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Anthropogenic carbon dioxide (CO2) emissions are the main driver of climate change, 
with global warming increasing almost linearly with cumulative CO2 emissions. 
Hence, future warming will primarily result from future emissions of CO2 with 
contributions from other greenhouse gases (mostly CH4 and N2O) and aerosols. 
Climate projections of the 21st century, such as those assessed by the IPCC, are 
provided from comprehensive climate models, also called Earth System models, 
driven by scenarios of the 21st century evolution of emissions from those climate 
forcers. While it seems now inevitable that the world will reach 1.5°C of warming 
above pre-industrial levels by the early 2030s, the extent to which we exceed this 
warming level and how quickly we may be able to reduce temperatures again 
depends strongly on global activity taken now to limit emissions. In this paper, 
we review the current understanding on Earth system changes under two highly 
contrasted possible future worlds. We first focus on high-end scenarios, where 
anthropogenic emissions continue to increase over the course of the 21st century, 
leading to large warming levels, associated impacts on all components of the Earth 
System, and increased risks of triggering tipping points. We then assess low-end 
scenarios, where anthropogenic emissions rapidly decline, reaching net zero 
and potentially becoming net negative before the end of the 21st century. Such 
“overshoot” scenarios lead to a peak in global warming followed by a slow decline 
in global temperature, with some degree of reversibility in the global carbon cycle 
and key Earth system components. We also review paleoclimatic information 
relevant to these two contrasting future worlds. Paleoclimate evidence for geo-
biosphere interactions shows that stabilizing feedbacks operate on millennial or 
longer timescales, whereas destabilizing feedbacks and tipping cascades occurred 
also on shorter timescales.
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1 Introduction

Over millions of years, the Earth has experienced large changes in 
its global climate, driven by changes in natural forcings, changes in the 
planet’s orbital configuration relative to the sun (and associated 
changes in solar radiation), and changes in geologic activity (and 
associated changes in atmospheric composition). These initial changes 
would generally trigger further changes in vegetation cover, ice sheet 
extent and the global carbon cycle that would amplify (or slow down) 
the initial perturbation. This is well recorded in past reconstructions 
of the Earth’s climate and atmospheric composition.

From the Paleocene (~60 million years ago) to the Pleistocene 
(~2.3 million years ago) the Earth’s climate transitioned profoundly 
from a hothouse to a coolhouse. This period is characterised by a 
decline from high atmospheric CO2 (1,000–2,000 ppm) to much lower 
CO₂ concentrations (250–400 ppm) in 50 million years. Planetary 
cooling co-occurred with the glaciation of Antarctica ~34 million 
years ago at the Eocene–Oligocene transition (Lear et  al., 2008). 
Recent work identified an associated major change in ocean 
circulation (Coxall et al., 2018), opening up a possibility for cascading 
tipping points during that climate transition (Dekker et  al., 2018; 
Wunderling et al., 2024). These could include transitions in the water 
and carbon cycles, via changes in ocean circulation and carbon 
storage, continental weathering, terrestrial biomes and carbon storage 
(Ladant et al., 2018). These transition periods of Earth climate are of 
high interest to understand the future Earth response as it represents 
one of the few documented paleo periods where CO₂ declined and 
hence provides insights on how the Earth’s climate would respond to 
declining CO₂ emissions.

During the Pleistocene, the Earth experienced alternances of 
colder glacial and warmer interglacial periods, transitioning between 
them by small changes in orbital forcing, amplified by ice sheet 
extensions, and biogeochemical feedbacks resulting in lower 
concentrations of the main greenhouse gases (CO₂, CH4, N2O) during 
glacial than during interglacial periods. Since the beginning of the 
Holocene, 11,700 years ago, the global mean temperature of the Earth 
has been more stable than in the Glacial at the global and regional 
scale (Rehfeld et al., 2018). The atmospheric composition of the main 
greenhouse gases was around 280 ppm for CO₂, 700 ppb for CH4 and 
270 ppb for N2O towards the preindustrial end of the Holocene 
(Canadell et al., 2021).

From the beginning of the Industrial period, around 1750, the 
increasing use of fossil fuel resources as the main source of energy and 
the human appropriation of land for croplands and pastures led to 
rapid increases in greenhouse gases concentrations, with current levels 
and rates of changes unprecedented over at least 800,000 years 
(Masson-Delmotte, 2021).

Since 1750, about 710 GtC (2,600 GtCO2) have been emitted 
into the atmosphere from human activities, primarily from fossil 
fuel burning (69%), and also from land use and land cover change 
(31%) (Friedlingstein et al., 2023). About 45% of anthropogenic CO₂ 
emissions remain in the atmosphere, leading to the observed 
increase in atmospheric CO₂ concentration, reaching 419 ppm in 
2023 (Friedlingstein et al., 2023). However, a large fraction of the 

CO₂ emissions (about 55%) is absorbed by the oceans and land 
ecosystems. These land and ocean carbon sinks are primarily driven 
by an atmospheric CO₂ concentration increase, with climate change 
being understood to reduce the strength of these carbon sinks. Over 
the same historical period, atmospheric CH4 more than doubled, 
from around 700 ppb in 1750 to about 1,920 ppb in 2023 (Lan et al., 
2022), primarily from anthropogenic emissions from agriculture, 
waste management, and fossil-fuel-related activities (Saunois et al., 
2020), but also potential global warming induced increase in natural 
sources (Canadell et al., 2021; Feng et al., 2022).

As assessed by the Sixth Assessment Report (AR6) of the 
Intergovernmental Panel on Climate Change (IPCC), each of the 
last four decades has been successively warmer than any decade 
that preceded it since 1850. The global surface temperature was 
1.19 [1.06 to 1.30]°C higher in 2014–2023 than the 1850–1900 
reference period (Forster et  al., 2024), with 2023 being the 
warmest year on record, close to 1.5°C warmer than 1,850–1,900 
(Copernicus, 2023).

In this paper, we  review the current understanding on future 
Earth system changes under two highly contrasted possible worlds: 
high-end scenarios, with further increase in anthropogenic emissions 
over the course of the 21st century; and low-end scenarios, where 
anthropogenic emissions rapidly reaching net zero and potentially 
becoming net negative before the end of the 21st century.

2 Future climate scenarios

2.1 Design of emissions scenarios

Future scenarios assessed by climate science are not predictions 
of how society will evolve but provide a range of possible futures. It is 
a societal choice which pathway we try to follow. Climate science and 
impacts modelling allow us to see the implications of these choices 
with the aim to guide us to a sustainable 21st century and beyond. 
Emissions scenarios are often produced using Integrated Assessment 
Models (IAMs). IAMs are typically optimization models that have 
mathematical representations of the global economy, energy systems 
and land-use and agricultural sectors, solving a global system, 
maximising economic welfare or minimising system costs subject to 
constraints. Inputs to IAMs are provided by exogenous socioeconomic 
narratives, such as the Shared Socioeconomic Pathways (SSPs), which 
specify regional-level population, Gross Domestic Product (GDP), 
urbanisation, and education pathways to 2,100 (Riahi et al., 2017). 
Constraints implemented in IAMs may include climate constraints, 
such as a total allowable cumulative carbon budget acting as a proxy 
for temperature or year-2100 radiative forcing. An end-of-century 
radiative forcing constraint is the basis of the well-known 
Representative Concentration Pathways (RCPs) for the Couple Model 
Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) and 
SSP-RCPs for CMIP Phase 6 (CMIP6) (Eyring et al., 2016), examples 
being RCP4.5 and SSP2-4.5 where the year-2100 radiative forcing is 
limited to 4.5 W m−2 (O’Neill et al., 2016). Land use patterns provided 
by IAMs can also provide boundary conditions for Earth System 
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Models (ESMs) that have a dynamic representation of vegetation 
cover distribution.

Previously, physical climate models were always run with 
pre-calculated concentrations of greenhouse gases (GHGs) in future 
scenarios. However, the development of ESMs, that fully resolve the 
physical climate system and its coupling with land and ocean carbon 
cycles, allows for a more realistic forcing with CO2 emissions 
(Friedlingstein et al., 2006; Hajima et al., 2024). For CMIP Phase 7 
(CMIP7), there is a desire that CO₂ emissions-driven becomes the 
default configuration (Sanderson et al., 2023). For the IPCC AR6, 
around a dozen ESMs resolved land and ocean carbon cycles and 
could be driven by CO2 emissions (Arora et al., 2020). These models 
are incredibly useful for determining the Earth system response to 
increasing CO₂ emissions, but also the Earth System response to zero 
or negative emissions (Jones et al., 2016; MacDougall et al., 2020). A 
few models now have methane emissions-driven capability (Folberth 
et  al., 2022), but other greenhouse gases must be  provided with 
pre-calculated concentrations (Smith and Gasser, 2022). Hence, most 
climate model experiments that investigate future scenarios, as 
assessed by IPCC, are run with prescribed concentrations for all 
GHGs, even in those ESMs that have emissions-driven capability 
(Sanderson et al., 2023). The GHG concentrations for input into ESMs 
are calculated using simpler climate models (Meinshausen et al., 2011; 
Smith et  al., 2018) from the IAM-simulated GHGs future 
emissions pathways.

2.2 How can we define high-end or 
low-end scenarios?

In the early days of scenario-building such as those from the 
Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 
2000), “business as usual” tended to denote pathways with constant or 
increasing greenhouse gas emissions in the future leading to several 
degrees Celsius of warming in 2100. This continued with the 
development of the RCPs, where RCP8.5, the highest emissions 
scenario used for ESMs in CMIP5 and AR5, was described as 
“business as usual” by its developers (Riahi et al., 2011). Although CO₂ 
emissions globally are not yet declining, a shift away from coal in 
favour of gas, and rapid scale up of renewable energy globally, has 
slowed the growth of CO2 emissions. To track the highest SSP-RCP 
emissions scenario prepared for CMIP6 and assessed in the IPCC 
AR6, SSP5-8.5, would require a large-scale reversal back to coal power, 
which appears to be  unlikely. It has been argued that emissions 
scenarios such as SSP5-8.5 no longer represent “business as usual” 
(Hausfather and Peters, 2020), as they would now require an 
unprecedented acceleration in fossil fuel production. In addition, the 
SSP5-85 frames an amount of CO2 emitted by human activities by the 
end of the century that exceeds the amount of fossil fuel reserves as 
assessed by IPCC AR6 (Canadell et al., 2021). Nevertheless, climate 
outcomes that are representative of these very high emissions 
scenarios could still occur, should carbon cycle feedback be strong, 
climate sensitivity high, or some Earth system tipping thresholds 
crossed (Sarofim et al., 2023).

Low-end scenarios have typically become more ambitious 
throughout time. Early scenarios such as the SRES sets did not create 
pathways that were expected to limit global mean surface temperature 
to below 2°C. Increasingly, scientific and policy discourse was 

coalescing on 2°C as a warming level that should be  avoided to 
prevent the most catastrophic impacts of climate change (Jaeger and 
Jaeger, 2011), and therefore a renewed focus on plausible low-end 
scenarios resulted in IAM groups investigating these trajectories. In 
time for the IPCC Fifth Assessment Report (AR5), several such 
scenarios were developed, which for the first time seriously considered 
the necessary net negative CO2 emissions in the second half of the 21st 
century. This includes RCP2.6, a scenario for Earth System models 
that limited warming to 2°C with net negative CO2 emissions around 
2070 (van Vuuren et al., 2011). Risk assessment of climate impacts still 
requires knowledge of plausible low-likelihood high-impact outcomes, 
and this includes higher than expected climate forcing from human 
activity (Wood et al., 2023).

The 26th Conference of Parties (COP26), held in Paris in 2015, 
advocated for a more stringent warming limit, with “holding the 
increase in the global average temperature to well below 2°C above 
pre-industrial levels and pursuing efforts to limit the temperature 
increase to 1.5°C above pre-industrial levels.” New scenarios were 
required that implemented even deeper mitigation, requiring CO2 
emissions reductions of 50% by 2030 relative to 2010, net zero 
emissions by 2050, and strong action on short-lived climate forcers 
such as methane and black carbon. In some circumstances, the 
definition of 1.5°C-consistent allows for a small, temporary overshoot 
of this warming level, acknowledging the geophysical and 
socioeconomic difficulties in avoiding peak warming exceeding 1.5°C 
(Dvorak et al., 2022). The latest scenario designed for CMIP6, SSP1-
1.9, is one such representative of this set (O’Neill et al., 2016). Such 
scenarios typically require large amounts (and rapid deployment) of 
carbon dioxide removal (CDR) technologies such as direct air capture 
and bioenergy with carbon capture and storage, but their plausibility 
at the scales required has been questioned (Anderson and Peters, 
2016; Fuss et  al., 2018; Smith et  al., 2016). IAMs and ESMs are 
increasingly including specific CDR processes in order to assess their 
implications, side-effects and co-benefits (Keller et al., 2018; Merfort 
et  al., 2023). Earth system modelling can help establish both the 
demand for CDR and also the feasibility of supply (Jones, 2022).

2.3 Limitations in scenario design

Scenarios such as the SSP-RCPs describe storylines and 
mitigation pathways of how society may develop over the course of 
the 21st century. It is not possible for any scenario to describe the 
exact emissions and land use pathway that the world will take in the 
future. There are many unknown unknowns in both the human 
system and the climate system, and on how society will respond to 
climate change. Furthermore, the IAMs that are used to construct 
the scenarios do not include climate change impacts on the rest of 
the human-Earth system. This is by design in the SSPs but may lead 
to pathways that while feasible in an IAM may be implausible in the 
real world. For example, high-end scenarios such as SSP5-8.5 
project a warming in excess of 4°C in 2100 relative to pre-industrial 
(Tebaldi et al., 2021), but continues to grow the economy at 3% per 
year (Riahi et al., 2017), thus neglecting any negative impacts of 
climate change on human systems (e.g., health, economy, 
agriculture, etc.) (Woodard et al., 2019). For low-end scenarios, the 
feasibility concerns revolve around the plausibility of the rate of 
emissions reduction that could be achieved in the coming decades 
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and on the rate of deployment and scale of negative emissions 
technologies (Fuss et  al., 2018; Heck et  al., 2018; Séférian 
et al., 2018).

3 Earth system response to high-end 
scenarios

3.1 Overall climate response

Climate change is primarily driven by anthropogenic CO2 
emissions. An advance for the IPCC AR5 was the realisation that 
global warming is largely scenario independent and approximately 
linearly related to the total cumulative emissions of CO₂ (Allen et al., 
2009; Gregory et al., 2009; Matthews et al., 2009). Other non-CO2 
emissions affect the warming, and can contribute to both rapid 
mitigation efforts and Earth system feedbacks, but as a good 
approximation the degree of warming we may expect in the future is 
principally proportional to the total amount of CO2 we emit. This 
linearity is perhaps surprising and reasons for it are still not fully 
understood as they include inter-related processes, such as ocean 
heat and carbon uptake, but also unrelated processes, such as changes 
in radiative forcing from CO₂ vs. changes in atmospheric CO₂ 
airborne fraction (Goodwin et  al., 2014; MacDougall and 
Friedlingstein, 2015).

When analysing high-end emissions scenarios, one can 
approximate the degree of warming expected from the knowledge of 
the cumulative carbon emissions. The relationship between them is 
characterised by a metric known as TCRE—the Transient Climate 
Response to cumulative CO2 Emissions. IPCC AR6 assessed the most 
likely value of TCRE as 0.45°C per 1,000 GtCO2, with a likely range of 
0.27–0.63°C. Given current CO₂ emissions of around 40 GtCO2 per 
year, the CO₂-induced current warming is expected to be around 
0.18°C per decade (neglecting natural climate variability), slightly 
below the observed rate of warming of about 0.26°C per decade given 
the warming contribution of non-CO2 greenhouse gases (Forster et al., 
2024). By 2100, the high emissions scenarios SSP3-7.0 and SSP5-8.5 
have cumulative CO2 emissions, from the year 1850, of 8,120 GtCO2 
and 10,590 GtCO2, leading to a warming of 3.7 and 4.8°C, assuming 
the TCRE central estimate, similar to the IPCC assessed warming (3.6 
and 4.4°C respectively). Table  1 shows the approximate expected 
warming from CO₂ emissions and TCRE along with the more 
comprehensively assessed estimate from IPCC. The level of agreement 
is better than the uncertainty in TCRE. This implies that TCRE can 
be used as a simple and rapid technique to estimate the level of global 
warming for any scenario by converting from cumulative emissions 
to a temperature change.

3.2 Global carbon cycle response

IPCC AR6 showed that the fraction of emissions absorbed by land 
and ocean reservoirs decreases for higher levels of emissions. Both 
land and ocean continue to take up carbon, but the efficiency of the 
sinks (defined as ratio of emissions taken up) declines. Land and 
ocean absorb about 70% of anthropogenic CO₂ emissions under the 
low-end SSP1-1.9 scenario, but less than 40% under the high-end 
SSP5-8.5 scenario. This decline in carbon sink efficiency is partly due 
to feedbacks from the climate which inhibits the sink strength, and 
partly due to the change in rate of anthropogenic emissions (Canadell 
et al., 2021).

3.2.1 Land carbon cycle response
The land carbon sink is primarily driven by the atmospheric CO₂ 

increase. Fast processes include vegetation gross primary productivity 
which respond to elevated CO2 via enhanced photosynthesis and 
improved water use efficiency. However, productivity and allocation 
of carbon to long-lived biomass (e.g., wood) can be limited due to 
nutrient availability. Higher CO2 levels increases the risk of insufficient 
nutrients to support the allocation of carbon to biomass (Zaehle et al., 
2014). While the short-term (5–10 years) response of vegetation to 
elevated CO2 can be assessed using Free-Air CO2 Enrichment (FACE) 
experiments (Norby et  al., 2005), the long term accumulation of 
carbon in biomass and soil is still largely uncertain (Liddicoat et al., 
2021; Varney et al., 2023a,b). Climate change leads to a reduction of 
the land sink (relative to a counterfactual with CO₂ increase but no 
climate change). Warming and/or increased aridity reduces plant 
photosynthesis, especially in tropical forests, directly reducing the 
ecosystem’s sink potential. Climate change also leads to a loss of soil 
carbon due to reduced soil input and enhanced soil decomposition, 
although soil processes remain poorly represented in models (Varney 
et al., 2023a,b).

In addition, Earth System Models do not properly represent forest 
disturbances yet, in particular drought and wildfires and their 
expected increase in frequency and/or intensity in a warming world. 
Although forests are still the largest carbon sink on land, the 
vulnerability of tropical forests is already documented and shows a 
decline in carbon storage (Hubau et al., 2020; Parry et al., 2022). Parry 
et al. (2022) show how the inclusion of fire in ESMs has led to their 
ability to represent possible localised tipping points as climate 
thresholds in tropical forests are reached. Jones et  al. (2009) 
demonstrated that large-scale changes of ecosystems can take many 
years or decades to manifest and may be committed at certain levels 
of warming before they are observed. The IPCC assessed loss of 
ecosystems in the updated “reasons for concern” assessment with 
large-scale singular events likely to transition to high risks levels above 

TABLE 1 Global surface warming and one-sigma range achieved by 2100 and 2300 for three SSP scenarios using the simple TCRE approach, compared 
with the IPCC AR6 assessed warming (data from Table 4.5 and Tables 4.9 of IPCC AR6 WG1).

Scenario Emissions by 
2100 (GtCO2)

Warming by 
2100 (°C)

IPCC assessed 
warming by 

2100 (°C)

Emissions by 
2300 (GtCO2)

Warming by 
2300 (°C)

IPCC assessed 
warming by 

2300 (°C)

SSP2-4.5 5,390 2.4 (1.5–3.4) 2.7 (2.1–3.5) 6,120 2.8 (1.7–3.9) 3.3 (2.3–4.6)

SSP3-7.0 8,120 3.7 (2.2–5.1) 3.6 (2.8–4.6) 13,740 6.2 (3.7–8.7) 8.2 (5.7–11.8)

SSP5-8.5 10,590 4.8 (2.9–6.7) 4.4 (3.3–5.7) 19,660 8.8 (5.3–12.4) 9.6 (6.6–14.1)
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2°C of global warming. Conversely, long-term vegetation dynamics 
may also represent a substantial carbon sink missing from many ESMs 
in high latitudes as northward migration of the tree line allows long-
term increases in terrestrial biomass (Pugh et al., 2018).

In high-end emissions scenarios, the thaw of permafrost carbon 
is significant, with carbon loss from permafrost projected to be 18 
[3–41] GtC per 1°C of global warming by 2,100 (Chadburn et al., 
2017). While Earth System Models represent some of the physical 
processes of permafrost thaw (Koven et al., 2013), they still lack a 
representation of key processes such as abrupt thaw, hillslope collapse 
or thermokarst lake expansion (Canadell et al., 2021). In addition to 
the thawing of organic carbon, this would lead to the release of 
available nitrogen, which may stimulate plant growth and offset some 
of the carbon loss (Burke et al., 2022).

3.2.2 Ocean carbon cycle response
The ocean absorbs about 25% of the annual anthropogenic CO₂ 

emissions (Friedlingstein et al., 2023). This sink is driven by several 
mechanisms known as pumps. The dominant pump is the solubility 
pump which primarily arises from the chemical and hydrodynamics 
properties of CO₂ to dissolve into seawater. The large-scale ocean 
circulation and mixing redistributes the dissolved CO₂ in various 
ocean basins and across ocean layers. The results of this series of 
processes generates a difference of partial pressure of CO₂ between the 
surface ocean and the atmosphere, driving the sign of the ocean 
physical sink of CO₂, which is the dominant ocean sink over the 
historical and future period. The second pump is the biological pump 
which arises from a suite of biological processes such as the primary 
productivity by phytoplankton, the biological production of calcium 
carbonate and the sink of biological material to the deep ocean. 
Although this pump is much smaller than the physical ocean sink, it 
is more efficient to remove CO₂ from the atmosphere over 
longer timescales.

Similarly to the land sink, the ocean sink is primarily driven by 
increasing atmospheric CO₂ which reinforces the difference in partial 
pressure of CO₂ between the ocean and the atmosphere, strengthening 
the ocean carbon sink (McKinley et al., 2020). However, warming of 
the surface ocean reduces the solubility of CO₂ into seawater, thus 
reducing the carbon sink efficiency. Also, warming reinforces the 
ocean stratification, slowing down the mixing of water with the deeper 
ocean and the associated carbon export. In all SSP scenarios the ocean 
carbon sink persists in the future and grows with increasing 
atmospheric CO₂ levels, despite the growing negative impact of 
climate change.

3.3 Ocean acidification

When anthropogenic CO2 dissolves into the ocean, it causes 
seawater to become more acidic, which then affects organisms 
especially those that form calcium carbonate shells. The phenomenon 
is termed ocean acidification, which is progressing steadily on a global 
scale. Since the late 1980s, the pH of the open ocean surface water has 
been decreasing at a pace of 0.0166 ± 0.0010 per decade (Ma et al., 
2023). Anthropogenic acidification is also found in the deep layers of 
the ocean, and significant acidification has been detected even at a 
depth of 1,000 m (Lauvset et al., 2020). The CMIP6 models project that 
a global average pH decline of 0.44 ± 0.005 from the late 19th century 

(1870–1899) to the end of the 21st century (2080–2099) under SSP5-
8.5, contrasted to 0.16 ± 0.002 for the SSP1-2.6 (Kwiatkowski et al., 
2020). If such a large pH decrease is realized in the future, aragonite 
unsaturation could occur, especially in the polar regions (Figuerola 
et al., 2021; Yamamoto et al., 2012), with a potential direct impact on 
aragonite shell-forming organisms. Acidification is also projected to 
progress in the middle and deep ocean layers, although there are 
greater uncertainties than in the surface layer due to the contribution 
of transport processes in ocean circulation (Watanabe and 
Kawamiya, 2017).

As with the open ocean, coastal areas are also being acidified due 
to anthropogenic CO2 invasion. In addition, the background biological 
activity in coastal areas is vigorous, so the amplitude of diurnal and 
seasonal fluctuations is large. The result is that the pH can 
be temporarily very low and is more likely to fall below a critical value 
than in the open ocean (Cornwall et al., 2013). Moreover, relatively 
small-scale phenomena such as coastal upwelling can cause large pH 
fluctuations, potentially with a serious impact on fisheries (Feely 
et al., 2008).

In addition to ocean acidification, consequences of anthropogenic 
CO2 emissions on the ocean include frequent marine heat waves and 
oxygen depletion. Although each event affects the marine ecosystem 
individually, it has been pointed out that strong acidification and 
oxygen depletion may occur simultaneously in areas where marine 
heat waves occur (Bindoff et  al., 2019; Gruber et  al., 2021). 
Understanding these combined effects, along with a detailed 
understanding of acidification in mid-deep layers and coastal areas 
mentioned above, is critically needed.

3.4 Abrupt changes and tipping elements

Although our understanding is that global warming levels 
increase linearly with emissions, there are likely to be abrupt changes 
or tipping points in the system, which can happen at local-to-regional 
scales, not necessarily driving a large acceleration in the rate of climate 
change, but potentially leading to substantial regional to global 
impacts (Lenton et  al., 2008). In the past transitions occurred at 
slower rates (see Figure  1) and were driven by biogeochemical 
feedbacks, paced by evolution and tectonics. The latest assessments 
suggest that multiple tipping points are at non-negligible levels of risk 
for global warming as low as 1.5°C (Armstrong McKay et al., 2022). 
The current rate of radiative forcing increase is about 25 times faster 
than over the last deglaciation. This implies that slow elements of the 
Earth system, such as ice sheets, are impacted by high rates that 
may—or may not—be buffered in the case of an overshoot scenario 
(Ritchie et  al., 2021). At progressively higher warming levels, the 
likelihood of large-scale singular events to occur increases. Outcomes 
such as Arctic or Antarctic ice sheets instabilities, an Atlantic 
Meridional Overturning Circulation (AMOC) collapse, or a dieback 
of the Amazon Forest are plausible. Still, there is little quantitative 
understanding of the climate thresholds which may trigger these 
events. Tipping points may be  detected by various techniques, 
including critical slowing down, with some studies reporting these 
signals as being detected (Boulton et al., 2022) while other studies 
reporting no evidence yet (Tao et al., 2023). In the case of the Amazon 
forest, regional drying and warming, in conjunction with human-
land-use/deforestation may push Amazon forest beyond the limits of 
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resilience and lead to a widespread loss of tropical forest (Flores et al., 
2024; Lapola et al., 2023). However, how such a threshold may change 
under elevated CO₂, and associated improved water-use efficiency, 
remains a critical research gap (Good et al., 2011). As mentioned 
before, observations are already showing an increase in tree mortality 
and a decline in the forest carbon sink, which suggests the risk is 
already present. In the future, projections assessed by IPCC suggest 
drying in the Amazon forest region—especially during June–July–
August, which increases with global temperature and higher 
scenarios. In such scenarios, tropical forest burned area also increases 
markedly with up to 30% loss of carbon at 4°C under the highest 
emissions scenario (Burton et al., 2022).

4 Earth system response to low-end 
scenarios

4.1 Key concepts related to low-end 
scenarios and climate neutrality

Historically, the family of low-end scenarios emerged in climate 
assessment at the time of IPCC AR5, where the methodological 
template of the RCPs accounted for mitigation options in the portfolio 
of climate solutions (van Vuuren et al., 2011). As such, the introduction 
of this family of scenarios represented a step change in the provision 
of future climate projections, contrasting with their predecessors, the 
SRES scenarios (Nakicenovic et al., 2000).

Contrasting with high-end scenarios, low-end scenarios are 
defined through several overarching properties that have been 
assessed in IPCC reports since AR5. The first key property of 
low-end scenarios is the prominent role of key geophysical 
constraints, such as the remaining carbon budget. This geophysical 
quantity is estimated from the total amount of CO2 we can still 
emit to limit global warming to a certain level while having 
removed past emissions. The total amount is derived from 
TCRE. Knowing the current warming level allows to estimate the 
remaining carbon budget, also accounting for warming from 
non-CO₂ forcing (Matthews et al., 2020; Rogelj et al., 2016), and 

the Zero-Emission Commitment (ZEC), i.e., the long-term 
warming or cooling after CO₂ emissions cease (Jones et al., 2019; 
MacDougall et al., 2020).

For instance, the IPCC AR6 estimated that the remaining global 
carbon budget for a 50% chance of staying within 1.5°C was 500 
GtCO2 from January 2020 onwards. More recent estimates, accounting 
for the CO₂ emissions since 2020 and updated estimates of the future 
warming from non-CO₂ agents, are as low as 200 GtCO2 from January 
2024 onwards (Forster et al., 2024). Importantly, this still applies to 
overshot and CO2 removal, so even if we exceed a target warming 
level, the concept of a carbon budget helps us plan the scale of action 
required to return to it.

The fact that low-end scenarios are constrained to a given carbon 
budget, implies that at a point in time, human-induced CO2 emission 
will pass from positive to negative. This point in time, when emissions 
reach “net zero,” represents the second overarching geophysical 
properties of low-end scenarios. Indeed, the recent IPCC AR6 WGIII 
report shows that limiting human-caused global warming to a specific 
level requires limiting cumulative CO2 emissions, i.e., reaching net 
zero or net negative CO2 emissions, along with strong reductions in 
other GHG emissions. These low-end scenarios also clarify the 
difference between net zero CO2 and net zero GHGs, with net zero 
GHGs (or climate neutrality) requiring all remaining CO2 and 
non-CO2 GHG emissions to be counterbalanced by durably, ideally 
permanently, stored CO2 removals.

In the latest IPCC AR6 WGIII scenario database, about 70% of the 
low-end scenarios halting warming to 2°C deploy net negative CO2 
emissions and do not reach net zero GHG emissions by the end of 
the century.

Beyond “net zero” many scenarios also extend to having globally 
net-negative emissions of CO2—a case which requires total amounts 
of CDR to exceed any residual positive emissions from human activity. 
Net negative emissions are required to enable reductions in global 
temperature and so-called “overshoot” scenarios. Many scenarios 
achieving 1.5°C by the end of this century entail periods of overshoot 
and subsequent net-negative emissions. Different CDR techniques 
have different consequences, including on land or marine ecosystems, 
biodiversity, albedo (and regional temperature). Hence we need to 

FIGURE 1

Global mean temperature evolution over the last 60 million years BP to the year 2300 based on paleoclimate reconstructions (panels A, B, C, D), in the 
context of observations and modelled projections for high (SSP1-1.9), medium (SSP2-45) and low (SSP5-85) mitigation efforts (panel E). Data and 
calibration details can be found in Rehfeld and Ziegler (2023). Reproduced under CC-By-4.0.
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consider the concept of “climate neutrality” as well as simply carbon 
neutrality (Zickfeld et al., 2023).

4.2 Carbon cycle response

Low-end scenarios also helped to challenge an outdated concept 
where halting global warming only requires stabilised greenhouse gases 
concentration, not zero emissions. In a geophysical sense, stabilising 
greenhouse gases concentration would stabilise the radiative forcing 
from greenhouse gases. This would lead to continuous global warming 
for centuries because of the slow accumulation of heat in the ocean.

In order to stabilise the climate (i.e., no significant further warming), 
recent research shows that CO₂ emissions have to cease (MacDougall 
et al., 2020; Solomon et al., 2009). After CO₂ emissions stop, the ocean 
and land will continue to absorb the excess CO₂ from the atmosphere, 
leading to a slow decline in atmospheric CO₂ concentration and, hence, 
in radiative forcing, which balances the delayed heat uptake by the 
ocean. The ZEC has been assessed with ESMs in the ZECMIP 
experiments where ESMs were driven by CO₂ emissions, emitting 
1000GtC total before CO₂ emissions were set to zero. 50 years after 
emissions cease, the simulated ZEC range from −0.36°C to 0.29°C, with 
a multi-model ensemble mean of −0.07°C, i.e., essentially zero. 
However, long-term changes in some slow components of the Earth 
System are expected to continue even when emissions cease, and to 
be irreversible on human time scales, this is the case for permafrost thaw 
and carbon release, ice sheets mass loss, and sea level rise.

When CO₂ emissions become negative, via CDR, the land and 
ocean carbon sinks are expected to further reduce and eventually, 
potentially turning into CO₂ sources, in particular for the land sinks, 
driven by the decline in photosynthesis due to decreasing CO₂ 
concentrations. The ocean on the other hand, is expected to keep 
absorbing CO₂ for longer (Jones et  al., 2016). However, reversing 
emissions will likely mean reversing global levels of warming. This is 
quantified by the same TCRE relationship, so every removal of 1,000 
GtCO2 will lead to about 0.45°C of cooling. IPCC assesses a level of 
asymmetry in the CO2 response to negative emissions, but due to the 
logarithmic dependence of the radiative effect, this means there is likely 
very little asymmetry in the temperature response. Positive or negative 
values of the ZEC lead to positive or negative hysteresis behaviour of 
the global system under negative emissions of CO₂ (Koven et al., 2022).

Although the dominant part of the negative CO2 emissions is 
assumed to come from the land sector, novel negative CO2 emissions 
technologies that encompass marine-based CO2 removal are increasingly 
considered (e.g., Kwiatkowski et al., 2023). Various ocean-based CDR 
measures have been proposed to mitigate climate change, however, some 
of the proposed schemes may either promote (nutrient addition) or 
counteract (alkalinisation) ocean acidification, so it will also be important 
to also consider CDR from the perspective of ocean acidification.

5 Paleo perspective

5.1 Paleoclimate, CO₂ and sea level

Air bubbles enclosed in ice cores provide direct evidence of past CO2 
concentrations (Bereiter et al., 2015; Lüthi et al., 2008). The highest CO2 
concentration recorded in polar ice over the past 800,000 years before the 

industrial era was 300 ppm (Nehrbass-Ahles et al., 2020). Although these 
values are well below those reached this century, there are at least two 
periods, the Last Interglacial (LIG, about 125 kyr ago) and Marine 
Isotope Stage 11 (MIS11, about 400 kyr ago), when sea level likely 
exceeded current levels (Dutton et al., 2015). Paleo reconstructions of 
regional sea-level rise rely on evidence for physical, geochemical, and 
biological features such as coral reefs, shorelines, saltmarshes, or 
floodmarks that can be  dated to the time period of interest. Global 
sea-level change is derived by combining present and paleo-elevation 
estimates for regional sea-level with models of glacial isostatic adjustment 
(Kemp et al., 2015). The first and best studied of these is the LIG when 
sea level was higher than today, although the exact sea level maximum 
remains under discussion (Dumitru et al., 2023; Dutton et al., 2015; Dyer 
et al., 2021). It appears likely that both the Greenland and West Antarctic 
Ice Sheets were smaller than they are today. The polar warmth 
experienced in the LIG was comparable to that of the near future. Recent 
studies suggest that the Greenland Ice Sheet may have lost the ice 
equivalent to about 3 m of sea level (Sommers et al., 2021), while the West 
Antarctic Ice Sheet could have lost 4 m of sea level equivalent (Golledge 
et al., 2021). Insight on sea level can be gained going further back in time 
to the Pliocene (5 to 3 million years ago), when global mean temperatures 
was around 4°C higher than today and CO2 concentrations above 
400 ppm (Burke et al., 2018). Despite very few sites having preserved 
direct sea-level proxies, data from coastal caves in Mallorca suggest that 
sea-level highstand was around ~17 m higher than present in the 
mid-Pliocene (~3 Ma) and ~ 25 m higher in the Early Pliocene Climatic 
Optimum (~5 Ma). These estimates agree with those obtained from data 
and models, that is 15 m on the United  States East Coast for the 
mid-Pliocene (Moucha and Ruetenik, 2017), and 17.5 m from the 
Patagonian shorelines for the early Pliocene (Hollyday et al., 2023).

5.2 Paleo peatlands and methane

The safe limit for peatland/wetland carbon is first and foremost 
reliant on having waterlogged soils, but no paleo evidence suggests an 
upper temperature limit. This is corroborated by modern-day peatlands 
being present in tropical and temperate areas, with mean annual 
temperatures above 25°C, wherever moisture is maintained all (or most) 
year-round. Examples of past time periods with high temperatures 
leading to unprecedented levels of biomass production exist, i.e., the 
Carboniferous/Permian periods when the wet early forests (made of 
spore bearing arborescent plants growing on wet soils) colonised coastal 
areas of land and stored away all the biomass that we now know as coal 
seams; this process of carbon burial led to rapid CO2 drawdown (Feulner, 
2017). Some of that rapid accumulation of peat deposits during this 
warm period may have also been related to fungi not having yet evolved 
to decompose lignin (Dighton, 2007; Hibbett et al., 2016). Paleo evidence 
of limits for the hydrological cycle, especially in warm conditions, do 
exist, and they suggest seasonality of rainfall is important, as any period 
where peat deposits are exposed to oxic conditions will lead to rapid 
decomposition (Garcin et  al., 2022). This all means that high 
temperatures may not destabilise peatlands directly, especially if plants 
adapted to warmer conditions are able to colonise them, but hydrological 
cycle changes leading to more arid or more seasonal hydroclimates would.

Despite considerable warmth experienced in the Arctic during the 
LIG (Otto-Bliesner et al., 2021), methane only reached concentrations 
comparable to pre-industrial level (Köhler et al., 2017; Loulergue et al., 
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2008). In addition, isotopic measurements of 14CH4 in ice suggests that 
old carbon reservoirs were not an important component of the 
methane increase after the last glacial period (Dyonisius et al., 2020). 
This provides some reassurance that a rapid release of methane from 
permafrost or marine hydrates has not occurred during warm periods 
when substantial amounts of permafrost undoubtedly melted.

6 Conclusion

Since the beginning of the industrial revolution, the world has 
warmed by 1.3°C with impacts detectable all over the world. Climate 
change will continue in the future until anthropogenic emissions of 
GHGs are brought to zero. Natural negative feedbacks, such as the land 
and ocean carbon sinks, cannot counteract all of the anthropogenic 
forcing; they currently remove about 50% of anthropogenic emissions, 
but there is a strong consensus that climate change tends to reduce the 
efficiency of these natural sinks. The planet is on a trajectory to reach 
1.5°C in the early 2030s at the current GHG emissions rate. However, 
our choices will determine the peak level of warming and associated 
climate impacts. Future warming is primarily driven by future, not past 
or current, GHG emissions. We  assembled paleo information, 
observations and modelling evidence to assess the consequences of our 
choices, and the differences between a world with sustained high 
emissions versus a world with rapid net zero emissions followed by net 
negative emissions are staggering. Land and ocean ecosystems, as well 
as human systems, will see severe negative impacts that increase with 
warming levels. Keeping the planet within safe boundaries requires a 
rapid, strong and sustained reduction in GHG emissions, reaching net 
zero as soon as possible. There is urgency to make these decisions now 
while relatively “low” warming futures are still on the table. This will 
require considerable changes to our societies and economies, moving 
away from fossil fuel-based energy towards zero-carbon energy sources 
across all key sectors (e.g., transport, electricity and heat production, 
industry and agriculture), while also scaling up carbon dioxide removal 
to compensate for the hard to abate sectors such as agriculture. Inaction 
is not an option, the longer we delay, the harder it will be. The evidence 
base is clear—we need renewed commitment to action now. To quote 
the United Nations Secretary-General’s special address on climate action 
on June 5th 2024 “Now is the time to mobilise, now is the time to act, 
now is the time to deliver. This is our moment of truth” (Guterres, 2024).
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