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Transitioning from weather forecasts and warnings to impact-based forecast

and warning services represents a paradigm shift in service delivery for many

national hydrological and meteorological services (NHMS). NHMS typically excel

at delivering information about hazardous weather, but are less experienced at

inferring measures of risk of impact of extreme weather. Severe wind storms

are high-impact weather phenomena that generally have a detrimental e�ect

on distinct socio-economic sectors. In the Netherlands, the emergency services

record locations where wind damage occurred to public or private property.

In this work, we take 10 years of damage locations (2013–2023) provided by

two safety regions in the Dutch province of Noord-Brabant. Each of the reports

is enriched with an array of weather and environmental features, intended to

describe the local conditions where wind damage was recorded. We model the

wind reports using an ensemble of data-driven methods (i.e., One-Class Support

Vector Machine) which are capable of learning from these hyper local conditions

and predict for the rest of the study area. Results showhow the ensemble of data-

driven models are able to skillfully map locations where wind-induced damages

are likely at spatial resolutions of 1 km and 5 km under high and low wind

conditions scenarios. These results are encouraging for NHMS to strengthen

national multi-hazard early warning systems by providing a new range of services

at the urban scales in collaboration with external partners. As a consequence,

the transition of scientific knowledge towards society would accelerate, hence

helping at better protecting communities and livelihoods.

KEYWORDS

wind damage prediction, impact-based analysis, machine learning, climate action,

climate adaptation

1 Introduction

The transition from weather forecasts and warnings to impact-based forecast and

warning services represents a paradigm shift in service delivery for many national

meteorological services (NHMS), including the Royal Netherlands Meteorological

Institute (KNMI). The World Meteorological Organization (WMO) proposes a long-term

2020–2030 goal to strengthen national multi-hazard early warning systems and delivering

user-oriented and fit-for-purpose services (WMO, 2021, 2014). NHMS typically excel at
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delivering information about hazardous weather, but are less

experienced at inferring measures of risk of impact, especially

targeted at distinct socio-economic sectors. Risk is typically a

result of the dynamic (and often non-linear) interactions between

the hazard (e.g., the severity of a wind storm), the exposure

(e.g., locations of urban trees), and vulnerability (e.g., health of

individual trees) (Geiger et al., 2024; Gardiner, 2021); the last two

firmly outside of the climate sciences and meteorology domain.

Hence, it is pertinent that NHMS promote research lines in

partnership with external agencies, who can provide the exposure

and vulnerability components to devise new customized services

(Uccellini and Ten Hoeve, 2019).

In the Netherlands, first responders (e.g., fire brigades, safety

services, medical assistance and disaster crisis management)

are organized in the so-called safety regions (in Dutch:

“veiligheidregio’s”; hereinafter: VRs). In collaboration with

KNMI and Cobra Groeninzicht, a consulting company mapping

urban nature and the living environment, an impact-based analysis

was carried out, with the objective of modeling damage locations

product of wind storms. The occurrence of wind damage to public

(e.g., urban furniture, road pavement) or private (e.g., households)

property triggers a cascade of events that are coordinated by

the VRs. Hence, first responders are often handled together to

minimize the time of public order. Windstorms can cause damage

to urban trees, such as uprooting or toppling, with the subsequent

risk for human life and damage to public or private property.

In this context, VRs require detailed information on where and

when wind damage might occur, so they can better coordinate

their preparedness planning operations and mobilize resources

efficiently for mitigation works (Potter et al., 2018; Taylor et al.,

2018).

Extreme wind conditions generally have a detrimental effect on

society and distinct economic sectors (e.g., energy, infrastructure)

(Gliksman et al., 2023). Wind loading damages forests by causing

uprooting or breakage (e.g., stem, branches) of trees, events

that have the potential to negatively impact the livelihood of

communities (e.g., human losses), disrupting communications

(e.g., roads closed), or altering socio-economic activities (e.g.,

timber production) (Gardiner, 2021; Valta et al., 2019). The

relationship between wind speed (or gust) and damage is complex

and not fully understood, particularly during high-intensity events

(Feuerstein et al., 2011). Wind damage estimates usually rely

on post-disaster insurance data (Koks and Haer, 2020), which

might not be publicly available. Researchers have modeled wind

damage with sensitivity analyses (Koks and Haer, 2020), loss

estimate models (Moemken et al., 2024), probability models

(Suvanto et al., 2019), or data-driven methods (Hart et al., 2019;

Pawlik and Harrison, 2021; Jahani and Saffariha, 2021). These

works include different combinations of hazard, exposure, and

vulnerability metrics, and range from small-scale regions like

forests to continental scale. However, these works are not oriented

at producing new user-oriented customized services, hence they

remain relatively static studies.

In this project between the KNMI, the VRs and Cobra

Groeninzicht, we focus our efforts at providing hourly wind

damage estimates in the context of a risk assessment analysis for

our study region in the Noord-Brabant province. To do so, we take

ten years of wind damage reports provided by the VRs and we

devise a set of hazard and exposure features that are subsequently

modeled with an ensemble of machine learning methods. With this

approach, we aim to predict the suitability of a grid cell location to

develop wind damage and map the predictions into the geographic

space. This work suggests there is untapped potential at including

hyper-local reports collected by public services around the globe to

enable impact-based analyses that might assist decision makers at

better protecting communities and livelihoods.

2 Materials and methods

Severe windstorms hitting a region typically leave behind a

trail of heavily damaged trees next to intact trees, which suggests

that the wind damage phenomenon has a hyper-local nature.

The physical characteristics of a tree, such as the crown volume

or the branches strength, are fundamental to resist heavy wind

loads, but eventually, prolonged severe wind conditions trigger

tree damage (e.g., breakage, uprooting) (Gardiner, 2021). We see

the set of damage reports as locations where hazard, exposure,

and vulnerability non-linearly interact to exceed some threshold,

ultimately triggering an instance of risk of impact. This section

describes the methodology to characterize the damage reports

collected by the VRs with a set of hazard and exposure metrics, that

we subsequently model with an ensemble of data-driven methods

to produce hourly maps of suitability of wind damage.

2.1 Building up a risk assessment dataset
for storm damage locations

Risk assessment analysis typically conceptualizes risk (R) as

a function of hazard (H), exposure (E), and vulnerability (V)

(Reisinger et al., 2020), or R = H × E × V. This framework

enables NHMS at better creating actionable impact information, by

organizing new research lines and products by type and forecast

range (Geiger et al., 2024). The goal of this work is to obtain models

predicting storm damage, hence we focus at developing the H-E

axis with a set of features (i.e., covariates) that we subsequently

model with data-driven methods. Note that V metrics are not

included in this work.

This subsection describes the process carried out to characterize

each of the damage locations with a set of hazard and exposure

metrics, summarized in Table 1. Features stem from weather and

environmental datasets, in raster or vector formats, available in the

context of this research. These datasets are processed using Python

libraries and the resulting risk assessment dataset is subsequently

modeled with data-driven methods in Section 2.2.

2.1.1 Description of the study area
The Netherlands is divided in 25 VRs, which are committed

to the safety of citizens by providing services (e.g., fire brigades)

protecting communities. In this project, we collaborated with two

VRs, Brabant-Noord (BN) and Brabant-Zuidoost (BZO), both

naturally providing services within the province of Noord-Brabant.

Damage locations are thoroughly documented by the VRs, thus

forming a hyper-local dataset on urban tree damage due to
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TABLE 1 Features used in this work.

# Short name Description Provider Type

1 ws_loc Wind speed at the hour of the report ECMWF H

2 wd_loc Wind direction at the hour of the report ECMWF H

3 ws_loc_6h Average wind speed in the 6 h prior to the report ECMWF H

4 wd_loc_6h Average wind direction in the 6 h prior to the report ECMWF H

5 svf-25m Proportion of visible sky at report location KNMI E

6 bomen-pct Percentage of trees in pixel higher than 2.5 m RIVM E

7 bomen-hoogte Height of trees in pixel RIVM E

8 spi1 Standard precipitation index in the past 30 days KNMI H

9 spi3 Standard precipitation index in the past 90 days KNMI H

10 spi6 Standard precipitation index in the past 180 days KNMI H

11 BG2017 Land use at the report’s location Cadaster Netherlands E

12 top10nl_Hoogte Terrain elevation CBS E

13 dist-top10nl_waterdeel_lijn Distance to the closest line waterbody (e.g., canal, river) CBS E

14 dist-top10nl_waterdeel-vlak Distance to the closest water surface (e.g., lake) CBS E

15 trees_pixel Number of trees in each grid cell Cobra Groeninzicht E

16 trees_buff Number of trees around the report location Cobra Groeninzicht E

17 closest_tree Distance between the report location and the closest tree Cobra Groeninzicht E

18 avg_dist Average distance between the reported location and all trees Cobra Groeninzicht E

Note they are classified in two groups: hazard (H) or exposure (E) metrics.

FIGURE 1

The left subplot is the spatial representation of the damage reports registered during the period 2013–2023 by the two participating VRs. Blue color is

for the VR Brabant-Noord (BN), whereas gray color represents the VR Brabant-Zuidoost (BZO). The right plot shows the temporal dimension of the

damage reports. The heatmap illustrates the number of reports per each hour of the day (i.e., X-axis) during the study period (i.e., Y-axis). As seen,

during the small hours of the night citizens tend not to report damage to the VRs, these beginning around 5 a.m.–6 a.m.

strong winds. The dataset on tree damage contains roughly 5,000

locations in the period 2013–2023. Central to this study is the

interpretation of each damage location. In this analysis, damage

locations represent locations where the combination of weather

and environmental characteristics triggered damage. Figure 1 (left)

illustrates the study area and the dataset provided by the two

participating VRs.

The study area is a region of (roughly) 80 × 80 km containing

two major serviced cities (i.e., Eindhoven, in the south; ’s-

Hertogenbosch, in the north) along with several small cities (e.g.,
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Helmond, Oss). In this work, we aim to create maps representing

predicted wind damage suitability on an hourly basis, but the spatial

resolution remains to be determined by the users. Hence, the study

area and its ground-level properties and variables (i.e., see Table 1)

will be sampled at 1 and 5 km of spatial resolution to reflect on the

most suitable scale.

Regarding the damage reports, each of the symbols in the map

(check Figure 1; BN in blue, BZO in gray) represents an address,

where storm damage occurred, which is the basis of the analysis.

However, from the original dataset, two aspects remain unknown

(1) the severity of the damage; (2) the time at which the damage

occurred (the metadata includes the time of reporting to the VRs).

Figure 1 (right) shows the temporal dimension of the damage

reports. The X-axis represents the hour of the day at which the

damage was reported, whereas the Y-axis the year in the study

period. As seen, the damage reporting signal remains very low

during the night time and picks up in the early morning (5–6 h).

It is unclear whether this is due to (a) human patterns, since during

the small hours of the night citizens tend not to contact the VRs

to report damage (except extreme episodes), or (b) the stability

of the boundary layer, although during severe storms, the winds

associated with these events might be sufficiently strong to suppress

the build-up of the boundary layer by forceful turbulent mixing.

These uncertainties inherent to the dataset are not a deterrent for

data-driven methods, but they need to be taken into account at the

time of devising the features in the H-E axis.

Note that the devised models will be tested over the study

area on an hourly basis for the month of February 2022. This

study month was selected because it contains the “Drielingstorm”

(i.e., triplet storm) episode, in which storms Dudley, Eunice, and

Franklin consecutively hit the Netherlands in a short period of time,

concretely during 15–22 of February 2022.

2.1.2 Processing damage locations as a proxy for
risk

In the risk assessment schema, each of the damage locations is

an occurrence of risk (R) as product of particular combinations of

H-E. The damage reports in their original form are characterized

by metadata fields and internal codes from VRs, a timestamp

and an address. Including these observations in a spatio-temporal

data analysis with data-driven methods requires knowing the

coordinates where damage happened. For this, we apply a process

of reverse geocoding to obtain a pair of coordinates (i.e., latitude

and longitude) for each damage location. Note that this process of

translating a postal address into a geo-referenced location might

introduce positional inaccuracies in the analysis, but it enables

carrying out the envisioned analysis. Then the datasets are merged

and standardized so that they contain the following columns: date

& time, longitude, latitude, reporting VR, incident number, and

geocoded address. After these steps, the risk is prepared to be

combined with the features in Table 1.

2.1.3 Characterizing the damage locations with
hazard and exposure metrics

In this work we define a set of features along the H-E axis

that might be explanatory of the storm damage occurrence. In

Table 1 we group these features in two categories: hazard or

exposure. In this work, H metrics are intended to quantify a hydro-

meteorological event that poses a level of threat to life, property or

the environment, whereas E metrics provide a description of the

assets exposed to such event (Intergovernmental Panel on Climate

Change (IPCC), 2023). The computation of these features required

gathering datasets on wind (i.e., ECMWF’s ERA5 reanalysis), high-

resolution tree data provided by Cobra Groeninzicht, KNMI’s

standard precipitation index and sky view factor datasets, and

publicly available datasets on vegetation (i.e., RIVM’s tree height

and percentage of vegetation), topography (i.e., Dutch Cadaster’s

TOP10NL product) and land use (i.e., CBS’s land use map). Note

that the SVF is used in this work as ameasure of urbanmorphology,

since locations with a low SVF might correspond to dense urban

areas, whereas locations with a high SVF to peri-urban residential

areas. Also, the hyper local nature of the storm damage reports

motivates including (very) high-resolution datasets, such as the

location of individual trees, which help at understanding local

conditions triggering damage. However, in this first stage of the

research, we include wind data from ERA5-Land. The reason for

this choice is that ERA5-Land provides average hourly estimates

of 10 m wind components and grid cells present a horizontal

resolution of 0.1◦, roughly 17 km. In addition, the devised data-

driven models will be tested at 1 and 5 km (check 2.1.1). Thus, all

characteristics and requirements considered, ERA5-Land seemed

a reasonable starting point to conduct this pilot impact-based

analysis.

The selected datasets are either raster (e.g., NetCDF) or vector

(e.g., Geopackage) geospatial formats. For each of the nearly

5,000 damage locations described in Section 2.1.1, we process

the above-mentioned datasets to obtain an array of 18 values,

corresponding to each of the features in Table 1. Note that the

Type E features are all static through time, whereas the Type H

features are dynamic, since they represent the potentially hazardous

hydro-meteorological conditions. It is also important to remark

that the wind features (i.e., Table 1, rows 1–4) are aggregated at

two temporal resolutions: (a) closest time to the damage report;

(b) average wind conditions of the previous 6 h. This is to

accommodate the uncertainty described in Section 2.1.1, since we

are unable to know the exact time at which the damage actually

happened. Hence, we expect that providing the average wind

conditions 6 h prior to the report might help the selected models.

This procedure creates a training set for the data-driven methods.

The above procedure is then repeated at the two selected spatial

resolutions and for each hour in February 2022 (check Section

2.1.1), hence producing two test datasets used in Section 2.2.3. Note

that this is a computationally intensive task for a consumer-grade

computer, but it is required to create maps with a spatio-temporal

resolution matching the services at which the VRs operate, such as

municipalities or neighborhoods.

2.2 Modeling storm damage reports with
data-driven methods

Data-driven methods operate without any prior statistical

assumption on the input dataset. In this case, the damage locations
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conform a dataset which only contains occurrences of the “positive

class”, which represents the presence of a damage report. That

is, we do not have a parallel dataset with locations where storm

damage did not happen. This motivated using a machine learning

method for one-class classification, concretely a One-Class Support

Vector Machine (OCSVM) (Schölkopf et al., 2001). OCSVM is

an algorithm typically used for anomaly detection. It projects

the training samples into a kernel feature space in which they

become separable using a maximum-margin n-dimensional plane

(Manevitz and Yousef, 2002; Yang et al., 2016). By doing so the

OCSVM classifier learns a boundary that wraps the positive class,

while leaving outside potential outliers (Shin et al., 2005). In this

way, OCSVM computes a binary function (i.e., “1” if inlier; “−1” if

outlier) that delimits regions in the kernel feature space containing

most of the probability density function (Schölkopf et al., 1999).

In this work, the modeling of the storm damage reports

with OCSVM is carried out in three stages. First, we design

four experiments intended to act as a sensitivity analysis for the

inclusion or exclusion of high-resolution variables in the analysis

(Figure 2). Second, we carry out a structured process of model

selection to find out the optimal models fitting proportions of

data. Third, we generate an ensemble of 200 OCSVM models with

variable configurations that we apply to the geographic space. The

remaining of this section describes in detail each of these stages.

2.2.1 Designing experiments
In this work, we are interested in exploring the effect of the

high-resolution features (i.e., land use, Table 1 feature 11; high-

resolution tree data, Table 1 feature 15–18) in the predictive power

of OCSVM. The inclusion (or exclusion) of these features might be

considered a sensitivity analysis. The idea is that if storm damage

reports are indeed hyper local occurrences of a phenomenon,

then the exclusion of these features should provide unrealistic

predictions for wind damage. Thus, for each of the two selected

spatial resolutions, 1 and 5 km, we run four experiments including

or removing the high-resolution features listed in Table 1 and

maintaining the rest. Figure 2 (top half) shows the four test beds

designed for this work. In total, considering the sensitivity analysis

and the two selected spatial resolutions, we run eight experiments

that enable assessing how spatially consistent the predictions are

and open the discussion on what are suitable spatial scales for the

VRs.

2.2.2 Model selection process
The theoretical experiments design described in Figure 2 is

followed by a model selection process. Model selection is a

systematic procedure carrying out an in-depth exploration of the

parameter space, simultaneously computing performance metrics.

A fundamental reason to carry out this thorough model selection

process is to control overfitting the damage reports. Overfitting

happens when a trained model loses its generalization capabilities,

hence misclassifying positive samples. In our case, overfitting is

handled by controlling the complexity of the learned decision

boundary.

The selected OCSVM model exposes three hyperparameters:

“kernel”, ν, and gamma. The complexity of the decision boundary

is controlled by tuning the ν and gamma parameters. Basically,

gamma controls how much pull over the decision boundary an

individual sample has. Hence, high-values of gamma imply more

complex decision boundaries that might not generalize well for

unseen samples, hence yielding poor classification metrics. Then,

ν controls the percentage of outliers in the training set. It is

worth to mention that all the VR reports are real occurrences of

damage. However, we do not know the severity of each intervention

(e.g., broken branch vs. fallen tree). Hence, allowing the model to

interpret some of the damage reports as outliers, might help at

keeping the simplicity of the decision boundary, since outliers will

be left out.

Therefore, two non-negative and incremental arrays are defined

for ν and gamma, and the “kernel” parameter is set to use a radial

basis function (RBF), since it has some desirable properties, such as

high-generalization capabilities (Wang et al., 2004). For each pair

of ν and gamma combinations, an OCSVM model is trained with

an increasing fraction of the damage reports (i.e., characterized with

the features of Table 1) and tested with the complementary fraction

of data. Note that the training samples are randomly selected. This

systematic process is carried out for each of the experiments in

Figure 2. The metric used to evaluate the trained models is the

percentage of correctly classified samples from the complementary

fraction of data, which we know beforehand belong to the positive

class.

2.2.3 Generating an ensemble of models to
predict for the study area

The model selection process described in Section 2.2.2

illustrates the optimal range of parameters for the OCSVM models

yielding a good percentage (i.e., >70%) of correctly classified

samples. Rather than selecting an optimal single model that might

not generalize properly, for example, due to overfitting, we create an

ensemble of 200 OCSVM models. Generating the ensemble helps

at mitigating the effects of overfitting. Each of the models in the

ensemble is initialized with random and different parametrizations

and will receive a random selection of 70% of the training samples.

This double randomization is intended to generate an ensemble of

diverse models with good generalization capabilities; some models

will be more sensitive at identifying areas prone to receive wind

damage, whereas others will have the contrary behavior. Hence,

for each of the experiments in Figure 2, an ensemble with such

characteristics is generated.

Each ensemble is applied to the two test datasets described

at the end of Section 2.1.1 at 1 and 5 km spacing, and the four

experiments in Figure 2 for the “Drielingstorm” episode (February

2022). The 200 ensemble predictions are averaged, so that for

each hour and location a prediction value is produced. Averaged

values range between [−1, 1], and this range is interpreted as how

much the models of the ensemble agree (i.e., −1/1) or disagree

(i.e., 0). Values closer to the limits of the interval imply that a

large proportion of OCSVM models in the ensemble agree that

a particular grid cell is suitable (i.e., close to upper limit “1”)

or unsuitable (i.e., close to lower limit “−1”) to develop wind

damage. Contrarily, averaged values around zero (e.g., [−0.25,

0.25]) mean that models disagree on whether a particular grid cell

might develop wind damage. The averaged model predictions are

then transformed into raster NetCDF files to ease the exploration

of the wind damage suitability.

Frontiers inClimate 05 frontiersin.org

https://doi.org/10.3389/fclim.2024.1505268
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Garcia-Marti et al. 10.3389/fclim.2024.1505268

FIGURE 2

Four experiment types carried out in this work. They are designed to act as a sensitivity test to assess the e�ect of the inclusion (or exclusion) of

high-resolution variables in Table 1 in the analysis. Note that each of these experiments is run at two spatial resolutions, yielding eight di�erent

combinations. The upper half is described in Section 2.2.1 and the bottom half in Sections 2.2.2 and 2.2.3.

3 Results

3.1 Model selection

Figure 3 shows the results of this model selection process.

For simplicity, we only include the results with training data

percentages ≥ 60%, organized per column. Hence, each of the

3D plots in the column shows the results for a fixed training

data percentage and one of the experiments (i.e., with or

without the high-resolution features). The X-axis of each 3D

plot illustrates the values taken by the ν parameter, whereas

the Y-axis shows the values taken by gamma. The Z-axis shows

the percentage of test samples that are correctly classified as

damage reports. Note the models are numerically labeled as

in Figure 2, that is “1” for the most informed model; “4” for

the least.

A general inspection of each of the 3D subplots shows dotted

lines ranging from dark blue to yellow. Regions of the parameter

space marked in dark blue represent complex decision boundaries

(i.e., overfitting) with poor generalization capabilities. Regions

marked in yellow represent models creating inflated decision

boundaries that classify practically each test sample as “inlier”. This

effect is better appreciated visually navigating Figure 3 diagonally

from the top left corner (i.e., more informed model with 60% of

training data) to the bottom right corner (i.e., less informed model

with 90% of training data). Note that for each subplot we have

marked the hyperparameters of the model yielding the highest

classification metric.

As seen, less-informed models, corresponding to rows “3”

and “4”, tend to present higher classification metrics (i.e., >90%

of correctly classified samples) than the more-informed models,

indicated in rows “1” and “2”. Based on the percentage of correctly

classified samples, the reader might be inclined to select the less-

informed models. However, this might prove a sub optimal choice.

OCSVM is a data-driven method that works by inflating the

decision boundary to accommodate themaximum amount possible

of training data. Models “3” and “4” do not contain high-resolution

features, which are more complicated to fit, hence the decision

boundary and its associated volume are too large. What happens in

practice is that this model will mark every new unseen location as

being within the boundary, which in the case of this project implies

that a region will be marked as suitable for damage. Better informed

models, trained with the high-resolution features, have a better view

on “how damage locations look like at high-resolution”, hence the

decision boundary becomes more complex and constrained, which

produces more classification errors.

The visual inspection of Figure 3 shows that balanced results

across the four experiments are achieved when training data is 70%,

the parameter ν ranges between [0.01–0.1] and gamma between

[0.1–3]. After identifying these ranges, we can generate random

values of ν and gamma to train an ensemble of OCSVMmodels.

3.2 Applying results

This section illustrates the ensemble predictions for the four

experiments in two different situations: strong winds (i.e., 4

Beaufort; 5.5–7.9 m/s) during the passing of Storm Eunice over

the Netherlands during the 18th of February of 2022 at 03:00

CET (Figure 4), and low wind conditions (i.e., 2 Beaufort; 1.6–43.3

m/s) on the 26th of February of 2022 at 03:00 CET (Figure 5).

Note that for the date with low wind conditions, no damage

reports were recorded by the VRs on that day. The color bar in

both figures range between [−1, 1] and represents the average

classification of the ensemble for damage to trees. Hence, values

closer to “−1” (white) indicate agreement of the ensemblemembers

at identifying a grid cell with low probability of developing wind

damage, whereas values closer to “1” (purple) would identify cells

more likely to develop damage. Each column corresponds to each
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FIGURE 3

Visualization of the model selection stage carried out in this work. Each of the rows corresponds to one of the experiments described in Section

2.2.1, whereas the columns represent the percentage of randomly selected training samples used in the experiments (i.e., 10–90%). Hence, each of

the subplots represent the parameter space exploration for a given experiment and training data. Subplots illustrate a 3D space in which the axes

represent the model parameters (i.e., X: ν; Y: gamma) and the percentage of correctly classified samples (i.e., Z: inliers). To ease the interpretation of

the figure, only results with ≥60% of the training samples are shown. High values of correctly classified samples are colored in green-to-yellow. Note

that less-informed models yield high metrics, which might be misleading, as explained in Section 3.1.

of the experiments defined in Section 3.1 (i.e., labeled as 1–4)

and each row the spatial resolution at which the model is applied.

Figure 4 shows a stark contrast between the well-informed models

(i.e., 1–2), and the less informed ones (i.e., 3–4). This relates with

the complexity of the decision boundary explained in Section 3.2.

Hence, the absence of high-resolution features prompts the models

to yield predictions that might be too sensitive for a given moment.

This can be better understood by inspecting Figure 5. In this hour,

low speed conditions were monitored, yet the less informed models

seem to identify most of the study area as prone to receive wind

damage, which is not a realistic prediction. This seems to add

critical mass to the hypothesis that damage due to severe winds
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FIGURE 4

Ensemble predictions for the four experiment types during the 18th of February of 2022 at 03:00 CET, during the passing of Storm Eunice producing

average winds of four Beaufort in that time slice. The color bar ranges between [−1, 1] and represents the average classification of the ensemble for

damage to trees. Values closer to “−1” (white) indicate that most of the models in the ensemble coincided at identifying this location as not prone to

be damaged, whereas values closer to “1” (purple) indicate the contrary case. As seen, less-informed models (i.e., columns “3” and “4”) identify most

of the grid cells in the study area as suitable to receive wind damage, whereas more-informed models (i.e., columns “1” and “2”) are capable of

narrowing down the risky grid cells to a small number. Note the stark contrast between including (or not) high-resolution features, better describing

the hyper-local conditions, in the analysis on a windy hour. Also important to highlight how the cluster in the Eindhoven area (center) in the first

column is visible at 1 km, but less prominent at 5 km.

is a hyperlocal phenomenon better captured with high-resolution

variables.

The inspection of the maps produced at two spatial scales

(i.e., 1, 5 km) for the well-informed models (i.e., 1–2) in Figure 4,

shows that at 5 km the produced maps are very similar between

them. However, the visual inspection of the 1 km maps reveals

a cluster of purple grid cells close to the center of the map

indicating that most of the models of the ensemble members are

vulnerable to receive wind damage. This cluster is between the

cities of Eindhoven, ’s-Hertogenbosch, and Tilburg, and is visible

at 1 km, but not so prominent at 5 km. This situation is repeated

in Figure 5, in which the two clusters around the municipalities

of Oss (north) and Gemert-Bakel (east), are less pronounced at 5

km. This suggests that the visualization of hyperlocal phenomena

requires a high-resolution sampling of the study area, but this

might add additional challenges to visualize and interpret the

ensemble predictions.

4 Discussion

The modeling of the features along the H-E axis (Table 1)

with an ensemble of calibrated OCSVM models yields hourly

predictions of suitability for wind damage for the study area. This

section comments on the results obtained and describes possible

considerations for the future.

First, it is important to mention that the described

methodology might be affected by the uncertainties inherent

to the damage reports dataset. As mentioned in Section

2.1.1, each of the reports contains information about storm

damage whose severity remains unknown, and also a non-

quantifiable spatio-temporal inaccuracy. These limitations were

considered during the development of the work, but might

have some unaccounted effects in the predictive power of the

ensemble.

Second, the features described in Section 2.1.2 conform a

reasonable set of H and E features, that we think are sufficiently

descriptive of the wind damage phenomenon. Nevertheless, the

current work could benefit of including wind datasets at a higher

spatial resolution than ERA5-Land. At Dutch latitudes, ERA5-

Land grid cells are roughly 17 km, hence being too large for

applications in small regions, such as the urban scales. In this

work, the coarse resolution implies that many of the damage

reports are characterized with the same wind conditions, which

might hamper the learning of the OCSVM methods. For this

reason, we recommend finding data sources on wind at finer
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FIGURE 5

Ensemble predictions for the four experiment types during the 26th of February of 2022 at 03:00 CET, a night with low wind conditions (i.e., average

winds 2 Beaufort). The color bar ranges between [−1, 1] and represents the average classification of the ensemble for damage to trees. Values closer

to “−1” (white) indicate that most of the models in the ensemble coincided at identifying this location as not prone to be damaged, whereas values

closer to “1” (purple) indicate the contrary case. Similarly to Figure 4, the less-informed models identify a large portion of the study area as suitable to

receive wind damage, despite the non-hazardous weather conditions. The more-informed models are capable of narrowing down the risky grid cells

to a small number. Note the clusters around the municipalities of Oss (north) and Gemert-Bakel (east) in the first column, are visible at 1 km but less

prominent at 5 km of spatial resolution. This motivates further thinking on appropriate spatial scales for the VRs.

spatial resolutions. In addition, it might be interesting considering

the inclusion of other H features, for example temperature or

precipitation, or devising new E ones depicting city characteristics,

such as the urban canyon effect.

Third, the approach described in Section 2.2 seems to

require a relatively small amount of samples to produce hourly

maps representing wind damage suitability. The models have

been trained with double randomized conditions (i.e., model

hyperparameters, training data) to ensure the creation of a very

diverse ensemble of models. However, it remains unknown if the

models have learned sufficiently from the study area to be applied

to other regions in the Netherlands. Ideally, the collaboration with

new VRs could provide new sources of damage reports, hence

enabling more aspects of the validation process.

Fourth, the validation of the hourly layers is non-trivial.

Roughly 5,000 locations are collected in a ten years period. This

implies that for most of the hourly map predictions that the

ensemble produces, there is not a substantial pool of damage

reports to compare whether the model predicts high suitability for

wind damage for the locations where there is an actual report.

Future work could include comparing the hourly predictions with

the stability of the boundary layer, so that it is possible to validate

the low damage predictions and solve a part of the validation

challenge. In addition, the reporting bias seen in Figure 1 (right),

implies that for a given hourly prediction it is unclear what are

the damage reports to compare with. The model selection process

we carried out indicates that the OCSVM models can classify well

the samples under certain hyper-parameter conditions, but with the

current amount of damage reports the validation that we can carry

out is limited.

Fifth, the sensitivity analysis reveals the effect of including

high-resolution variables in the analysis. The inclusion of hyper

local information seems to provide a detailed context for the

ensemble of OCSVM, hence becoming less reactive to non-

hazardous conditions. This is encouraging to pursue even higher-

resolution models, reaching sub-km scales, such as neighborhoods.

The current approach with the ensemble of OCSVM would

be adequate to advance to such scales, but then it becomes

fundamental what was mentioned above: including other H

and E features at a high-resolution, particularly related to

wind data.

Sixth, and related with the above point, there is an asymmetry

between what is technically possible and what is required by the

users. With the current approach, training for local conditions,
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means that it is possible to predict for very high spatial resolutions

(e.g., 100 m). However, this does not mean that the VRs require

such a level of detail. In fact, our conversations with them

revealed interest at getting maps aggregated at the municipality

level. The current approach yields hourly maps at 1 and 5

km of spatial resolution, which is close to the municipality-

level scales. Aggregating the gridded output of the model to the

municipal level implies conditioning the predictions to the total

area of the municipality, which might introduce new problems of

interpretability. The general challenge here is to effectively bridge

the gap between scientific outcomes and social agents, and this

can only be achieved by sitting with users and understanding their

needs.

5 Conclusion

In this work we illustrate how impact-based analyses

might become fundamental for NMHS to progress toward

the consolidation of early warning services. Establishing a

collaboration with emergency services enables organizing the data

analysis around a risk management framework. Our approach to

map the risk of storm damage combines hazard (H) and exposure

(E) metrics that are subsequently modeled with data-driven

methods (i.e., OCSVM). The applied methodology seems to be able

to recover a signal from the VRs damage reports, hence enabling

predicting storm damage at high-resolution.

Our methodology contains a sensitivity analysis to study

the effect of the high-resolution E metrics, followed by a

thorough process of model selection. After identifying optimal

parametrization ranges, we create an ensemble of OCSVM models

that provide robust predictions for each grid cell in the study

area. The ensemble is applied to two spatial resolutions (i.e.,

1, 5 km) and its averaged predictions are mapped into the

geographic space. We compare the maps for two days in February

2022 to illustrate the results of the modeling phase including

the sensitivity analysis. Future work could consider the inclusion

of other types of higher-resolution variables, especially wind,

particularly if the scale of the analysis needs to be at the sub-

km scale.

The results produced in this work are encouraging to pursue

a new range of potential products and services at NHMS, at high

spatio-temporal resolutions; even hyper-local in some cases. The

seamless execution of impact-based analyses with external partners

(e.g., disaster and crisis management agencies, safety and medical

services) would accelerate the transition of scientific knowledge

toward society, hence contributing to better protect communities

and livelihoods. This requires that NHMS expand the current

service delivery to strengthen national multi-hazard early warning

systems and contributing at providing an effective response to

hazardous weather.
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