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Rapid development and deployment of marine carbon dioxide removal (mCDR) 
approaches will be required to prevent the worst consequences of climate change 
and meet national treaty obligations under the Paris agreement. However, approaches 
to monitor the efficacy and environmental safety of mCDR are not being developed 
with the same intensity as the technology. Verification will be required to convince 
a sceptical public and regulatory community of the overall benefit of mCDR as 
well as provide the regulatory community a basis for risk assessments that will 
be required for at scale deployments. In this perspective, we posit that genomics-
based approaches can be used to assess the efficacy of carbon sequestration 
and monitor for the possibility of unintended consequences. By adopting these 
approaches, it will be  feasible to develop the evidence portfolio necessary to 
underpin assessments of the risks, benefits and trade-offs involved in responsible 
deployment of mCDR.
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1 Introduction

Global surface temperatures are projected to exceed 1.5°C above preindustrial levels 
(which we may have already temporarily exceeded) (IPCC, 2021). This increase will impact 
global ecological systems and the human activities (including agriculture), as well as increase 
the frequency and intensity of fires, floods, droughts and intense storms. Even with greatly 
accelerated emissions reductions, nearly all future scenarios that limit warming to 1.5–2 
degrees contain an “overshoot” period, where the mean global temperature target is exceeded 
(Smith et al., 2023).

Active atmospheric carbon dioxide removal is needed to avoid the worst consequences of 
global climate change (Nemet et al., 2018; National Academies of Sciences, Engineering, and 
Medicine, 2022; Smith et al., 2023). Carbon dioxide removal (CDR) is defined as intentional 
capture of atmospheric carbon dioxide (CO2) and retention for time scales of decades to 
millennia (Smith et al., 2023).

Our preference for marine CDR (henceforth mCDR) is explained by our brief summary 
of some of the ethical arguments. The majority of CDR projects undertaken to date have been 
afforestation (Smith et al., 2023). There are concerns about the permanence carbon sequestered 
via afforestation given the increased risk of forests fires, and potential changes to land 
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management practices (Fawzy et al., 2020; Fuss et al., 2018; Deprez 
et al., 2024). Land-based CDR (including afforestation and the growth 
of fuel stocks for Bioenergy with Carbon Capture and Storage) will 
compete for arable land and freshwater resources, with conservation, 
and agriculture. Anticipated future global shortages of fresh water, in 
particular, raise potential ethical concerns about land-based CDR 
(Minx et  al., 2018). Any gains made in climate should not 
unnecessarily jeopardise other UN sustainability goals.1 Other 
approaches, such as Direct Air Capture or Enhanced Weathering and 
in situ mineralisation are also being developed, but no one technology 
alone is considered sufficient to sequester carbon dioxide at a gigaton 
scale. Therefore, throughout this perspective, we  argue for the 
increased ethical use of mCDR. While we  do not advocate for 
unnecessarily altering the ocean’s biogeochemistry, affecting fisheries 
productivity, or harming deep sea ecosystems, the consequences of 
inaction on climate change will be much worse for marine ecosystems 
than ethical deployment of CDR (Cullen and Boyd, 2008).

In addition to developing the technology needed for mCDR, 
we  will need to establish methodologies to demonstrate that the 
mCDR approach is effectively sequestering carbon (here and 
throughout; carbon sequestration refers to removal of carbon dioxide 
from the atmosphere into a durable form) without producing 
unintended consequences. Much of the work to develop mCDR is 
undertaken by the oceanographic community. Current approaches 
utilised in oceanography are frequently “macro” and rely on 
technologies such as remote sensing and deployed sensors. Large scale 
models are frequently used in oceanography because of the ocean’s 
scale and the cost involved in accessing remote areas (Siegel et al., 
2023). Many mCDR approaches, most notably Ocean Iron 
Fertilisation, are considered to be prohibited by the London Protocol 
against the dumping of wastes at sea (LCP 1.1 and LCP 4.8) due to 
concerns about the approaches efficacy and uncertainty about 
environmental impacts (Dixon et al., 2014). Exceptions to the protocol 
require extensive impact assessments and biological monitoring. The 
regulatory community—who will be approving mCDR approaches—
is by contrast, accustomed to site-specific evidence-based criteria 
utilised in environmental risk assessments (e.g., Directive 2011/92/EU 
of the European Parliament, 2014; Directive 2014/52/EU of the 
European Parliament, 2014; Australia Environment Protection and 
Biodiversity Conservation Act (AEPBCA), 2014). This disparity 
contributes to the regulatory hurdles in mCDR implementation due 
to uncertainty in degrees of risk associated with mCDR approaches 
and how those risks could be mitigated. In addition, the public has a 
mixed perception of mCDR (Nawaz et al., 2023; Smith et al., 2023): 
they understand the need to urgently act on climate change, but also 
are reluctant to adopt untested approaches with perceived 
environmental risks.

Approaches for mCDR have been recently and thoroughly 
reviewed elsewhere (Nemet et  al., 2018; National Academies of 
Sciences, Engineering, and Medicine, 2022; Smith et al., 2023). In 
this perspective, we focus on a set of approaches that can be used 
for measuring efficacy as well as the potential risk of unintended 
consequences, giving the regulatory community and ultimately, the 
public at large confidence in assessing the risks and impacts of 

1 https://sdgs.un.org/goals

using mCDR. We argue that using environmental genomics (in this 
case, metabarcoding and metatranscriptomics, illustrated in 
Figure  1) on samples collected from mCDR field trials and 
deployments, in parallel with other domains such analytical 
chemistry or remote sensing, can be used to achieve these goals. 
The use of genomics-based tools as a line of evidence for verification 
of mCDR should be developed in parallel with the sequestration 
approaches so that the regulatory community gains confidence in 
them. These approaches will also provide the ability to compare 
mCDR deployments to the risks and impacts of unmitigated 
climate change.

2 Verification needs

2.1 Determining the efficacy of 
sequestration

2.1.1 Iron fertilisation
To demonstrate that iron fertilisation is effective, we will need to 

show that the growth of iron-limited phytoplankton cells is stimulated, 
and that these cells sink to depths necessary for carbon sequestration. 
While most studies have found an increase in phytoplankton growth 
following iron additions (reviewed in Boyd et al., 2007), the estimated 
amounts of photosynthetically-fixed carbon that has sunk to the sea 
floor have been inconsistent (Buesseler et al., 2008; Smetacek et al., 
2012; Williamson et al., 2022); in general, fertilisation efforts that 
stimulate diatom growth have more export than those that stimulated 
growth of smaller cells (Mari et al., 2017; Guérin et al., 2022).

Recent studies illustrate how genomics-based approaches could 
be  used to verify the growth of target species and export of 
photosynthetically fixed material. For instance, Guidi et al. (2016) 
used both genomics and metagenomics to identify plankton associated 
with particles that sink out of the upper surface waters. Metabarcoding 
was also used to examine the composition of sinking particles in 
mesotrophic and oligotrophic oceanic environments (Valencia et al., 
2022). These approaches could be  used to verify the export of 
stimulated phytoplankton and the acceleration of the biological pump 
if iron fertilisation were utilised in mCDR.

A recent study (Hook et al., 2021) used metatranscriptomics to 
identify phytoplankton responding to ammonia released by 
aquaculture. The study found changes in community composition, 
increased photosynthesis and carbon fixation in dinoflagellates, and 
an increased abundance of transcripts involved in ammonia uptake. 
A similar metatranscriptomic approach could be  used to identify 
which phytoplankton are responding to additions of iron along a 
transect away from the site of fertilisation. It could also be used to 
identify the physiological pathways that underpin the differences in 
response in to iron (both as altered growth rates and differences in the 
amounts of carbon exported).

2.1.2 Restoration of blue carbon ecosystems and 
optimisation of their storage potential

The restoration of high-carbon sequestering coastal habitats 
(mangrove forests, seagrass meadows, salt marshes) is considered as 
one of the most environmentally friendly approaches to mCDR, as 
these approaches have positive environmental side effects, including 
shoreline protection, creation of habitat, and providing nursery for 

https://doi.org/10.3389/fclim.2024.1471313
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://sdgs.un.org/goals


Hook et al. 10.3389/fclim.2024.1471313

Frontiers in Climate 03 frontiersin.org

juvenile fisheries species. However, much of the carbon sequestered in 
Blue Carbon Ecosystem Restoration is sequestered for 100 years or less 
(Johannessen, 2022) and the carbon storage capacity can vary 
significantly spatially and temporally within these ecosystems (Owers 
et al., 2020; Ricart et al., 2020).

For carbon sequestration to occur in Blue Carbon ecosystems, 
organic carbon must be deposited in sediment, without being respired 
by the bacteria and fungi associated with the rhizosphere. 
Consequently, the carbon sequestration rates of coastal ecosystems 
vary depending on site characteristics, like sediment composition, 
nutrient and oxygen availability (Kida and Fujitake, 2020), hydrology 
(Reithmaier et al., 2020) and the plant species and composition. These 
factors affect the soil microbiota which ultimately drives the 
biogeochemistry determining the fate of sedimentary organic matter 
(Friesen et al., 2018; Hurtado-McCormick et al., 2022; Trivedi et al., 
2013). There is uncertainty about the microbial activity in the 
rhizosphere, and thus, to what degree carbon sequestration is 
occurring in many Blue Carbon projects. There is also uncertainty 
regarding the impact of anthropogenic disturbance on the permanence 
of CDR in blue carbon ecosystems.

The rhizosphere associated microbial composition and activity can 
be used as a predictor for remineralisation rates as well as for methane 
(CH4) and nitrous oxide (N2O) production (offsetting carbon 
sequestration) (Allard et al., 2020; Reis et al., 2017). Despite this, there has 
been very limited research linking carbon sequestration (including 

offsetting Greenhouse gas [GHG] emissions) in coastal ecosystems to the 
soil microbiota (Allard et  al., 2020; Trevathan-Tackett et  al., 2019). 
Genomics based assessments of the sediment microbiota at restoration 
sites, compared to sites of similar characteristics (climate, hydrology) and 
their carbon sequestration rates may provide a good proxy for potential 
success as activity may negatively correlate with the amount of recalcitrant 
sequestered carbon.

Carbon storage outcomes in coastal ecosystem restoration projects 
also depend on management choices (de los Santos et  al., 2022). 
Carbon sequestration outcomes could be increased by both managing 
soil microbiota and reducing environmental disturbances [such as 
dredging, wetland drainage which increase O2 availability thus 
microbial activity (Macreadie et al., 2019; Macreadie et al., 2015)] to 
minimise remineralisation. Management strategies that promote 
carbon sequestration include amending the soil/sediment with lignin 
derived phenolic compounds or clay particles (Min et al., 2015; Dunn 
and Freeman, 2018; Freeman et al., 2012; Freeman et al., 2001). If 
effective, these low cost, easily applied, and nontoxic amendments 
could minimise emissions from coastal ecosystems. However, soil 
microbiota also support plant growth, so actions that promote 
sequestration by decreasing soil microbial activity may cause 
detriment to the habitat (Allard et al., 2020; Birnbaum and Trevathan-
Tackett, 2022). Genomics based approaches (metatranscriptomics, in 
particular) could be used to monitor changes in microbial activity to 
prevent this outcome.

FIGURE 1

An illustration of the genomics approaches we are advocating for adoption in this perspective. Metabarcoding (sometimes called tag sequencing or 
amplicon sequencing) uses DNA and PCR to amplify all the different copies of a specific gene from a sample, which is subsequently used to 
differentiate and identify the various taxa present in the sample and compare the different samples. Metagenomics sequences the entirety of DNA in 
the sample, providing a holistic view of community function. Metatranscriptomics sequences all the RNA in a sample. Based on the broad assumption 
that genes are only transcribed to RNA, it is used as an approach to assess the active functions of a community.
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2.2 Unintended negative consequences of 
mCDR

2.2.1 Nutrient robbing and altered ecosystem 
dynamics

Much of the hesitancy around deploying mCDR stems from the 
possibility of unintended consequences to marine ecosystems, in 
particular changes in primary producers. For instance, ocean fertilisation 
could result in changes in the phytoplankton size spectrum (Boyd et al., 
2007; Chisholm et al., 2001) or the depletion of other nutrients (called 
nutrient robbing) leading to a decrease in phytoplankton productivity 
(Boyd et al., 2007). Minerals, such as olivine, used in Ocean Alkalinity 
Enhancement (OAE) are frequently high in Fe, and may stimulate 
primary production (Bach et  al., 2019), which could also change 
phytoplankton size classes or causing nutrient depletion.

Hypothetically, increasing the pH of surface waters could also 
alter primary productivity, as carbon concentrating mechanisms in 
microalgae are optimised to the pH of surface seawaters. Even small 
increases above pH 8.5 would decrease the available carbonate ions, 
and may lead to carbon availability limiting algal growth (Liu et al., 
2022). In these scenarios, smaller phytoplankton with efficient carbon 
uptake replace large algae, such as diatoms, causing reduced carbon 
export from upper surface waters (Bach et al., 2019). Furthermore, 
increasing the alkalinity of surface waters could favour the growth of 
coccolithophores; which are abundant in the comparatively alkaline 
Black Sea (Bach et  al., 2019). Lipid rich diatoms are good food 
sources for many marine organisms, so their replacement could have 
trophic consequences.

Seaweed aquaculture causes additional concerns about nutrient 
robbing, as uptake of growth-limiting nutrients by cultivated algae could 
reduce future net primary production, and its associated carbon 
sequestration. This is a critical knowledge gap in understanding the 
climate change mitigation potential of seaweed aquaculture (Ross 
et al., 2022).

Metabarcoding could be  used to compare the composition of 
eukaryotic and prokaryotic plankton upstream and downstream of 
mCDR deployments to determine if the species composition 
“downstream” are changing in ways that indicate nutrient limitation (due 
to nutrient robbing).

While, to our knowledge, the metabarcoding approach has not been 
used to measure unintended consequences of any mCDR projects, it has 
been routinely used to determine the dynamics of planktonic 
communities in other studies. Metabarcoding has been used to measure 
changes in zooplankton populations in a boreal lake following simulated 
spills of diluted bitumen and to different response technologies (Ankley 
et al., 2020), and to assess the impacts of nutrients and metals on the 
composition of planktonic communities in coastal China (Zhang et al., 
2023). Other studies have used eDNA surveys to measure seasonal 
dynamics and the influence of a marine heatwave on biological 
community composition and species abundance (Berry et al., 2019) and 
to show changes in the bacterioplankton following a marine heatwave 
(Brown et al., 2024). Metabarcoding was also used to show that changing 
concentrations of CO2 has little impact on bacterioplankton composition 
(Lin et  al., 2018). Taken together, the aforementioned studies 
demonstrate how metabarcoding could be used to measure changes in 
plankton composition, providing the regulatory community and the 
public at large evidence for the safety, or alternatively, unintended 
consequences, of mCDR techniques.

Metatranscriptomics could be used to directly measure changes in 
resource competition “in patch” and “out of patch” areas anticipated to 
be impacted by mCDR. Although this approach has not been used (to 
our knowledge) in mCDR approaches, it has been used to study niche 
partitioning in the plankton communities (Alexander et  al., 2015), 
adaptive responses in different phytoplankton to variations in Fe 
availability (Caputi et al., 2019; Kolody et al., 2022). Landscape-scale 
metatransciptomic profiles were also used to determine the influence of 
land use patterns on microbial communities in small ponds in Germany 
(Bizic et al., 2022). Transcriptomic studies have also been used to study 
nutrient limitation (Harke et al., 2017), circadian rhythms (Hernandez 
Limon et  al., 2020) and co-ordination of nutrient uptake with 
diazotrophs (Harke et  al., 2019) and to study bloom dynamics (Ji 
et al., 2018).

2.2.2 The potential for toxicity
Although OAE has great potential for carbon sequestration, there 

is the potential for localised harm to marine organisms through elevated 
pH or trace metals. The impact of elevated pH on marine organisms has 
not been well studied (Kitidis et al., 2024). The minerals be used in OAE 
contain trace metals, which could be toxic or bioaccumulated (National 
Academies of Sciences, Engineering, and Medicine, 2022; Bach et al., 
2019; Ferderer et al., 2022; Kitidis et al., 2024). Recent studies have 
examined the impacts of OAE on primary production and have found 
comparatively minor impacts (Ferderer et al., 2022; Gore et al., 2019; 
Hutchins et al., 2023). Others have found direct mortality of invertebrate 
macroorganisms (Jones et al., 2024) or altered timings of the Spring 
bloom (González-Santana et al., 2024). These studies frequently employ 
environmentally unrealistic exposure durations, however.

Metatranscriptomics studies would identify the major biochemical 
pathways changing due to OAE in planktonic organisms. Transcriptomic 
and proteomic-based approaches could also be used to determine whether 
larger organisms are responding to increases in ocean pH or metal 
exposure, as has been demonstrated in the ocean acidification literature 
(e.g., Schwaner et al., 2023; Wong and Hofmann, 2021). For example, a 
transcriptomic study identified pathways of shell formation, bicarbonate 
transport, cytoskeleton, immunity, stress and metabolism as conferring 
resilience to decreased ocean pH in clams (Mercinaria mercinaria) 
(Schwaner et al., 2023). Similar approaches have been used to study sea 
urchin larvae responses to increased pCO2 (and as a consequence, 
decreased pH) (Wong and Hofmann, 2021). Laboratory exposures to OAE 
materials could be used to identify targets of potential adverse outcomes 
(Ankley et  al., 2010), followed by subsequent field-based monitoring 
programmes screening potentially impacted organisms for these targets.

2.2.3 Potential for production of other 
greenhouse gases

For mCDR approaches to be effective, the carbon sequestered 
must be stored in either sediments or deep waters, not remineralised 
into CO2, N2O or CH4. If the quantity of photosynthetically produced 
carbon is sufficient, there will not be  sufficient oxygen for 
remineralisation, and other diagenetic processes will be utilised. As a 
consequence, there is also concern that the breakdown of sequestered 
material may lead to the release of N2O and CH4—both of which are 
more potent greenhouse gases than CO2 (Gnanadesikan and Marinov, 
2008; Boyd et al., 2022; Fuhrman and Capone, 1991). In addition, 
some studies have found that mangroves can be a net source of CO2, 
CH4 and N2O (Reithmaier et al., 2020) depending on the composition 
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and activity the sediment microbiota (Alongi, 1988; Malerba et al., 
2022; Reis et al., 2017; Rosentreter et al., 2018). Credible quantification 
of carbon sequestration by coastal restoration projects should include 
consideration of microbial activity (Johannessen, 2022; Mazarrasa 
et al., 2018; Ricart et al., 2020).

Metabarcoding could be used to determine whether there are 
increases in bacteria that could produce CH4 and N2O associated with 
sequestered carbon. Metatranscriptomics studies would also highlight 
when and where mCDR can lead to increased production of CH4 or 
N2O, counteracting the effect of CO2 removal. These approaches could 
also be used to measure the abundance and activity of methanotrophs 
and N2O reducing bacteria.

3 Discussion

CDR strategies will need to be rapidly developed and implemented 
if we are to avoid the worse consequences of climate change, as well as 
to allow many countries and industries to meet their “Net Zero” pledges. 
To avoid competition with other UN Sustainability Goals by land-based 
CDR, we argue for the rapid development of mCDR. However, mCDR 
approaches can only be deployed at scale following a thorough risk 
assessment of their benefits, risks, and trade-offs, and have not been 
allowed under the London Protocol because of uncertainty about their 
efficacy and off-target environmental impacts. Resolving this 
uncertainty is not possible with the current set of available data and the 
approaches used to collect it. There is uncertainty about the potential 
scale of the carbon removal (e.g., whether the approaches are working); 
“nutrient robbing” (i.e., diverting nutrients away from other ecosystem 
processes) as well as uncertainty about the unintended impacts to other 
parts of the ecosystem.

Marine CDR interventions will require close monitoring to 
demonstrate that unintended consequences are within the risk 
tolerance for social acceptance, and that they are effective in 
permanently sequestering carbon. We suggest that the monitoring, 
reporting, and verification (MRV) approaches be conducted using a 
multiple line of evidence approach. The sensor, satellite, and other 
approaches that are being implemented now provide information over 
a geographic scale and frequently in close to real time, neither of 
which is currently feasible with the techniques highlighted in this 
perspective. Nonetheless, we suggest that using modern genomics-
based approaches on samples collected from in situ deployments in 
conjunction with biomarkers and isotopic methods could help resolve 
much of the uncertainty around the potential unintended 
consequences of using mCDR, as well as help quantify the degree to 
which carbon is being sequestered. Although use of genomics based 
assays will require continuous sampling over a wide spatial footprint, 
all MRV approaches will have similar requirements, so this condition 
alone should not be an impediment to adoption of the technique, 
especially as they may provide the certainty required for social 
acceptance or palatability. This line of evidence should be developed 
in parallel with the development of mCDR approaches. Similar 
approaches are currently being used to monitor the impacts of 
offshore energy on fish and wildlife species (Sepulveda et al., 2024) 
and in community based monitoring by the New Zealand EPA.2 Our 
suggestions are summarised in Table 1. These approaches can provide 
detail on the microbial processes that would otherwise be unattainable. 

2 https://www.epa.govt.nz/community-involvement/open-waters-aotearoa/

community-groups/

TABLE 1 Summary of the concerns regarding mCDR approaches, and how the risk could be quantified using a genomics based approach.

Approach Concern Risk quantification strategy

Ineffective  • Use of a metatranscriptomic approach could confirm that Fe is the only limiting nutrient

 • Use of metabarcoding could quantify the change in abundance inside and outside the fertilised patch or could 

confirm increases in target taxa

 • Use of metabarcoding could confirm export of target photosynthesisers

Ocean Iron Fertilisation Nutrient Robbing  • Use of metatranscriptomics to measure nutrient dynamics downstream could provide a line of evidence

 • Use of metabarcoding to measure changes in planktonic composition upstream and downstream of the area 

expected to be affected by iron fertilisation could provide a line of evidence

Production of 

Greenhouse Gases

 • Use metabarcoding to measure changes in bacterial abundance could provide a line of evidence

 • Use of metatranscriptomics to measure increased activity of methane and nitrous oxide producing bacteria 

could provide a line of evidence

Ocean Alkalinity Enhancement Toxicity  • Use of metatranscriptomics to measure response to alkalinity additions could confirm the safety of the 

approach

Restoration of Blue Carbon 

Ecosystems

Ineffective  • Use metatranscriptomics to measure the activity of the microbiota in the rhizosphere could demonstrate 

the efficacy

 • Use of an isotopic approach could verify the source of sediment organic carbon

Production of 

Greenhouse Gases

 • Use of metabarcoding to measure changes in bacterial abundance could demonstrate the likelihood 

of occurance

 • Use metatranscriptomics to measure increased activity of methane and nitrous oxide producing bacteria

Seaweed farming/afforestation Nutrient Robbing  • Use metatranscriptomics to measure nutrient dynamics downstream of seaweed farms could demonstrate the 

safety of the approach

 • Use metabarcoding to measure changes in planktonic composition upstream and downstream of the afforested 

area could demonstrate the safety of the approach

https://doi.org/10.3389/fclim.2024.1471313
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They can help resolve uncertainty around the potential for unintended 
consequences of environmental interventions, as well as provide a line 
of evidence for their efficacy. This additional information will lend us 
the support needed to act on climate change.
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