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Climate change impacts manifest di�erently worldwide, with many African

countries, including Senegal, being particularly vulnerable. The decline in ground

observations and limited access to these observations continue to impede

research e�orts to understand, plan, and mitigate the current and future

impacts of climate change. This occurs at a time of rapid growth in Earth

observations (EO) data, methodologies, and computational capabilities, which

could potentially augment studies in data-scarce regions. In this study, we

utilized satellite remote sensing data leveraging historical EO data using Google

Earth Engine to investigate spatio-temporal rainfall and temperature patterns

in Senegal from 1981 to 2020. We combined CHIRPS precipitation data and

ERA5-Land reanalysis datasets for remote sensing analysis and used the Mann–

Kendall and Sen’s Slope statistical tests for trend detection. Our results indicate

that annual temperatures and precipitation increased by 0.73◦C and 18 mm in

Senegal from 1981 to 2020. All six of Senegal’s agroecological zones showed

statistically significant upward precipitation trends. However, the Casamance,

Ferlo, Eastern Senegal, Groundnut Basin, and Senegal River Valley regions

exhibited statistically significant upward trends in temperature. In the south, the

approach to climate change would be centered on the e�ects of increased

rainfall, such as flooding and soil erosion. Conversely, in the drier northern areas

such as Podo and Saint Louis, the focus would be on addressing water scarcity

and drought conditions. High temperatures in key crop-producing regions, such

as Saraya, Goudiry, and Tambacounda in the Eastern Senegal area also threaten

crop yields, especially maize, sorghum, millet, and peanuts. By acknowledging

and addressing the unique impacts of climate change on various agroecological

zones, policymakers and stakeholders can develop and implement customized

adaptation strategies that aremore successful in fostering resilience and ensuring

sustainable agricultural production in the face of a changing climate.
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1 Introduction

The impacts of climate change manifest uniquely across the world’s regions, and Africa

remains one of the hotspots of its crippling effects (Cappelli et al., 2023; IPCC, 2023).

Climate change impacts ecosystems, people, infrastructure, and agriculture. Extensive

empirical research has shown that many African countries, including Senegal, face
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substantial exposure, have limited adaptive capacity, and exhibit

low resilience to climate change and its impacts (Leal Filho

et al., 2019; Saeed et al., 2023; IPCC, 2023). This is a significant

environmental injustice because Africa has contributed the least

to global greenhouse gas emissions of all populated continents

(Höhne and Blok, 2005; den Elzen et al., 2005).

In Senegal, poverty and food insecurity compound climate

impacts, and research has shows that the impacts on agriculture

are mixed. Araya et al. (2022) predicted significant declines of

16%–20% in peanut yields in Senegal for the period 1981–2005

due to rising temperatures. In contrast, Konte et al. (2019) found

that rising temperatures could positively impact rice and maize

yields in Senegal while potentially harming the growth of other

crops, such as sorghum. Ultimately, the impacts of climate change

vary across countries within and across agroecological zones, and

understanding how to mitigate these impacts will require more

localized research.

Access to reliable station-based climate data in Africa remains a

significant challenge owing to the uneven distribution of weather

stations and poor data quality, resulting in substantial data gaps

(Bodian et al., 2020; Dosio et al., 2021; Dinku, 2019; Morice et al.,

2012). Despite these limitations, research on climate trends in

countries such as Senegal has primarily relied on data from in situ

meteorological stations (Koudahe et al., 2017; Bodian et al., 2020).

However, approaches that depend solely on in-situ station data

face challenges in remote and sparsely gauged areas, in addition

to the well-documented difficulty in accessing hydrological and

meteorological data (Bodian et al., 2020; Barry et al., 2017; Funk

et al., 2012; Fall et al., 2006).

The accuracy of data collected from meteorological stations

is often questionable because of unusual data values, errors in

handwritten records, data unavailability, and significant data gaps

(Mekonnen et al., 2023; Dosio et al., 2021). Undetected data

quality issues can profoundly affect climatological analyses, leading

to biased results and substantial uncertainties (Hunziker et al.,

2018). Consequently, it is crucial to explore alternative approaches

to study climate trends in regions with limited station data

to fill informational gaps and provide a more comprehensive

understanding of the climate in these areas.

Advances in geospatial technology and easier access to high-

performance computing resources such as Google Earth Engine

(GEE), which stores multi-petabyte curated satellite datasets and

facilitates the processing of large datasets, make it possible to

implement complex data-intensive analyses of remote sensing data

quickly and effectively (Gorelick et al., 2017). Satellite data cover

vast, remote areas that are difficult to access or lack dense networks

of climate stations (Huntington et al., 2017). The increasing

availability of satellite data has enabled the development and

application of machine learning models to analyze climate data

with greater precision and detail (Magadzire et al., 2022). This

has the potential to help the world understand the dynamics

and effects of climate change at different scales and solve urgent

environmental problems, such as food insecurity (Nakalembe

et al., 2021). GEE houses easily obtainable high spatial and

temporal resolution agriculture, precipitation, and atmospheric

observation data. Some of these include the Climate Hazards Group

InfraRed Precipitation with Station (CHIRPS), Tropical Rainfall

Measuring Mission (TRMM 3B42), and ECMWF atmospheric

reanalysis 5 (ERA5) (Gorelick et al., 2017). Satellite-based rainfall

and temperature retrieval algorithms are becoming increasingly

popular for climate research owing to their scalability and

complementary data to station-based hydro-meteorological data.

CHIRPS data, for example, has a strong correlation and relatively

lower bias compared to using only station data for monitoring

precipitation or drought (Ndecky, 2020; Sacré Regis et al.,

2020). However, satellite-derived estimates still have limitations,

particularly in high elevation regions and poorer estimates on

a daily timescale in Africa due to insufficient data required for

downscaling (Macharia et al., 2022; Stewart and Nitschke, 2017; Liu

et al., 2020). Other satellite-based products, including theModerate

Resolution Imaging Spectroradiometer (MODIS) and ERA5, have

also been evaluated. These studies showed highly consistent results

between ERA5 and MODIS in evaluating global and regional land

warming trends over the past decades, with strong correlations to

observed meteorological station data (Wang et al., 2022).

This study aims to assess the unique spatio-temporal trends

in precipitation and temperature in Senegal from 1981 to 2020,

leveraging satellite-retrieved datasets accessible in GEE. We

analyzed annual and seasonal temperature and precipitation across

Senegal and estimated them in all six agroecological zones of

Senegal. The methods presented in this study offer a robust

and reproducible approach for regions in which ground-based

observations are scarce.

1.1 Study area

Senegal is a West African country located between 12.5 and

16.7◦C N latitudes and 11.3◦ and 17.5◦W longitude (Figure 1). Its

population was 16,876,720 in 2020, representing a 15% increase

from 2015 (Population, total – Senegal, 2024). Senegal has a tropical

climate with a distinct dry season from November to June and a

rainy season from July to October. Average annual temperatures

have increased from 28.6◦C in 2000 to 29.56◦C in 2020, with a

hot semi-arid climate inland and coastal tropical conditions (World

Bank Climate Change Knowledge Portal, 0000).

Senegal is divided into six major agro-ecological zones based

on climate, soil, and vegetation characteristics: the Niayes, Senegal

River Valley, Groundnut Basin, Casamance, Eastern Senegal, and

Ferlo Zone (Tappan et al., 2004; Marfurt et al., 2023). The

Niayes zone along the coast has cooler temperatures and unique

humid micro-climates conducive to horticulture. The Senegal

River Valley in the north has hot, dry conditions but supports

irrigated agriculture. The Groundnut Basin in the central regions

has relatively abundant rainfall for rainfed agriculture. Casamance

and Eastern Senegal receive high rainfall with frequent risks of

flooding. The Ferlo Zone has a hot, semi-arid climate suitable for

agro-pastoralism.

Agriculture is Senegal’s main economic sector, employing

22% of the workforce and contributing 15.7% to GDP in 2022,

despite a decline since the 1990s (World Bank Climate Change

Knowledge Portal, 0000; Sarr and Sultan, 2023). With over 95%

of arable land being dependent on rainfall, agriculture is highly
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FIGURE 1

Map of Senegal showing the major agro-ecological zones/ecoregions defined in Tappan et al. (2004).

vulnerable to climate change impacts on crop yields (Sabelli

et al., 2016; Lamaoui et al., 2018). Limited resources and reliance

on smallholder farming constrain Senegal’s adaptive capacity,

whereas poverty and food insecurity exacerbate the effects of

climate change (Nébié et al., 2021; Faye et al., 2022). Although

peanut farming has dominated, crop diversification has increased

since the 1980s (Diallo et al., 2022). Climate-smart strategies

are crucial for enhancing resilience and ensuring future food

security amidst climate change. To address these challenges,

the government should prioritize development strategies through

the continuous assessment and monitoring of changes in

agro-ecological zones.

2 Methodology

2.1 Datasets

Table 1 summarizes the datasets used in this study. These

include the gridded rainfall data from CHIRPS and air temperature

data from ERA5-Land reanalysis.

TABLE 1 Summary of the datasets used in the study.

Dataset Resolution Dataset provider Duration

CHIRPS 0.05◦ USGS and CHC CHIRPS Data 1981–2020

ERA5-land

reanalysis

0.1◦ ECMWF/Copernicus climate

change service

1981–2020

2.1.1 CHIRPS rainfall data
CHIRPS incorporates satellite imagery and station data

to produce a 0.05◦ resolution gridded rainfall product for

trend analysis and drought monitoring (Funk et al., 2015).

We accessed CHIRPS data via GEE monthly from 1981

to 2020 (ee.ImageCollection(“UCSB-CHG/CHIRPS/PENTAD"))

(Funk et al., 2015). Previous studies validated CHIRPS against

station observations and other satellite precipitation datasets

and showed high accuracy in West Africa (Satgé et al., 2020;

Sacré Regis et al., 2020). The availability of a 40-year CHIRPS

time series enabled this study’s precipitation trend analysis

in Senegal.
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2.1.2 ERA5-land air temperature
The ERA5-Land dataset from the European Center for

Medium-Range Weather Forecasts provides consistent global

atmospheric reanalysis data from 1950-present at ∼ 11 km

resolution, dynamically downscaled from the native 9 km product

(Muñoz-Sabater et al., 2021). ERA5-Land data are readily available

as an asset from GEE from 1950 to three months from real-time

(ee.ImageCollection (“ECMWF/ERA5_LAND/HOURLY")).

3 Approach

We analyzed precipitation and temperature patterns in Senegal

from 1981 to 2020 using CHIRPS rainfall and ERA5-Land

temperature data. Seasonal and monthly averages were calculated,

and zonal statistics were derived for each agroecological zone

(Tappan et al., 2004).

Data were extracted and processed in GEE. Monthly and

seasonal statistics were calculated efficiently using ee.Reducer

functions allowed for the derivation of temporal patterns.

Zonal statistics were computed with ee.Image.reduceRegions() to

analyze spatial variability across different regions. GEE’s powerful

processing capabilities facilitated a robust and streamlined

workflow for data extraction, quality checking, and statistical

analysis (Figure 2).

3.1 Trend analysis

We quantified trends in each pixel using the non-

parametric Mann–Kendall test for trend significance

(Supplementary material A1) and Sen’s slope estimator for

magnitude (Supplementary material A5) (Sen, 1968; Mann, 1945).

These methods are particularly well-suited for climate time series

analysis as they make no assumptions about the underlying data

distribution, are robust to outliers, and can handle missing values

effectively. The Mann–Kendall test specifically excels at detecting

monotonic trends in environmental data that may exhibit non-

normal distributions and temporal irregularities. These robust

non-parametric approaches have become increasingly adopted

for precipitation and temperature change analysis, including

recent implementations in Google Earth Engine (Zeng et al., 2019;

Banerjee et al., 2020).

The Mann–Kendall test was applied to each pixel time

series to determine the presence of significant increasing or

decreasing trends. In GEE, this was implemented using the

ee.Reducer.mannKendall() function, which calculates the Mann–

Kendall test statistic (Z) and p-value based on the rank correlation

between the time series values and their temporal order. Pixels with

an absolute Z value>1.96 (corresponding to a p-value< 0.05) were

considered to have a significant trend at the 95% confidence level.

We used Sen’s slope, which calculates the median slope between

all pairwise points in a time series, to estimate the magnitude

of significant trends. In GEE, this was implemented using the

ee.Reducer.sensSlope() function. For each pixel, the median slope

was calculated if the Mann–Kendall test indicated a significant

trend (p < 0.05).

To summarize trends at the agroecological zone level, we first

calculated the spatial averages of the annual precipitation

and temperature time series within each zone using the

ee.Image.reduceRegions() function with the agroecological

zone boundaries (Tappan et al., 2004) as input features.

Each zone’s resulting annual time series were then exported

to R, where the Mann–Kendall and Sen’s slope tests were

applied using the “trend" package to assess long-term

regional trends.

This approach leverages GEE to efficiently apply trend tests

to each pixel across the entire study area, while also allowing

for more detailed regional summaries. The 40-year CHIRPS

and ERA5-Land datasets enabled a statistically robust assessment

of recent climate changes at both the pixel and agroecological

zone scales.

The MK test determined whether the precipitation

or temperature time series of each pixel showed a

significant trend at the 95% confidence level. Pixels

with MKstatistic ≥ 1.96 were considered to have a

significant trend.

Additionally, we quantified the magnitude of the trend using

non-parametric Sen’s slope method (Sen, 1968). Sen’s slope

estimates the magnitude of the change per unit time. It calculates

themedian of all pairwise slopes between sequential data points and

quantifies the trend slope.

We implemented Sen’s slope in GEE to estimate the

monotonically increasing/decreasing tendency over time and in R

for each agro-ecological zone. Temperature and precipitation data

were extracted for each zone, and statistical tests were applied to

detect trends over time. However, it is important to recognize the

limitations of this approach. Although the satellite-based datasets

used here have been extensively validated and shown to perform

well, there is still potential for bias and uncertainty, particularly

in areas with complex topography or limited in-situ data for

calibration (Macharia et al., 2022; Stewart and Nitschke, 2017).

The 0.05◦ and 0.1◦ spatial resolutions of CHIRPS and ERA5-Land,

respectively, may also smooth out fine-scale variability. Integrating

the available station observations could help refine the trends

identified here.

Additionally, while non-parametric trend tests are robust to

non-normality and missing values, they assume the observations

are independent. A positive serial correlation can increase the

likelihood of detecting significant trends in which none exists

(Jhajharia et al., 2014).

4 Results

4.1 Precipitation distribution and variation
from 1981–2020

Figure 3 shows the spatial distribution of the mean annual and

seasonal precipitation across Senegal, from 1981 to 2020. There was

considerable variation in the spatial distribution of precipitation

across the different seasons. In the rainy season, the maximum

rainfall did not exceed 55 mm average rainfall between 1981–

2000. However, the average rainfall patterns in the southeast and
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FIGURE 2

Methodological flowchart outlining the key steps in analyzing temperature and precipitation trends across Senegal from 1981–2020 using CHIRPS,

MODIS, and ERA5-Land datasets in GEE and R.

southwest regions showed distinct shifts between 1981–2000 and

2001–2020, exceeding 65mm in certain regions. Conversely, during

the dry season, the entire country experiences exceedingly arid

conditions, with the average precipitation across the region for the

past four decades falling below 5 mm. This stark seasonal contrast

underscores the significant variations in precipitation throughout

the year.

Figure 3 shows the annual rainfall variations from 1981 to 2020

with alternating periods of dry and wet years within the recorded

timeline. This pattern indicates variability in precipitation, with

specific years (1983, 1990, 1991, 2011, 2014, and 2019) exhibiting

notably drier conditions with lower yearly averages and others

displaying increased rainfall or wetter conditions (1999, 2010, and

2020) with higher yearly averages in Senegal. Such variability in

annual precipitation suggests fluctuations in the region’s climate,

with alternating periods of drought and increased moisture

levels, potentially impacting agricultural practices, water resource

management, and ecological systems. This may be linked to

recurrent El Niño events, which significantly affect climatic

variability in the Sahel region (Pomposi, 2016). Overall, with a

95% confidence interval of 0.1116–0.4636 mm, the rate of change

of precipitation in Senegal is calculated to be 0.288 mm annually

using theMann–Kendall trend test and Sen’s slope estimator. Given

that the confidence range excludes 0, this suggests a statistically

significant increase (R2 = 0.26, p ≤ 0.05) in average annual rainfall

from 1981 to 2020 (Figure 4).

4.2 Temperature distribution and variation
from 1981–2020

Figure 5 illustrates the mean temperatures for both the rainy

season (June–September) and dry season (October–May) for the

periods 1981–2000 and 2001–2020, respectively. Notably, regions

closer to water bodies and located in the southern areas, such

as Saint Louis, Louga, Keberner, Ziguinchor, and Tivaoune,

consistently exhibited lower temperatures ranging from 22–27◦C

in all seasons. Compared to inland areas, these locations experience

a distinct cooling effect owing to proximity to the Atlantic Ocean.

The overall analysis revealed a statistically significant increase of

0.73◦C (R2 = 0.24, p≤ 0.05) in the mean temperature from 1981 to

2020 (Figure 6).

Despite the significant increase in temperature

across the region over the past four decades, the most

recent decade (2011–2020) exhibited a 0.69% decrease

compared with the previous decade (2001–2010), as

Supplementary material C1.

Senegal’s annual temperature change rate is estimated to be

0.017◦C, with a 95% confidence interval of 0.0072 to 0.0259◦C,

based on the Mann–Kendall trend test and Sen’s slope estimator.

This indicates a statistically significant increasing trend in

temperature, as the confidence interval does not include zero. The

range reflects some uncertainty, but all plausible values point to

warming over the study period.
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FIGURE 3

Decadal mean annual and seasonal rainfall for Senegal, 1981–2020.

4.2.1 Addressing serial correlation
To ensure the validity of the statistical tests, we utilized

both the Ljung-Box (Burns, 2002) and the Durbin–Watson

Test (Bartels and Goodhew, 1981) to test for autocorrelation

in our datasets. The results indicate no significant serial

correlation in the data. The Durbin–Watson test yielded a

statistics of 2.3394 and 1.8795 with a p-value of 0.8213 and

0.2895, showing no evidence of first-order autocorrelation in

both the temperature and precipitation datasets, respectively.

Similarly, the Ljung-Box test (p-value = 0.581 and 0.2895)

confirms the absence of significant autocorrelation across

multiple lags in both datasets, ensuring the validity of the

model’s residuals.

4.3 Spatial distribution of temperature
trends

Figure 7 shows the spatial distribution of the temperature

trends (a) and the magnitude of the statistically significant

trends (b) across Senegal over the past 40 years (1981–2020).

The results revealed widespread warming, with the largest

temperature increase concentrated in the inland regions. Areas

around Saraya, Goudiry, and Tambacounda have experienced

a pronounced warming of 0.2–0.3◦C per decade. The hardest-

hit areas align with the agriculturally vital Eastern Senegal

agroecological zone, a major producer of corn, cotton, millet,

peanuts, and sorghum. Considerable warming in this region

suggests that crop yields could face mounting heat stress

in the coming decades, portending the risk to Senegalese

food security.

4.4 Spatial distribution of precipitation
trends

Figure 8 shows the spatial distribution of the annual

precipitation trends from 1981 to 2020 using the Mann–

Kendall’s correlation reducer and the magnitude of the trend

in areas with statistically significant trends. Over the past

four decades, most areas in the north, known to be the dry

regions of the country, have shown an increasing precipitation

tendency, but at a lower magnitude of about 1.42 mm per

decade. However, the southeast, western parts and coastal

Senegal had relatively higher rainfall magnitudes of 6.33 and

17.77 mm per decade, respectively. This includes Bignonia,

Goudomp, Ziguanchor, Oussouye, Saraya, Foundiougne, Fatick,

and Keberner, which are also known as the wet regions of

Senegal (Figure 8B).
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FIGURE 4

Average precipitation trend in Senegal from 1981–2020.

4.5 Trends in precipitation across
agro-ecological zones

To further analyze climate variability across Senegal’s

agroecological zones, we used the Mann–Kendall and Sen’s slope

statistical tests to identify significant precipitation trends from

1981 to 2020 (Table 2). Our analysis revealed widespread increases

in precipitation, even in the typically driest Senegal River Valley

and Ferlo regions (Figure 9). Specifically, the Senegal River Valley

has experienced a significant positive precipitation trend over the

past four decades (R2 = 0.14, p = 0.04). Ferlo showed a similar

trend (R2 = 0.18, p = 0.01), both at p ≤ 0.05.

4.6 Trends in temperature across
agro-ecological zones

Our analysis revealed significant warming trends across

most of Senegal’s agroecological zones from 1981 to 2020,

highlighting the spatially heterogeneous nature of climate change

impacts. This finding corroborates the regional climate change

observations previously reported by Funk et al. (2012) in Senegal.

As shown in Figure 10 and Table 3, the Casamance, Eastern

Senegal, Ferlo, Groundnut Basin, and Senegal River Valley zones

experienced statistically significant temperature increases over the

past four decades. The most pronounced warming occurred in the

Casamance and Eastern Senegal regions, with Sen’s slope values

indicating an average increase of 0.16 and 0.19 ◦C per decade (p

<0.05) respectively (Table 3). The Ferlo, Groundnut Basin, and

Senegal River Valley saw slightly lower but significant warming

rates, with average temperatures rising between 0.13◦C, 0.12◦C, and

0.08◦C per decade.

In contrast, the Niayes zone along the coast exhibited moderate

and statistically insignificant warming (R = 0.24, p = 0.14). This

result suggests that the coolingmay buffer theNiayes from themore

rapid temperature increases seen inland.

The divergent temperature trends identified across Senegal’s

agroecological zones have important implications for planning

climate adaptation. The pronounced warming in the southern and

eastern regions threatens the productivity of staple crops such as

maize, millet, and sorghum, vital for food security (Araya et al.,

2022; Konte et al., 2019). In the Ferlo and Senegal River Valley,

increasing temperatures may exacerbate existing drought and

desertification risks, with consequences for pastoralist communities

(Nébié et al., 2021). The gradual warming in the Niayes offers some

respite but warrants monitoring and preparedness.

5 Limitations

The reliability of CHIRPS and ERA5-Land datasets for climate

analysis in Africa has been extensively validated, though important

limitations exist that warrant careful interpretation of our findings.

Several studies have confirmed the applicability of these datasets for

climate and hydrological studies, particularly drought monitoring

(Du et al., 2024; Atiah et al., 2020; Dinku et al., 2018; Muñoz-

Sabater et al., 2021; Yilmaz, 2023; Vicente-Serrano et al., 2023).

CHIRPS monthly data has demonstrated strong performance in

West Africa, with studies by Satgé et al. (2020) and Poméon

et al. (2017) confirming its reliability compared to other gridded
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FIGURE 5

Decadal mean and seasonal temperatures for Senegal, 1981–2020.

P = 0.001355, R2 = 0.2388

Sen's slope =0.0174

27.5

28.0

28.5

29.0

29.5

1980 1990 2000 2010 2020

Year

(°
C

)

FIGURE 6

Average temperature trend in Senegal from 1981–2020.
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FIGURE 7

Spatial distribution of (A) temperature trend from 1981 to 2020 using the Mann–Kendall’s correlation reducer, and (B) the magnitude of trend in areas

with statistically significant trend using the Senslope reducer.

FIGURE 8

Spatial distribution of (A) yearly precipitation trend from 1981 to 2020 using the Mann–Kendall’s correlation reducer, and (B) the magnitude of trend

in areas with significant trend using the Senslope reducer.

rainfall products through validation against daily and monthly

rain gauge data. Further validation by Ndecky (2020) and Sacré

Regis et al. (2020) found CHIRPS monthly data to have relatively

lower bias and strong correlation with meteorological station data.

In East and Southern Africa, comparison with ∼1,200 stations

across six countries revealed CHIRPS to perform significantly

better than other rainfall products (Dinku et al., 2018; Du Plessis

and Kibii, 2021). Similarly, ERA5-Land has shown considerable

improvements over previous ERA-interim versions in Africa

(Gleixner et al., 2020). Despite its coarser resolution, ERA5-

Land has been successfully downscaled using statistical and

machine learning techniques, providing reliable temperature data

for long-term trend analysis (Raffa et al., 2021; Sebbar et al., 2023;

Gleixner et al., 2020; Muñoz-Sabater et al., 2021).

However, several important limitations affect both datasets

and necessitate careful interpretation of our findings. Africa

remains one of the most undergauged continents, with complex

topographies presenting challenges for accurate data collection.

This limitation is particularly significant given that both datasets

rely on ground-based observations for calibration and validation.

CHIRPS exhibits systematic biases, tending to overestimate

precipitation during wet seasons and underestimate during dry

seasons (Sacré Regis et al., 2020; Dinku et al., 2018). ERA5 shows

underestimation patterns in areas with sparse station densities,
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FIGURE 9

Trends in precipitation using the Mann–Kendall test for the periods 1981–2020.

TABLE 2 Precipitation trend statistics by agro-ecological zone all

significant at α = 0.05.

AEZ p-value Sen slope Z score Tau Var(s)

Casamance 0.01 0.35 2.5 0.27 7366.67

Eastern Senegal 0.00 0.39 3.6 0.40 7366.67

Ferlo 0.01 0.18 2.5 0.28 7366.67

Groundnut Basin 0.01 0.25 2.5 0.27 7366.67

Niayes 0 0.34 2.9 0.32 7366.67

Senegal River Valley 0.04 0.15 2.0 0.22 7366.67

arid regions, and tropical vegetative zones (Liu et al., 2024). Both

datasets share several technical constraints, including increased

error rates in monitoring higher elevation areas, smoothing of

fine-scale variability due to spatial resolution limitations, and

reduced accuracy at daily timescales in Africa due to insufficient

downscaling data (Macharia et al., 2022; Stewart and Nitschke,

2017; Liu et al., 2020).

While remote sensing reveals valuable regional climate trends,

investment in expanding ground station weather networks across

Senegal remains critical. High-resolution ground measurements

would serve to validate satellite-derived findings and provide

meteorological insights at finer spatial scales. A comprehensive

approach integrating satellite monitoring, ground truthing,

participatory planning, and localized impact studies will be

essential for developing effective climate adaptation strategies.

This integrated approach will better support the resilience of

Senegal’s agricultural and pastoral communities across diverse

local geographies.

6 Discussion

This study analyzed precipitation and temperature patterns

across Senegal from 1981 to 2020, revealing insights into the

country’s climate variability. Examining mean rainy and dry season

temperatures showed interesting geographic contrasts, notably

cooler temperatures near water bodies than inland areas. Locations

along the coast and near rivers (Saint Louis, Louga, and Ziguinchor)

consistently experienced 22–27◦C across seasons, while inland sites

experienced higher temperatures.

Our analysis revealed an overall increase in rainfall in Senegal

from 1981 to 2020, despite considerable interannual variations and

alternating periods of drought and wet years. These findings align

with previous studies by Sacré Regis et al. (2020) and Sarr and

Sultan (2023), who documented similar trends from 1981–2015 and

1952–2010 respectively. The drivers of these observed temperature

and rainfall patterns, particularly the contrast between coastal and

inland regions, operate on both regional and global scales (Kang

et al., 2008; Biasutti et al., 2018).

Multiple interacting factors contribute to Senegal’s climate

variability. As detailed by Biasutti (2019), Sea Surface Temperature

(SST) variability plays a fundamental role, particularly in the

Atlantic and Indian Oceans. North Atlantic SST increases enhance

the West African Monsoon, contributing to observed seasonal
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FIGURE 10

Trends in temperature using the Mann–Kendall Test for the period 1981–2020.

shifts in rainfall timing and intensity. Concurrently, Indian Ocean

SST patterns influence moisture availability for the monsoon

system, affecting both temperature extremes and annual rainfall

distribution (Song et al., 2018). These oceanic influences operate

alongside other key drivers, including land use changes, shifts

in the Inter-Tropical Convergence Zone (ITCZ) positioning, and

anthropogenic climate change through increased greenhouse gas

emissions.

Monitoring these spatial temperature differences and their

driving mechanisms is essential for understanding climate

change impacts in Senegal. The differential warming rates

between inland and coastal areas could exacerbate existing

climate risks, particularly for inland agricultural and pastoral

communities facing increased heat stress and drought vulnerability.

This spatial disparity in climate impacts could potentially

influence internal migration patterns toward cooler coastal cities.

Therefore, continued analysis of temperature-moderating effects

from Senegal’s water bodies (lakes, rivers, and oceans) remains

crucial for future adaptation planning.

Additionally, our study provides valuable insights into localized

climatic variations across the six agroecological zones of Senegal.

These findings reveal that Senegal’s climate exposure is far from

uniform. The southern Casamance and Eastern Senegal zones

receive more intense rainfall than the central and northern areas.

Over the past four decades, the Groundnut Basin, Ferlo, Senegal

River Valley, and Niayes zones saw generally increasing but lower

magnitude precipitation trends between 6.33 and 1.4 mm per

decade, with insignificant changes in areas like Medina and Kolda.

This variability aligns with previously noted inconsistent rainfall

patterns (Ahmed et al., 2021).

TABLE 3 Temperature trend statistics by agro-ecological zone.

AEZ p-value Sen slope Z score Tau Var(s)

Casamance 0 0.02 4.3 0.47 7366.67

Eastern Senegal 0 0.02 4.0 0.44 7366.67

Ferlo 0.02 0.02 2.4 0.26 7366.67

Groundnut Basin 0.01 0.01 2.6 0.29 7366.67

Niayes 0.11 0.01 1.6 0.18 7366.67

Senegal River Valley 0 0.02 2.9 0.32 7366.67

Bold indicates significance at α = 0.05.

The rise in temperature was significant across most zones

except the coastal Niayes region, likely due to themoderating effects

of the Atlantic Ocean. Cooling ocean breezes offer seasonal heat

relief. These climatic nuances underscore the need for adaptation

strategies tailored to each region’s distinct climate risks rather than

one-size-fits-all national policies. For instance, rainfall variability

may be a priority concern in drier central/northern areas, whereas

combined rainfall and warming changes pose a compound risk in

the crop-critical south. Tracking subnational climate divergence

can provide localized adaptation.

6.1 Impacts of rising temperatures

The persistent rise in temperature, particularly in relatively

hot areas such as Saraya, Goudiry, and Tambacounda, threatens

crop yields. These areas are the major producing regions of
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corn (75,000–150,000metric tons), sorghum (25,000–65,000metric

tons), millet (18,000–95,000 metric tons), and peanuts (100,000–

200,000 metric tons) (Senegal Production, 0000).

Climate studies reviewed by Tall et al. (2017) and Ahmed et al.

(2021) project Senegal’s temperature will rise by a median of 0.90◦C

(0.70–1.50◦C) by 2035, 2.10◦C (1.60–3.30◦C) by 2065, and 4.00◦C

(2.6–5.90◦C) by 2100. In 2020, temperatures in Casamance, Senegal

River Valley, and Ferlo already exceeded 29.5◦C. Our study adds

spatial nuance, showing that Eastern Senegal and the Senegal River

Valley regions will exceed 30.0◦C by 2030. Prasad et al. (2001)

found that exposing peanuts to temperatures ≥ 33◦C during the

floral development stage significantly lowers fruit set due to pollen

sterility, affecting the overall peanut yield in the long run. Unless

targeted adaptation efforts are promptly implemented, this could

significantly affect crop yields in the future.

Therefore, implementing targeted interventions tailored to

Senegal’s diverse climatic zones is imperative. Heterogeneous

climate trends underscore the critical importance of localized

climate analysis in adaptive planning. Flexible, climate-smart

management strategies that can adapt to variable conditions are

essential for the sustainable development of Senegal’s agriculture

and its overall resilience to climate change.

6.2 Implications of variable rainfall and
future projections

Based on the Sen’s slope values and assuming a linear

continuation of observed trends, rainfall projections for 2035 in

Senegal’s agroecological zones show a slight increase compared to

estimated 2020 values, with the highest increases in Casamance

(0.35mm/year) and Eastern Senegal (0.39mm/year), and the lowest

in the Senegal River Valley (0.15 mm/year). While these projections

assume a linear continuation of observed trends and do not

account for potential non-linear changes, tipping points, or detailed

emission scenarios and climate forcings, the unpredictability and

variability of rainfall in Senegal pose multifaceted challenges for

the country’s rainfed agriculture, economy, food security, farmer

livelihoods, and livestock. While increased rainfall benefits crop

growth, it also increases the risks of flooding, erosion, and malaria

outbreaks owing to favorable transmission conditions. Devastating

flood events in 1999, 2005, 2009, and 2012 underscores the urgent

need for effective flood mitigation measures. Proactive malaria

prevention strategies are essential (Dennis et al., 1995; Global

Facility for Disaster Reduction and Recovery, 2014; Fall et al.,

2022). Furthermore, variable rainfall patterns disrupt pastoralist

migratory routes, contributing to livestock losses. Comprehensive

strategies are required to address these multifaceted challenges

effectively (Schwartzstein, 2023).

Investing in sustainable water management strategies is

imperative to enhance resilience across all regions. These should

include developing water storage and irrigation infrastructure,

adopting climate-smart practices such as cultivating drought-

tolerant crops and implementing agroforestry. Additionally,

strengthening the institutional capacity for integrated water

resource management and promoting cross-sectoral collaboration

will be key to effectively addressing the challenges posed by variable

rainfall patterns and climate change.

7 Conclusions

This study analyzed the meteorological trends in Senegal from

1981 to 2020 using remote sensing data and GEE. The results

show that Senegal experienced a statistically significant increase

in annual temperatures, with an overall rise of 0.73◦C, and a

rainfall increase of 18mm over the past four decades. However,

the magnitude of warming and precipitation patterns varied across

the country’s agroecological zones, with the southern regions

experiencing significantly more intense rainfall than the central

and northern areas. These findings highlight the importance of

conducting localized climate trend analyses to understand better

the specific impacts and risks different regions face in Senegal.

The study demonstrates the value of leveraging satellite

data and cloud computing to uncover regional climate trends

where ground-based observations are limited. Future work could

apply this methodology to conduct crop-specific climate trend

analyses across Senegal’s agricultural areas, informing climate

impact assessments to guide adaptation policies and investments

that improve food security. An integrated approach coupling

satellite monitoring, ground truthing, participatory planning, and

localized impact studies is essential to devise climate adaptation

strategies that strengthen the resilience of Senegal’s agricultural

and pastoral communities across localized geographies. Capacity

building for decentralized adaptation planning, supportive policies,

and financing is paramount.
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Appendix A

Statistical Equations

Key equations simplified as follows:

Calculate the Mann-Kendall test statistic S using Equation 1

Mann (1945):

S =
n−1
∑

k=1

n
∑

j=k+1

sgn(xj − xk) (1)

where

sgn(xj − xk) =















1, if xj − xk > 0

0, if xj − xk = 0

−1, if xj − xk < 0

(2)

For n > 10, compute the variance of S:

VAR(S) =
n(n− 1)(2n+ 5)−

∑g
p=1 tp(tp − 1)(2tp + 5)

18
(3)

where n is the number of observations, g the number of

tied groups, and tp is the number of observations tied to a

particular value.

Compute the Mann-Kendall test statistic ZMK :

ZMK =















S−1√
VAR(S)

, if S > 0

0, if S = 0
S+1√
VAR(S)

, if S < 0

(4)

To test for a monotonic trend at a significance level α, compare

ZMK to the critical values of the standard normal distribution: For

an upward trend, reject H0 if ZMK ≥ Z1−α For a downward trend,

reject H0 if ZMK ≤ −Z1−α For a two-tailed test, reject H0 if

|ZMK | ≥ Z1−α/2

Equation 5 estimates the slope from the time series data Sen

(1968):

dijk =
xij− xik

j− k
(5)

where xij and xik are the data values and j and k are the time

series.
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