes
only 3 days for an HFD to change the circadian clock in the liver
(20). Moreover, HFD feeding for 4 weeks significantly altered
the rhythms of fatty acid synthesis rate-limiting enzyme hepatic
acetyl-CoA carboxylase (ACACA), REV-ERBa and histone
regulator HDAC3 (33). Studies have shown that insulin
fluctuations caused by nutrient supply can “reset” the biological
clock of the liver (34). In insulin-deficient mice, this change was
not observed (35) but injection of insulin reset the rhythmicity of
genes. This process involved phosphoinositide 3-kinase (PIK3)
and mitogen-activated protein kinase (MAPK) pathways (36).

Conversely, food restriction can almost reset some
peripheral clocks entirely (37–39). During fasting, increased
phosphorylation of adenosine monophosphate (AMP)-
activated protein kinase (AMPK) destroyed the abundance of
CRY and targeted CRYI for its subsequent degradation, thus
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 3
preventing CRY from inhibiting CLOCK: BMAL 1 target genes
(40). The duration period of fasting also affects the peripheral
biological clocks. Compared with short-term fasting, long-term
fast is shown to cause a stronger stimulatory effect on the
peripheral biological clock system (41, 42). Temporal feeding
restriction under light-dark or dark-dark conditions is shown to
change the phase of circadian gene expression in peripheral cell
types by up to 12 h, while leaving the phase of rhythmic gene
expression in the SCN unaffected. As such, changes in nutrient
supply can uncouple peripheral oscillators and the central
pacemaker. The persistence of circadian clock gene oscillation
in both normal chow and HFD validates the notion that
circadian oscillation within the core clock genes is highly
resistant to perturbation, whereas clock output genes are more
sensitive to food as a zeitgeber (39).

Compared with direct circadian control, nutrient rhythmic
supply in the form of feeding/fating rhythms is an indirect but
vital contributor of rhythmic hepatic transcripts (43). In general,
the liver oscillator is controlled by signals from the SCN,
and these signals are amplified by normal feeding rhythms
(39). When feeding rhythm changes, central and peripheral
rhythmic signals clash, leading to metabolic changes. Studies
have shown that in rodents disordered feeding rhythms led to
weight gain (44, 45). In human subjects, changes in meal
schedules cause the central circadian rhythm to be out of
sync with environmental signals, resulting in the circadian
dysregulation (46). The molecular basis for this metabolic
disruption likely is attributable to the dissociation of metabolic
gene rhythms caused by inconsistency between the central clock
and nutrient rhythms. Feeding a high-fat food in limited time
does not change the overall caloric intake as a whole, but
improved diurnal. This timed feeding in mice was shown to
improve diurnal rhythms in metabolic regulators and the
circadian oscillator, thereby improving insulin sensitivity and
reducing adiposity in adipose tissue and liver, compared to mice
fed with an HFD ad libitum (45). While exploring how nutrients
couple clock regulation, two studies have demonstrated that
the cellular pathways of NAD+ metabolism (47) and the
concentrations of adenosine monophosphate (48) appear to
link the availability of nutrients and rhythmic regulation. This
led to the creation of the concept of chrononutrition (24), which
aims to use timed nutrient supply as effective strategy to regulate
circadian clocks in the liver (49, 50).

In addition to food intake rhythm, the nutrient composition
of the food could also disrupt the normal outputs of body clock
signals. For example, saturated fatty acids have been shown to
alter the expression of clock genes in cell lines (51–53). Certain
studies also have shown that in cell cultures, palmitate, the most
common type of saturated fatty acid found in obese animals,
disrupted protein–protein interaction between CLOCK and
BMAL1 in a dose- and time-dependent manner. This
inhibitory effect of palmitate was reversed by Sirtuin 1 (SIRT1)
activator (52). In addition, docosahexaenoic acid (DHA), a
polyunsaturated fatty acid (PUFA), functioned to alleviate the
effect of palmitate on decreasing BMAL1 in cells; although DHA
per se altered the circadian rhythm of BMAL1, suggesting a
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protective role (54, 55). Notably, the effect of saturated fat on the
body clock has never been tested in vivo. A recent study
suggested non-obesogenic doses of palmitate appeared to
change circadian rhythms. In addition, non-obesogenic doses
of oleate, a monounsaturated fatty acid (MUFA), also functioned
to cause circadian dysregulation. Overall, saturated fatty acids are
more harmful (56), although unsaturated fatty acids also alter
circadian rhythms.

Additional to fats, amino acids also regulate liver clocks. For
instance, the peak of liver PER2 is altered in response to an
intravenous injection of mixture of 18 amino acids (57). Another
recent study showed that feeding mice a diet containing only
protein and/or amino acids changed liver circadian rhythms but
not increased insulin levels, which is likely because pure protein
diets and cysteine stimulated glucagon secretion and/or
increased the production of insulin-like growth factor (IGF-1)
(58). Collectively, the existing evidence indicates that altering
food composition and the timing of nutrient supply appears to be
a feasible approach for managing metabolic diseases. Of note, the
effectiveness of nutritional regulation of the circadian clocks may
vary depending on age and sex (15).

In short, nutrients regulate hepatic circadian rhythm through
directly or indirectly modulating the expression of hepatic
circadian-related genes. The investigation of hepatic circadian
regulation by nutrition is expected to provide new knowledge
concerning the mechanisms of liver metabolism and metabolic
dysregulation-related liver diseases.
CIRCADIAN DYSREGULATION IN THE
PATHOGENESIS OF NAFLD

The pathogenesis of NAFLD and NASH were illustrated largely by
a “two hit hypothesis”. The “first hit” is characterized by fat
accumulation in liver, leading to hepatic steatosis and liver
inflammatory damage. The “second hit” is referred to the
concept that the damaged liver is susceptible to proinflammatory
cytokines, adipokines and oxidative stress, resulting in
steatohepatitis and liver fibrosis (59). Much evidence has shown
that circadian rhythmic dysregulation is related to the occurrence
and the progression of NAFLD/NASH (60, 61). Therefore,
circadian rhythm-related hepatic lipid metabolism and
inflammatory response has attracted much attention with hope
to better manage NAFLD.

Circadian Dysregulation Promotes
Hepatic Steatosis
In terms of the pathogenesis of NAFLD, the primary stage of
NAFLD onset is excessive accumulation of triglycerides (TG)
(59, 62). Fats depose in the liver with the following routes: 1) free
fatty acids from adipose tissue lipolysis are transported to the
liver. In most cases, insulin resistance results in an increase in
lipolysis in the adipose tissue, leading to increased free fatty acids
mobilization to the bloodstream and increased influx of free fatty
acids to hepatocytes (63); 2) dietary fats digested and absorbed
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 4
into lymph vessels by forming a lipoprotein called chylomicron.
Some free fatty acids from chylomicron goes to deposit in
adipose tissue, while other fatty acids are still in chylomicron
remnants which are delivered to liver (64); 3) de novo lipogenesis
is increased, especially by increasing dietary simple sugar (65);
4) fatty acid oxidation is decreased (66); 5) fatty acids, which
derived from diets, de novo lipogenesis, and lipolysis of fats in
adipose tissue are bound to glycerol to produce TG (67).

Nutritional signal (glucose) and hormonal signal (insulin) up-
regulate carbohydrate responsive element-binding protein
(ChREBP) and Sterol Regulatory Element-binding Protein-1c
(SREBP-1c) via liver X receptors (LXRs) to increase the
expression of genes for lipogenic enzymes such as acetyl-CoA
carboxylase (ACC), fatty acid synthase (FASN), and stearoyl-CoA
desaturase (SCD-1), thereby promoting hepatic lipid
accumulation in the liver in response to feeding. Of note, the
results from the studies involving multi-stable isotope labeling
methods prove that fat formation is the key point in the process of
hepatic steatosis (68, 69). It is now widely accepted that elevated
TG formation in liver causes simple steatosis, and when liver
lipotoxicity is overt, it has promoted the progression of simple
steatosis to NASH.While the fatty acids used to synthesize TG are
derived from diets, de novo lipogenesis, and lipolysis of fats in
adipose tissue (66).

Excessive accumulation of fats is the key characteristic of
NAFLD. Circadian disorders are involved in metabolic
disruption, especially liver metabolic pathways (Table 1),
which contribute to the development of NAFLD (3, 64, 76).
According to the findings from a lipidomic analysis (3), TG is
a significant component of oscillating lipids in the liver.
Under normal circumstances, TG accumulate and disappear
quantitatively every day. X-box binding protein 1 (XBP1)
regulated the hepatic 12-h cistrome and was found to adjust
TG transport and the levels of VLDL-TG (77). Disruption
of XBP1 promoted NAFLD development, likely through
altering the temporal 12-h transcription of lecithin–cholesterol
acyltransferase, lysophosphatidylcholine acyltransferase 3,
and stearoyl-CoA desaturase 1, and through impairing
phosphatidylcholine and lysophosphatidylcholines cycle, as
well as fatty acid monounsaturation (73). Differentiated
embryo-chondrocyte expressed gene 1 (DEC1), which is a
regulator of the circadian clock, inhibited the expression of
SREBP-1c to reduce hepatic lipogenesis and ameliorated fatty
liver phenotype in NAFLD mouse models (70). In rat primary
hepatocytes, circadian transcriptional regulators such as DEC1
and Kruppel-like factor-10 (KLF-10) formed a feedback loop and
were involved in the regulation of hepatic lipogenesis via
ChREBP (71, 72). Moreover, both cytochrome P450 and 3-
hydroxy-3-methylglutaryl coenzyme A (HMG CoA) enzymes
are involved in the synthesis and decomposition of fats as rate
limiting enzymes with circadian rhythms (78). For example,
cholesterol 7-alpha-monooxygenase (CYP7A1), which is a
cytochrome P450 enzyme in cholesterol metabolism, was
largely upregulated in patients with NAFLD (79). CYP7A1 was
also reported to control circadian clock in the liver. Inhibition of
HMG-CoA reductase increased the expression of CYP7A1 and
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altered clock gene expression such as BMAL1, PER2, and PER3
in the liver (74).

High-fat food intake and liver insulin resistance affect
NAFLD via disruption of circadian clock (80, 81). If high-fat
foods are ingested randomly, metabolic regulators will be
disturbed, accompanied by weakened CREB oscillation,
reduced AMPK activity, inhibited biological clock components
(REV-ERBa, PER2), and elevated FASN expression. This
resulted in increased long-chain free fatty acids in the liver (14,
45), at the levels of the synthesis, extension and/or desaturation
of fatty acids.

Several genetic variations of clock genes are related to hepatic
steatosis. Mice with circadian-related genes mutations
underwent metabolic dysregulation and revealed more severe
hepatic steatosis than did WT mice under conventional and
high-fat food feeding conditions (82). Depletion of nuclear
receptor REV-ERBa and REV-ERBb in the liver disrupted
clock genes and output genes such as CLOCK, BMAL1, CRY1,
PER2, POR, PPARa, and SCO2. Moreover, liver-specific
depletion of REV-ERBa and REV-ERBb led to increased
plasma glucose and TG levels and decreased FFAs levels (14).
In addition, liver-specific depletion of both histone deacetylase 3
(HDAC3) and REV-ERBa in mice caused increases in hepatic
TG levels (21). Finally, another study also showed that long-term
deficiency of REV-ERBa activity led to moderate hepatic
steatosis (76). Although the amount of HDAC3 is constant, its
genome recruitment in the liver corresponds to the expression
pattern of circadian rhythm REV-ERBa (21). The REV-ERBa
binding site coincides with most HDAC3 binding sites at ZT10.
Disruption of steroid receptor coactivator-2 (SRC-2), which
regulates clock genes, resulted in hepatic steatosis.
Furthermore, when circadian rhythm was chronically disrupted
in SRC-2-/- mice, more severe hepatic steatosis phenotype was
generated (75). In summary, the synthesis and decomposition of
fat and TG are altered in patterns to promote fat accumulation in
the liver when the circadian rhythm is dysregulated.
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 5
Circadian Dysregulation Enhances
Liver Inflammation
Although excessive accumulation of TG in hepatocytes is
characteristic of NAFLD, steatosis alone is not necessarily
pathogenic, because as in the early stages, NAFLD is reversible
after weight loss and exercise. Oxidative stress, endoplasmic
reticulum stress and the release of pro-inflammatory cytokines
(such as tumor necrosis factor a, TNFa) are the main
consequences of hepatic lipid overload, and are key factors in
the progression of NAFLD to NASH. Free fatty acids and
cholesterol, especially when accumulated in mitochondria, lead
to increase TNFa and reactive oxygen species (ROS) production
and play an early “inflammatory” role in promoting NASH. The
increase in TNFa and ROS production due to excessive fat
accumulation is known as lipotoxicity, which in turn causes
inflammation, apoptosis, and consequently, the progression to
hepatic fibrosis (62, 83). This process involves two alterations due
to mitochondrial dysfunction including impared b-oxidation and
endoplasmic reticulum stress, thereby resulting in lipid
peroxidation. The resultant increase in ROS and the destruction
of antioxidants’ activities are responsible for the initiation or
exacerbation of inflammation (84). In the pathogenesis of
NASH, hepatic resident cells (such as Kupffer cells and hepatic
stellate cells) and cells recruited by injury (such as monocytes and
macrophages) all release pro-inflammatory signals and participate
in apoptosis or necrotic death of hepatocytes (85, 86). Infiltration
of immune cells and the proinflammatory activation of immune
cells are the two significant features of inflammation in NASH
(87). The activation of nuclear factor kappa light chain enhancer
of activated B cells (NF-kB) in hepatocytes, which is a nuclear
transcription factor to regulate the expressions of inflammatory
cytokines such as TNFa, interleukin 6 (IL-6), and interleukin 1b
(IL-1b), leads to the recruitment and activation of Kupffer cells to
mediate inflammation in NASH (88).

Much evidence suggests that circadian dysregulation is
involved in the pathogenesis of inflammation in NASH (89).
TABLE 1 | The relationship between selective circadian related genes and pathogenic pathways in NAFLD.

Authors Year Study
subjects

Genes related to
circadian
rhythm

Pathogenic path-
ways related to

NAFLD

Main outcomes

Shen
et al. (70)

2014 Mice DEC1 SREBP-1c DEC 1 negatively regulates hepatic SREBP-1c expression to reduce hepatic lipogenesis and
TG content in liver.

Iizuka
et al. (71,
72)

2008 Rats DEC1 ChREBP Glucose stimulation and overexpression of ChREBP increases the expressions of DEC1 and
KLF-10, while overexpression of DEC1 or KLF-10 inhibits glucose stimulated lipogenesis via
ChREBP.

2011 KLF-10

Meng
et al. (73)

2020 Mice XBP1 LCAT Disruption of XBP1 impairs to PC-LPC cycle and fatty acids desaturation to promote the
development of NAFLD via defecting the fatty acid monounsaturated and phospholipid
remodeling pathways.

LPCAT3
SCD1

Li et al.
(74)

2017 Mice CYP7A1 HMG-CoA
reductase

Inhibition of HMG-CoA reductase increased the expression of CYP7A1 and altered clock gene
expression such as BMAL1, PER2, and PER3 in liver.

Feng
et al. (21)

2011 Mice REV-ERBa HDAC3 REV-ERBa and HDAC3 co-localized near genes that regulate lipid metabolism. Loss of
HDAC3 or REV-ERBa in the liver of mice leads to hepatic steatosis.

Fleet
et al. (75)

2016 Mice SRC-2 IGF1, ACLY, FASN
et al.

Disruption of SRC-2 in mice led to a common comorbidity of metabolic syndrome also found
in humans with NAFLD.
Dec1, Embryo-Chondrocyte-expressed Gene 1; KLF-10, Kruppel-like factor (KLF)-10; ChREBP, carbohydrate responsive element-binding protein; SREBP-1c, Sterol Regulatory Element-
binding Protein-1c; XBP1, X-box binding protein 1; LCAT, lecithin–cholesterol acyltransferase; LPCAT3, lysophosphatidylcholine acyltransferase 3; SCD1, stearoyl-CoA desaturase 1; PC,
phosphatidylcholine; LPC, lysophosphatidylcholines; CYP7A1, cholesterol 7-alpha-monooxygenase; HMG-CoA reductase, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; HDAC3,
histone deacetylase 3; SRC-2, steroid receptor coactivator-2; IGF1, Insulin-like growth factor 1; ACLY, ATP citrate lyase; FASN, Fatty Acid Synthase.
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Recent studies have shown that inflammatory cytokines such as
TNFa and IL-6 can resynchronize the circadian clock through
activating NF-kB, which inhibits transcription of clock
repressors (90, 91). In macrophages, BMAL1 increases the
response of nuclear factor erythroid 2-related factor 2 (NRF2)
to lipopolysaccharides (LPS) challenge, inhibiting the production
of IL-1b (92). On the other hand. interleukin 10 (IL-10), an anti-
inflammatory cytokine, is regulated by REV-ERBs throughout
the circadian day (93). In a human study, HFD feeding altered
cortisol rhythms, and brought about changes in diurnal
oscillations of clock genes, inflammatory genes, and fat
metabolic genes in monocytes (94). In addition, monocytes
exhibit diurnal oscillations in the expression of clock genes (95).

Disruption of circadian rhythm (via using a chronic light-
dark cycle shift paradigm) exacerbated the severity of HFD-
induced inflammation, which was characterized by increases in
the proinflammatory activation status and the expressions of
inflammatory cytokines in bone marrow-derived macrophages
(96). Myeloid-specific circadian disruption was reported to be
sufficient to induce inflammatory responses. In myeloid-specific
BMAL1 knockout mice, loss of BMAL1 led to disruption of
rhythmic oscillations of clock genes such as ARNTL and nuclear
receptor subfamily 1 group D member 1 (NR1D1), increased
serum inflammatory cytokines such as IL-1b, IL-6, interferon
gamma (INFg), and monocyte chemoattractant protein-1 (MCP-
1), and exacerbated metabolic dysregulation including increased
adiposity and insulin resistance (95). Furthermore, myeloid cell-
specific PER1/2 disruption via bone morrow transplantation
worsened HFD-induced liver inflammation, which was
accompanied with increased severity of hepatic steatosis and
insulin resistance (97).

It suggested that the circadian disruption in macrophage is
sufficient to bring about in vivo changes in hepatic steatosis and
inflammation. SIRT1, an NAD+-dependent protein deacetylase,
participates the maintenance of interaction between CLOCK and
BMAL1 (52). Disruption of SIRT1 only in macrophage
exacerbated HFD-induced hepatic steatosis via activating
SREBP-1, activated hepatic fibrogenesis via stimulating
collagen secretion, and elevated hepatic inflammation through
activating NF-kB pathway and increasing hepatic macrophage
infiltration (98).

Collectively, circadian rhythm dysregulation resulted from
high-fat diet appears to trigger chain reactions, which lead to
activation of pro-inflammatory pathways in macrophages,
excessive accumulation of fats in hepatocytes and liver
inflammation (Figure 1). This underlies the pathogenesis of
hepatic steatosis and inflammation in NAFLD.

Distal Circadian Disruption
Promotes NAFLD
Since adipose tissue and gut microbiota contribute significantly
to NAFLD/NASH aspects including hepatic steatosis and
inflammation, a “multiple hit hypothesis” has recently been
proposed to better elucidate the pathogenesis of NAFLD and
NASH. Adipose tissue is an endocrine organ which releases
cytokines to influence other organs and regulate the systemic
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metabolism. A significant body of literature has validated that
NAFLD is closely associated with the quantity, location and the
types of fats in adipose tissue (99, 100). Moreover, visceral white
fats appear be more critical in terms of promoting the
development of NAFLD, although overall increased fat content
is a risk factor for NAFLD (101, 102). During obesity, nutrition
stress, e.g., nutrient overload or unhealthy nutrition, and
environmental factors promote inflammation via activating
macrophages and increasing macrophage infiltration into
adipose tissue, leading to adipocyte dysfunction. The
dysfunctional adipocytes reveal increased lipolysis and release
a large amount of free fatty acids to distal tissues such as the
liver. This in turn activates proinflammatory responses in
hepatocytes and liver immune cells (103). Unhealthy diets and
environmental factors also disturb gut microbiota, leading to
increased gut permeability and release of gut microbiota
metabolites and toxins such as LPS. These changes work
collectively to increase fat synthesis and accumulation, as well
as liver lipotoxicity. Mechanistically, lipotoxicity causes
mitochondrial dysfunction and increases ROS production and
ER stress, leading to hepatic inflammation and activation of liver
fibrogenic program (104).

Adipokines, such as adiponectin, leptin, and resistin, are
polypeptides produced by adipocytes, and are shown to
contribute to NAFLD pathogenesis (105). In particular,
adiponectin and leptin are capable of decrease liver fat
accumulation and insulin resistance. Also, adiponectin is shown
to reduce hepatic fibrosis and inflammation by blocking the
activation of NF-kB and inhibiting the release of pro-
inflammatory cytokines such as TNFa and IL-6 (106). In
contrast, resistin have the opposite effects in the liver (107, 108).
Leptin decreases fat accumulation in the liver and generally
functions to improve insulin sensitivity, but promotes insulin
resistance during leptin resistance states (108). During NAFLD,
leptin increases liver inflammation and fibrosis through
stimulating the production of transforming growth factor-b1
(TGF-b1) and activating hepatic stellate cells (109, 110).
Adipokines, such as leptin and adiponectin oscillate within 24
hours to ensure the rational use of energy (111). Adiponectin was
shown to regulate proinflammatory responses because its effect on
increasing liver fat oxidation via inactivating ACC and activating
AMPK. The latter likely involves increased expression of PPARa
gene, which is controlled by circadian (28, 112). Adiponectin also is
shown to reduce the activity of FASN, another enzyme involved in
fatty acid synthesis (113). Environmental factor-mediated
circadian rhythm disruption also amplified the pro-inflammatory
responses of adipose tissue macrophages (114), leading to
adipocyte dysfunction. The latter released a large amount of pro-
inflammatory factors TNF a and IL-6 to inhibit adiponectin
production (115–117). The diurnal oscillation of leptin secretion
from adipose tissue mediated by C/EBPa was regulated by
BMAL1/CLOCK. Disruption of circadian, for example, deletion
of PER1/PER2 or under jet-lag, caused leptin resistance (118).

In addition, regulating the expression of genes in adipose
tissue is shown to influence fat accumulation and inflammation
in the liver. For instance, adipocyte-selective overexpression of
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PFKFB3/iPFK2, which activates 6-phosphofructo-1-kinase
(6PFK1) to enhance glycolysis, decreased HFD-induced liver
proinflammatory response and improved insulin signaling;
although leading to increased hepatic steatosis (119–121). Also,
disruption of interferon (a and b) receptor 1 (IFNAR1) only in
adipose tissue exacerbated HFD-induced hepatic steatosis and
systemic metabolic dysregulation (122).

The synthesis and storage of fats in adipose tissue reveal
circadian rhythms (123). Deletion of adipose tissue BMAL1
disrupted circadian clocks in adipocytes and exacerbated HFD-
induced obesity through increasing food intake during daytime
and reducing energy expenditure. In addition, adipose tissue-
specific BMAL1-disrupted mice exhibited decreases in a number
of key enzymes involved in polyunsaturated fatty acid
biosynthesis, affecting the energy metabolism homeostasis of
the body (124). Moreover, CLOCK/BMAL1 was involved in fat
formation and stimulation of lipid uptake by adipocytes via
PPARg activation (28, 125). PPARg regulates the expression of
REV-ERBa in adipocytes (126). Loss-of-PPARg function in fat
not only resulted in increases in FFAs and TG levels in plasma,
but also elevated liver glucose production and insulin resistance
(127, 128).

Given what mentioned above and described in Figure 2,
NAFLD is a metabolic disease of the liver. Circadian rhythm
disorder accelerates the accumulation of excessive TG and
promotes inflammation and abdominal obesity. Therefore,
obese people with high visceral adipose tissue content reveal
significantly increased incidences of NAFLD.
MANAGEMENT OF NAFLD/NASH
INVOLVING CIRCADIAN

Tomanage NAFLD, it is of a particular importance to control the
prevalence of obesity, considering that obesity significantly
promotes hepatic fat accumulation as a key characteristic of
NAFLD. During the progression from NAFLD to NASH,
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inflammation plays a key role, and reducing inflammation can
prevent liver damage and fibrosis. Lifestyle interventions and
medications, which reduce weight and fat content, insulin
resistance, and/or inflammation, are considered as effective
ways to treat NAFLD. Although many medications were
proved to be safe for NAFLD treatment, lifestyle interventions
including dietary intervention and exercise are still the first
choices. As such, patients are recommended to manage routine
life according to the recommendations of healthy diet, loss of
body weight, and exercise.

Caloric restriction, with or without exercise, was reported to
reduce hepatic fat accumulation, inflammation and fibrosis, and
to improve liver function through decreasing the serum levels of
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) in NAFLD (129, 130). However, BMAL1 knockout mice
failed to increase life span under caloric restriction (131). In
addition, peripheral circadian clock genes, timeless (TIM) and
PER, were required for caloric restriction-mediated increase in
lifespan and improvement in metabolic changes such as
increased fat turnover and decreased TG synthesis in
drosophila (132). Without caloric restriction, limiting feeding
to certain times of the day that align with activity patterns is
reported to reduce hepatic steatosis (45). Feeding an HFD within
8 hours per day (time-restricted feeding, TRF) is shown to
protect against HFD-induced hepatic steatosis and liver
damage. TRF also reduced HFD-induced elevation of hepatic
gluconeogenesis by increasing CRY expression and suppressing
CREB expression, leading to down-regulation of the expression
of gluconeogenic genes such as pyruvate carboxylase and
glucose-6-phosphatase (45). Compared to mice fed an HFD
only during the 12 h dark phase, mice fed an HFD only during
the 12 h light phase gain more body weight (44). This indicates
the importance of timed feeding to maintaining weight or
losing weight.

Mediterranean diet, which contains up to 40% of the calories
from fat (mainly unsaturated fats) and 40% of the calories from
carbohydrate (usually 50-60% in a low-fat diet), was reported to
FIGURE 1 | The effect of circadian dysregulation in macrophage induced by HFD on liver inflammation in NAFLD. Macrophage itself exhibits diurnal oscillations in
expression of clock genes. During NAFLD, disruption of diurnal oscillations of clock genes induced by HFD promotes pro-inflammatory response in macrophage. The
inflammatory cytokines such as TNFa, IL-1b, and IL-6 released by macrophage enhance inflammatory response and fat deposition in hepatocytes.
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provide beneficial effects on NAFLD including reduction of liver
fat and inflammation, as well as improvement of insulin
resistance (133, 134). CLOCK gene polymorphisms were found
to predict the loss of body weight of obese patients after
consumption of Mediterranean diet (135). N-3 polyunsaturated
fatty acids (PUFAs) were shown to reduce hepatic lipid synthesis
and insulin resistance via regulating the expression of PPARa
and SREBP-1, which were expressed with diurnally rhythms
according to circadian clock (14, 136). Moreover, n-3 PUFAs
also improved insulin signal pathway via modulating membrane
fluidity and decreased proinflammatory responses via reducing
the levels of TNF-a and IL-6 in NAFLD (133). Monounsaturated
fatty acids (MUFAs) were known to suppress hepatic
inflammation and ROS production, increase insulin sensitivity,
and provide protective effects against NAFLD, although MUFAs
might increase hepatic steatosis (137, 138). High carbohydrate
diet and refined carbohydrates such as sucrose and fructose were
found to promote the development of NAFLD through
stimulating hepatic de novo lipogenesis and, thus, increase lipid
accumulation in the liver (134). BMAL1 participated in hepatic
de novo lipogenesis via the insulin-mTORC2-AKT signaling
pathway as this was suggested by the findings that BMAL1
knockout mice exhibited decreased de novo lipogenesis in the
liver and that de novo lipogenesis was recovered when restored
AKT activity by insulin (139).

Sedentary lifestyle is a risk factor of the development of
obesity and NAFLD. Exercise was found to improve insulin
sensitivity in adipose tissue and decrease the flow of fatty acids to
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the liver, thereby reducing hepatic fat accumulation and insulin
resistance. The effects of exercise on improving metabolic
regulation were mediated by activation of AMPK, which
inhibited hepatic lipogenesis through SREBP-1 to suppress the
expression of lipogenic genes (such as ACC1 and FASN) and
elevated hepatic fatty acid b-oxidation by reducing malonyl CoA
and stimulating the expression of carnitine palmitoyltransferase
1 (CPT1) (140). A circadian phosphoproteome study in mouse
liver indicated that 25% of phosphopeptides including AKT,
AMPK and mTOR oscillated and signaling pathways for
metabolism were regulated rhythmically by phosphorylation
(141). Choosing the right time of the day to exercise was
shown to obtain optimal beneficial effects due to that hypoxia-
inducible factor 1a (HIF1a), a transcription factor responsible for
regulating glycolysis under low oxygen condition, was activated
in a time-dependent manner upon exercise (142). In addition to
exercise, sleep-awake cycle plays an important role in
maintaining metabolic homeostasis as indicated by the finding
that late bedtime was positively associated with the incidence of
NAFLD in human (143).

There are several pharmaco-therapeutic options for NAFLD/
NASH. Thiazolidinediones (TZDs), which induce PPARg
activation, are considered an effective medication to increase
insulin sensitivity, reduce adipose tissue inflammation and
improve biopsy parameters of steatohepatitis (144). For
example, pioglitazone was reported to reduce liver fibrosis and
adipose tissue insulin resistance in NASH patients with and
without type 2 diabetes, but more effective in patients with type
FIGURE 2 | HFD induced circadian dysregulation in adipose tissue promotes the development of NAFLD. In adipose tissue, HFD disrupts circadian rhythm and
promotes macrophage activation and infiltration, leading to inflammation and insulin resistance in adipocytes and cause adipocyte dysfunction. Lipolysis is enhanced
in dysfunctional adipocytes, releasing large amount of FFAs in circulation, which increase fat accumulation in hepatocytes and activate immune cells such as Kupffer
cells in liver. Activated immune cells release tons of inflammatory cytokines including TNFa and IL-6 to promote hepatic inflammation and insulin resistance. In
addition, recruited immune cells and increased inflammation activate hepatic stellated cells, which cause collagen deposition and fibrosis. HFD also change the
secretion of adipokines mediated by circadian clock. Dysfunctional adipocytes release Resistin and RBP-4, increasing steatosis, inflammation and insulin resistance
in liver. HFD induces a leptin resistance condition, that leptin promotes inflammation, activates stellated cells and increase fibrosis in liver. Adiponectin, which can
decrease hepatic steatosis, inflammation, insulin resistance, and fibrosis, is reduced in dysfunctional adipocytes induced by HFD. TZD such as rosiglitazone and
pioglitazone activate PPARg, restoring adipose tissue circadian rhythm and lowering inflammation and insulin resistance in adipose tissue, and further decreasing
FFAs in circulation and the aspects of NAFLD/NASH.
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2 diabetes (145). Rosiglitazone, a ligand of PPARg, recovered
HFD-induced the changes of hepatic BMAL1 function, which
increased the recruitment and activity of BMAL1 target genes,
such as DBP, CHRONO, and FABP2, and increased liver insulin
sensitivity as well (146). Glucagon-like peptide 1 (GLP-1), which
is a peptide hormone secreted by intestine L cell after food
intake, stimulates insulin release and inhibits glucagon release,
thereby improving glucose homeostasis. The secretion of GLP-1
was diurnally oscillated and paralleled with the expression of
BMAL1, which was suppressed by palmitate (147). GLP-1
receptor (GLP-1R) agonism was found to reduce body weight
and hepatic steatosis, as well as increased hepatic fatty acid
oxidation and insulin sensitivity in NAFLD/NASH (148).
Dipeptidyl peptidase-4 (DPP-4) inhibitors suppressed DPP-4
enzyme, thereby preventing inactivation of GLP-1 and glucose-
dependent insulinotropic polypeptide (GIP) to stimulate insulin
secretion. DPP-4 inhibitors also were reported to decrease body
mass index, liver triglyceride levels, serum aminotransferase
levels, and the progression of NAFLD (149). Blocking sodium-
glucose cotransporter 2 (SGLT2) inhibited glucose absorption.
Also, SGLT2 inhibitors reduced body weight, blood pressure,
and insulin resistance, which is considered a potential
medication for NAFLD/NASH. Metformin, a first-line anti-
diabetic drug, was shown to provide beneficial effects in
patients with NAFLD/NASH including reduction of serum
lipids and glucose levels. However, the improvement of liver
histology and function by metformin was not significant (150).
The anti-diabetic effect of metformin also was considered to be
mediated by gut microbiota, which was supported by the study
that transferring fecal samples from metformin-treated mice to
germ-free mice improved glucose tolerance (151). Gut
microbiota has its own diurnal compositional and functional
oscillations. Nutrition and environmental factors such as HFD
and disruption of feeding time are shown to impair microbiota
diurnal rhythmicity and cause microbiota dysbiosis, leading to
metabolic dysregulation (152). Obeticholic acid (OCA), which is
a synthetic bile acid derivative and farnesoid X receptor agonist,
was recently found to reduce hepatic inflammation and improve
the histological features of NASH (153). This was attributable to
alteration of gut microbiota composition by increased
population of Blautia and decreased levels of taurine-bound
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 9
bile acid induced by an HFD after OCA treatment (154). Also,
patients with NAFLD are in a need to consider the time and
intervals of taking certain drugs, given that liver detoxification is
affected by biological rhythms.
CONCLUSION AND FUTURE DIRECTIONS

Nutrition and lifestyle are known to affect metabolism, thereby
profoundly influencing human health, quality of life and
longevity. Circadian clock plays an important role in
maintaining metabolic homeostasis. Dysregulation of circadian
rhythms induced by high-fat and/or high-sugar diets and
unhealthy eating patterns such as eating throughout the day
and late-night eating are considered pathogenic factors for
NAFLD/NASH. As summarized in this review, we provide the
current state of knowledge for NAFLD pathogenesis from a
circadian perspective. However, the pathogenesis of NAFLD/
NASH is multifactorial and complex, which makes it difficult to
develop an effective therapy for treating NAFLD/NASH. Dietary
and lifestyle interventions, which promote weight loss, are still
considered effective to improve NAFLD/NASH aspects.
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