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Despite advancements in electrification and the transition to solar-based electricity 
production, India will continue to depend on land-based carbon offsets to achieve its 
net-zero target. Land-based climate mitigation strategies in India can be implemented 
by utilizing underutilized marginal lands or increasing land availability through 
technological interventions to close agricultural yield gaps. Both below-ground 
(e.g., soil carbon) and above-ground (e.g., standing tree biomass) options offer 
viable pathways for such measures. Key strategies include cultivating perennial 
bioenergy feedstocks, afforestation, establishing fast-growing Miyawaki forests, 
restoring wetlands and mangroves, and applying biosolids to land. However, 
caution is essential to prevent unintended consequences, such as clearing natural 
forests or introducing microplastics into soils. The cost of carbon sequestration 
and the resilience or permanence of stored carbon will be  critical factors in 
determining the preferred approach. Additionally, land-based strategies often 
overlap spatially, making GIS-based tools indispensable for identifying optimal 
solutions tailored to local conditions. Integrating these strategies into the national 
carbon budget can enhance transparency and contribute significantly to India’s 
net-zero emissions goal.

KEYWORDS

net zero emission, nature based solution, land based solution, afforestation, soil 
organic carbon, biosolids, bioenergy, climate change

1 Introduction

Limited land availability is often seen as a barrier to implementing land-based solutions 
like biofuel expansion in India. This concern stems from India supporting over 17% of the 
global population on just 2.5% of the world’s land area. However, India is also a leading 
generator of land-based carbon credits, with its net-zero strategy relying heavily on measures 
like afforestation and biofuels. What strategies can help India further leverage land-based 
approaches to achieve its net-zero target? Here, we address this question by summarizing 
land-based measures currently being discussed in academic and policy forums in India.

Deep electrification in conjunction with decarbonization of electricity sector can 
possibly reduce India’s carbon emissions to 1,300 Million tons (Mt) of carbon dioxide 
equivalent (CO2-eq) year−1 by 2050, down from the current 2,600 Mt. CO2-eq year−1 
(Prajapati et al., 2024) while sustaining a compounded annual economic growth rate of 
5.4% that supports the well-being of more than 1.5 billion people (Vats and Mathur, 2022). 
Both carbon capture utilization and storage (CCUS) techniques, which target emissions 
from CO2-intensive industries (Prajapati et al., 2024), and nature-based solutions (James 
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et al., 2024; Seddon et al., 2021; Soterroni et al., 2023)—including 
cellulosic bioenergy from perennials (Robertson et al., 2022)—will 
need to play a crucial role in offsetting remaining residual CO2-eq 
emissions. The potential rate of soil carbon sequestration in India 
is estimated to stand at 143-to-180 Mt. CO2 year−1 (Lal, 2004b), 
representing slightly more than 10% of the total residual emission 
that needs to be  offset to achieve net-zero emission. Given the 
significant variability in land use and land cover across India 
(Supplementary Table S1), a diverse range of practices will need to 
be implemented (Beaury et al., 2024). This mini-review explores 
various land-based strategies for climate change mitigation, taking 
into account the country’s unique biogeography, population 
dynamics, and environmental conditions.

2 Land use changes caused by solar 
power plants

Utilizing approximately 0.3–1.4% of India’s land area could 
generate enough power to achieve 75% land-based solar integration 
into the national electricity mix, with a carbon footprint of 0.4-to-
10.8 grams of CO2 equivalents per kilowatt-hour (gCO2-eq kWh−1; 
Van De Ven et  al., 2021)—a fraction of the current electricity 
emission intensity of 711 gCO2-eq kWh−1 (Sengupta et al., 2022). 
The relatively small land-use changes associated with large-scale 
expansion of solar plants can still influence terrestrial carbon 
balance, depending on the existing carbon stocks and prior land use 
(Van De Ven et  al., 2021; Gomez-Casanovas et  al., 2023). Solar 
plants can impact soil carbon and nutrient cycling by altering 
albedo, plant available radiation, temperature, water availability, 
and wind speed (Armstrong et al., 2014). The installation of solar 
panels on marginal lands (Supplementary Table S1) with low soil 
organic carbon (SOC) is unlikely to negatively affect the carbon 
budget (Van De Ven et  al., 2021). However, placing them on 
productive agricultural land or areas providing essential ecosystem 
services could result in relatively higher emission intensity (Van De 
Ven et al., 2021). Recent efforts have focused on integrating solar 
energy with agriculture using agrovoltaics (Gomez-Casanovas et al., 
2023) and ecosystems using ecovoltaics (Sturchio and Knapp, 2023) 
to balance competition between solar plants and other beneficial 
land uses. While there is no conclusive evidence yet on the impact 
of these systems on plant–soil carbon cycling, long-term studies are 
necessary to fully understand their effects (Gomez-Casanovas et al., 
2023). Nevertheless, agrovoltaic and ecovoltaic approaches could 
lead to solar array designs that could promote climate regulation, 
local cooling, biodiversity, ecosystem services, and the restoration 
of degraded land (Ketzer et al., 2020; Kim et al., 2021; Marcuta 
et al., 2023). Considering that the land required for solar plants in 
India is relatively small (Van De Ven et al., 2021), the expansion of 
solar infrastructure is unlikely to significantly impact the 
agriculture, forestry, and other land use (AFOLU) sectors. This 
leaves room to efficiently harness biological approaches—such as 
utilizing plants (Somerville et al., 2010; Duarte et al., 2013; Dwivedi 
et  al., 2015; Jaiswal et  al., 2017; He et  al., 2024), soil microbes 
(Silverstein et  al., 2023), and land-based recycling of biosolids 
(Brown and Leonard, 2004; Peng et al., 2023)—to support multiple 
sustainable development goals (SDGs), including climate action 
(McElwee et al., 2020).

3 Contribution of AFOLU sector in 
total emission in India: current status

Recent estimates indicate that gross Agriculture, Forestry, and 
Other Land Use (AFOLU) emissions in India totaled ~352 Mt. 
CO2-eq, with land sector removals offsetting ~181 Mt. CO2-eq, 
resulting in net emissions of ~171 Mt. CO2-eq (GHG Platform India, 
2022). Land-based CO2-eq removal plays a crucial role in India’s 
strategy to meet its Nationally Determined Contributions (NDC) 
targets (Mathur et al., 2021), mostly relying on increasing forest cover 
area. Currently, the major contributors to CO2-eq emissions from 
AFOLU are biomass burning, livestock, N2O emissions from managed 
soils, and rice cultivation, while forests serve as the largest carbon sink 
(Kumar and Aravindakshan, 2022). Several management options, 
including the use of nitrification inhibitors (Soares et al., 2023), energy 
production from crop residues (Athira et  al., 2019), and best 
management practices for reducing methane emissions (Singh et al., 
2003), have yet to be  adopted at scale with the possibility to 
significantly lower emissions from the current land uses within the 
AFOLU sectors in India.

4 Current and past status of SOC in 
India

The rooting depth (0–30 cm) SOC pool in India’s soils is estimated 
to be 9.55 petagrams (Pg) C, which stands at ~1.3% of the global pool of 
684–724 Pg C (Bhattacharyya et al., 2009). The average value of SOC 
concentrations in India (3.2 g kg−1) is much lower than the 
recommended threshold value of 11.1 g kg−1 in tropical soils (Minasny 
et  al., 2017), and this phenomenon can possibly be  attributed to 
unsustainable field management and cultivation practices (Lal, 2004b), 
including tillage, removal of crop residues for fodder (Lal, 2004a), 
deforestation (Padbhushan et al., 2022), and overgrazing. By the late 
1960s, cultivated soils in India had already undergone a 30 to 60% 
decline in SOC concentrations compared to levels in undisturbed or 
native ecosystems (Lal, 2004b; Swarup et al., 1999). This deterioration 
has continued, with recent studies estimating that ~98 million hectares 
of land now show severe degradation with extremely low SOC levels 
(Space Applications Centre, 2018). Recommended practices for 
rebuilding SOC stocks in India include afforestation on degraded lands, 
incorporating crop residues into the soil, and cultivating pulses (Minasny 
et al., 2017). Additionally, several other land-based climate mitigation 
strategies, including rebuilding SOC stocks, which hold comparable or 
potentially greater effectiveness but have received less attention, are 
discussed in the following sections. It is estimated that 7% of SOC 
potential sequestration in rice-wheat system can be achieved over a 
period of 20 years at a cost of 6.8 US$ ton−1 of CO2 (Grace et al., 2012).

5 Land sparing for conservation by 
improving agricultural efficiency

India’s total land under grain production covers approximately 
130 Mha (Department of Agriculture and Farmers Welfare, 2023), and 
recent trends indicate that current yields are significantly lower than 
their potential. Several yield gap analyses highlight the potential to 
substantially increase yields of large land area occupying crops such 
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as grains (Jain et al., 2017), oilseeds (Jha et al., 2011), pulses (Rimal 
and Kumar, 2018), and sugarcane (Singh et al., 2021). The inefficiencies 
in the current agricultural system present opportunities for 
improvement through technological interventions, such as precision 
and smart agriculture (Roy and George, 2020; Balasundram et al., 
2023), and through breeding and biotechnological approaches (De 
Souza et al., 2022; Senapati et al., 2022; Xiong, 2024). Intensifying 
agricultural practices could free up land for implementing mitigation 
strategies, potentially making them more effective than land-sharing 
(Phalan et al., 2011).

6 Repurposing marginal land

Marginal lands (Supplementary Table S1), often unsuitable for 
intensive agriculture, can be effectively repurposed for cultivating 
perennial grasses, which are ideal for both bioenergy production and 
carbon sequestration. In India, with estimates of marginal land 
availability ranging from 45 to over 140 Mha (Department of Land 
Resources and NRSC, 2011; Edrisi et al., 2022; Edrisi and Abhilash, 
2015; MoRD and NRSC, 2019; NBSS and LUP, 2005), there is 
significant untapped potential to increase their role in the climate 
mitigation strategies. Advanced biofuels using perennial grasses as 
feedstock are said to be a robust way to reduce greenhouse gas (GHG) 
emissions (Dwivedi et al., 2015; Jaiswal et al., 2017; Field et al., 2020; 
He et al., 2022) and in fact ameliorate some of the undesirable effects 
of climate change on temperature and rainfall patterns via atmospheric 
cooling (He et al., 2022). Introducing improved species of grasses (Lal 
et al., 1997) and legumes (Kumar et al., 2018) that are more efficient 
at capturing and storing carbon can also enhance the carbon content 
of soils in marginal grasslands. Identifying suitable grasses for 
degraded and marginal lands that can sustainably supply feedstock for 
biomass energy remains an underexplored area (MoPNG, 2018). 
Given the sustained high demand for liquid fuels in the foreseeable 
future (IEA, 2024), land-based, lower-carbon biofuels and feedstocks 
(Long et al., 2015) are anticipated to play a significant role in meeting 
the energy needs of India more sustainably (Nouni et al., 2021).

India encompasses a total of 55.76 Mha of land characterized as 
gullied areas, scrublands, waterlogged regions, degraded forests and 
pastures, degraded land under plantation crops, shifting cultivation 
lands, mining and industrial wastelands, sandy terrains, barren rocky 
stretches, and snow-covered zones, often classified as wasteland (Ayog, 
2024). Of this, approximately 20.32 Mha are estimated to be highly 
suitable and 16.14 Mha are moderately suitable for agroforestry (Ayog, 
2024), offering potential for carbon sequestration both above and 
below ground while also enhancing biodiversity (Nair et al., 2009). 
Planting oilseed-bearing trees like Karanj offers the dual benefits of 
agroforestry (Chaubey and Bohre, 2014) and the sustainable 
production of feedstock for biodiesel production (Mishra et al., 2021). 
Caution is needed when repurposing marginal lands in India for CO2 
offset projects, considering the risk of natural forest clearing specially 
after the forest (Amendment) Act 2023 (Thakur, 2023).

7 Miyawaki forest

The Miyawaki technique (Miyawaki, 1975) to establish thick forest 
cover regardless of varying soil and climatic conditions (Hanpattanakit 

et al., 2022) in ecologically and environmentally degraded regions 
(Poddar, 2021) allows trees to grow more rapidly, resulting in rapid 
canopy closure while sequestering carbon at a much greater rate 
(Schirone et al., 2011; Kueh et al., 2016). Currently, the Miyawaki 
method is popular only in land-constrained regions such as urban 
areas (Kuittinen et al., 2023; Daou et al., 2024) but has a high cost 
(~50,000 USD acre−1) of establishment. Claims in the gray literature 
indicate that the carbon sequestration rate of Miyawaki forests is 
approximately 10–15 times greater than that of natural regeneration 
over a period of 20–30 years (ICLEI South Asia, 2022; Sandip et al., 
2022). The estimated cost of CO2 sequestration through the Miyawaki 
method was found to be  approximately $26 ton−1 of CO2 
(Supplementary Table S2), significantly higher than the cost ($3 ton−1 
of CO2) of natural regeneration (Ravindranath and Somashekhar, 
1995) but requiring lesser land area. Their significant potential for 
positive impacts on biodiversity conservation underscores the need 
for further investigation into their suitability and long-term 
sustainability on a larger scale. Currently, most Miyawaki forests in 
India are funded through corporate social responsibility (CSR) 
projects, but increased support from government initiatives could 
further enhance their implementation and impact.

8 Recycling of carbon and nutrients 
by land application of biosolids

The role of biosolids in land-based greenhouse gas mitigation 
often goes unrecognized (P. Smith et al., 2013), despite its significant 
contributions to carbon sequestration. India’s biosolid generation 
could reach between 34 and 85 Mt. year−1 by 2070, based on a rate of 
20–50 kg biosolids year−1 capita−1 (Tezel et al., 2011) and a projected 
population of 1.7 billion (UN-DESA, 2024), compared to the current 
sludge production of 2.4 Mt. year−1 (Figure 1A). Improvements in 
wastewater collection and treatment infrastructure, coupled with a 
growing population, are expected to lead to an increased availability 
of biosolids in the future. Land application of biosolids in King 
County, located in Washington in the northwestern USA, is estimated 
to generate up to 4.5 t CO2 credits per dry ton, accounting for fertilizer 
replacement, no-till land management, biofuel production, 
composting, and digester gas-powered fuel cells (Brown and Leonard, 
2004). With improved wastewater collection and management, 
biosolids in India could potentially contribute to carbon credits 
ranging from 153 to 382 Mt. CO2 year−1, assuming similar credit 
values as those observed in the northwestern USA. However, these 
carbon credits are highly dependent on local conditions, and 
we  anticipate that region-specific methodologies will emerge, 
facilitating participation in the voluntary carbon market in India in 
the future. While the potential for soil carbon credit from biosolids 
application may be limited by biogeochemical constraints (Torri et al., 
2014; Wiesmeier et  al., 2019), credits from other processes 
(composting, fuel cells, fertilizer value, and biofuel production) can 
be expected to be comparable in order of magnitude. While land 
application offers environmental benefits such as enhanced soil 
quality, improved plant growth, and increased carbon sequestration, 
it can also lead to adverse effects like nutrient losses and elevated soil 
respiration (Gravuer et al., 2019; Rodrigues et al., 2021). Therefore, 
implementing appropriate regulations is essential to ensure the safe 
and sustainable reuse of biosolids in agriculture. The inherent local 
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control seems to be playing a greater role than the rate of application 
in deciding actual climate benefits as a consequence of land application 
of biosolids (Villa and Ryals, 2021). This is because the maximum 
potential for carbon sequestration is often specific to soil 
characteristics, while climate plays a critical role in regulating the rate 
of mineralization and immobilization – key processes that ensure 
nutrient availability to plants from organic sources.

Nevertheless, the land application of biosolids presents challenges, 
one of the most pressing being the introduction of microplastics into 
the soil environment (De Souza Machado et al., 2019; Zhang et al., 
2020; Baho et al., 2021; Rillig et al., 2021; Kannankai et al., 2022; Singh 
S. et al., 2023). Their widespread presence across various locations in 
India (Figure 1B) necessitates further research into their impact on 
land-based climate mitigation strategies (Chia et al., 2023), because 
soil hydraulic properties (Guo et al., 2022), contaminant transport 
(Ren et  al., 2021), soil microbiome (Sun et  al., 2022), and soil 
respiration (Rillig et al., 2021) are greatly impacted by microplastics.

9 Mangroves and freshwater wetland

Intricately linked to land systems, mangroves and freshwater 
wetlands occupy only about 0.5% (Alongi, 2014) and 1% (Hu et al., 
2017) of the global land surface, respectively, yet they store a 
disproportionately large share of the world’s carbon stock relative 
to their area (Duarte et al., 2013; Macreadie et al., 2021; Malerba 
et al., 2022). The waterlogged conditions in these systems inhibit 
the decomposition of organic material by creating an anaerobic 

condition, resulting in the buildup of carbon within the soil 
(Richardson and Vepraskas, 2000), with life spans ranging from a 
few decades to several million years (Were et al., 2019). However, 
while wetlands are substantial carbon sinks, they are also sources 
of CH4 and N2O which can result in net greenhouse gas emissions. 
This underscores the need for continuous monitoring and 
management when evaluating these systems as climate solutions 
(Malerba et al., 2022).

India’s commitment to wetland conservation is demonstrated by 
its 80 Ramsar sites (MoEFCC, 2024), which collectively cover an area 
of 1.35 Mha (MoEFCC, 2024) out of the total 15.98 Mha of wetlands 
in the country (Space Applications Centre, 2013), making it the largest 
network of Ramsar sites in Asia. India’s mangrove cover spans around 
499,200 ha (FSI, 2021), with total carbon stocks estimated at 33.9 Mt. 
(Singh A. et  al., 2023). The Indian government has launched an 
initiative to add 54,000 ha of Mangroves over a five-year period from 
2023 to 2028 (MOEFCC, 2023b).

10 Technical challenges

Identifying suitable plant species (Long et al., 2015; Kumar 
and Balasubramanian, 2024) for various land-use-based strategies 
is crucial, considering not only their potential to mitigate CO2 
emissions but also their resilience to anticipated climate change. 
This is essential because the effectiveness of such measures should 
be assessed over several decades. Establishing standard protocol 
for Monitoring, Reporting, and Verification (MRV) of carbon 

FIGURE 1

(A) Sludge generation in India (wet basis) based on Central Pollution Control Board [CPCB, 2021]; (B) Average microplastics concentration in soil, 
sewage, and sediment across sampled Indian sites. See Supplementary Table S3 for data sources.
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budgets along with quantification of uncertainty is also critical. 
Usage of ecosystem models capable of simulating carbon cycle 
(Table 1) in the MRV protocols for the assessment and issuance of 
carbon credits (Brummitt et al., 2024) is challenging (Garsia et al., 
2023), due to poor records of high-resolution land-use history 
(Tian et al., 2014), leakage of stored soil carbon and lack of trained 
manpower. Some of these shortcomings can be  overcome by 
machine learning-based approaches (Berardi et al., 2020; Dangal 
et al., 2022; Mathers et al., 2023) along with coupling with other 
processes (Lang, 2019; Surendran and Jaiswal, 2023). It is to noted 
that many of the land-based mitigation strategies presented here 
may overlap spatially (Beaury et  al., 2024) and GIS modeling 
could help identify the best strategies given local conditions. 
Incorporating spatially explicit information on the contribution 
of land to the total carbon budget within the NDC accounting 
framework (Prusty et al., 2024) can enhance transparency, address 
negative externalities associated with climate-friendly new 
technologies (Blanco et  al., 2023), and play a pivotal role in 
achieving the shared global goal of a net-zero world. Emerging 
pollutants like microplastics pose a significant challenge, as 
standardized protocols for analyzing soil and plant samples are yet 
to be established. Furthermore, the quantitative and qualitative 
impacts of microplastics on the terrestrial carbon cycle remain 
poorly understood.

11 Discussion

A combination of policy measures, financial incentives, and 
community engagement is essential for increased adaptation of these 
land-based approaches. The implementation would need to be carried 
out through a mix of top down and bottom-up approaches relying upon 
both government and private corporation for the necessary policy and 
regulation, financing and investment, innovation and technology, 
implementation, monitoring and execution, scaling up, and public 
awareness and advocacy. Afforestation, often less commercially viable 
than using land for commodity crops, is typically led by governments for 
public benefit. However, linking such efforts with income-generating 
activities like ecotourism can attract non-governmental participation, 
even in initiatives with limited initial commercial appeal (Wunder, 1999). 
Some of the measures may need enactment of new laws, regulations, and 
policy support from government and their success at implementation 
stage is heavily dependent on the coordination among different sections 
within the government. For example, judicious and sustainable land 
repurposing for biofuel production while accounting for the impact of 
direct and indirect land use changes (Jaiswal et al., 2017) can blur the 
divide between agriculture-based and industry-based economies while 
integrating land-based climate mitigation strategies into the 
decarbonization of India’s heavily fossil-dependent energy sector (Li and 
Wang, 2019). Simultaneously, it can potentially support the mission of 

TABLE 1 Land use types and models applied in various studies across the world for different Land Use and Land Cover (LULC) types.

Land use type Model References

Mangroves
MCAT-DNDC Dai et al. (2018)

NUMAN Chen and Twilley (1999)

Wetlands Wetland DNDC Zhang et al. (2002)

Tropical Rainforest

RothC Jenkinson et al. (1992); Coleman et al. (1997); Cerri et al. (2003)

Forest DNDC Kiese et al. (2005); Werner et al. (2007)

Forest BGC Running and Gower (1991); Ichii et al. (2007)

Century Parton et al. (1983); Sanford et al. (1991)

TEM McGuire et al. (1995)

Tropical Deciduous

Forest DNDC Kiese et al. (2005)

Forest BGC Running and Gower (1991); Vargas et al. (2008)

TEM McGuire et al. (1995)

Temperate forest
Forest DNDC Butterbach-Bahl et al. (2001)

Forest BGC Running and Gower (1991); White et al. (2000)

Grassland

RothC Jenkinson et al. (1992); Coleman et al. (1997); Xu et al. (2011)

Century Parton et al. (1983, 1993)

DNDC Li et al. (1997)

DayCent Parton et al. (1994); Pepper et al. (2005)

Agricultural Land

Century Parton et al. (1983); Smith et al. (2000)

DayCent Parton et al. (1994); Del Grosso et al. (2002); Pepper et al. (2005)

DNDC Li et al. (1997)

RothC Jenkinson et al. (1992); Coleman et al. (1997); Diels et al. (2004)

EPIC Williams (1990); Izaurralde et al. (2006)

Savanna Century Parton et al. (1983); Ardö and Olsson (2003)
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increasing farmers’ incomes (Silalertruksa et al., 2012) by incentivizing 
agricultural diversification and establishing markets for diversified 
crops – essential element, alongside yield improvement, to enhance 
farmers’ incomes and living standards. Achieving this requires robust 
coordination among the Ministry of New and Renewable Energy 
(MNRE), Ministry of Earth Sciences (MoES), Ministry of Petroleum and 
Natural Gas (MoPNG), Ministry of Agriculture and Farmers’ Welfare 
(MoA&FW), and potentially several other stakeholders, which, specially 
at the implementation stage, remains a significant challenge. The 
emerging carbon emission market, especially in the context of India, can 
be reconciled with the net-zero emissions goal by creating a market-
driven approach and utilizing revenue to support projects like 
afforestation, soil carbon sequestration, land rejuvenation, renewable 
energies, and promotion of sustainable land use practices. As the use of 
carbon credits often involves MRV, carbon credits may also promote 
accountability. Compliance mechanism under the carbon credit trading 
scheme (CCTS) by the Indian government has recently been introduced 
to facilitate the achievement of India’s enhanced NDC (Bureau of Energy 
Efficiency, 2024). As many of the land-based strategies overlap, therefore, 
developing countries like India need to have flexibility in designing 
accounting framework for GHG such that appropriate policies can 
be chosen based on their consistency with the NDC (Prusty et al., 2024).

Overall, land-based measures include the reduction of GHG 
emissions and/or enhanced CO2 removal from the atmosphere compared 
to the baseline scenario. Typically, land-based measures are considered 
cheaper and easier to implement than purely technological intervention 
and cost of mitigation for India is estimated to be 50–100 $ ton−1 of CO2 
(Roe et  al., 2021). India’s NDC is supported by various government 
initiatives, such as National Afforestation Program (MoEFCC, 2019), 
National Mission on Sustainable Agriculture (Department of Agriculture 
and Farmers Welfare, 2010), Amrit Dharohar scheme (MOEFCC, 2023a), 
Mangrove Initiative for Shoreline Habitats and Tangible Incomes 
(MISHTI; MOEFCC, 2023a), etc. India is also one of the largest 
contributors to the global voluntary carbon markets (VCMs; Nozaki, 
2023). The efforts by both central & state governments, along with 
contributions from private corporations, have made India the only major 
country whose emissions pathways are consistent with carbon budget 
required to limit the global warming within 2°C (Vishwanathan et al., 
2023). However, post-COVID-19 pandemic, the trend in GHG emissions 
has become more concerning. We conclude this paper by emphasizing 
that a wide range of land-based carbon offset measures can play a pivotal 
role in helping India achieve its pledge to become a net-zero country 
by 2070.
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