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The field of extreme event attribution (EEA) has rapidly developed over the last 
two decades. Various methods have been developed and implemented, physical 
modelling capabilities have generally improved, the field of impact attribution 
has emerged, and assessments serve as a popular communication tool for 
conveying how climate change is influencing weather and climate events in the 
lived experience. However, a number of non-trivial challenges still remain that 
must be addressed by the community to secure further advancement of the field 
whilst ensuring scientific rigour and the appropriate use of attribution findings by 
stakeholders and associated applications. As part of a concept series commissioned 
by the World Climate Research Programme, this article discusses contemporary 
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developments and challenges over six key domains relevant to EEA, and provides 
recommendations of where focus in the EEA field should be concentrated over the 
coming decade. These six domains are: (1) observations in the context of EEA; (2) 
extreme event definitions; (3) statistical methods; (4) physical modelling methods; 
(5) impact attribution; and (6) communication. Broadly, recommendations call for 
increased EEA assessments and capacity building, particularly for more vulnerable 
regions; contemporary guidelines for assessing the suitability of physical climate 
models; establishing best-practice methodologies for EEA on compound and 
record-shattering extremes; co-ordinated interdisciplinary engagement to develop 
scaffolding for impact attribution assessments and their suitability for use in broader 
applications; and increased and ongoing investment in EEA communication. To 
address these recommendations requires significant developments in multiple 
fields that either underpin (e.g., observations and monitoring; climate modelling) 
or are closely related to (e.g., compound and record-shattering events; climate 
impacts) EEA, as well as working consistently with experts outside of attribution 
and climate science more generally. However, if approached with investment, 
dedication, and coordination, tackling these challenges over the next decade will 
ensure robust EEA analysis, with tangible benefits to the broader global community.

KEYWORDS

attribution, extreme event attribution, climate change, climate models (regional and 
global), climate observations, impact attribution, climate science communication

1 Introduction

Extreme event attribution (EEA) seeks to determine whether 
there is a discernible effect on an observed extreme weather event’s 
characteristics due to a particular influence on the climate. In most 
EEA studies, the focus is on isolating anthropogenic influence. By this 
definition, EEA is an important tool in assessing how large-scale 
climate change interacts with events that will be most impactful—
weather-scale extremes. EEA has rapidly expanded since initial 
formative studies by Allen (2003) and Stott et al. (2004) two decades 
ago. Part of this expansion was reviewed by the US National 
Academies of Sciences, Engineering, and Medicine (NASEM) (2016), 
introducing multiple methods underpinned by physical climate model 
simulations and/or sophisticated statistical analyses. More recently, 
the field of impact attribution has emerged, whereby various impacts 
of extreme events (e.g., on human health, agricultural yield, 
infrastructural damage, or financial losses) are also attributed to 
climate change (e.g., Vicedo-Cabrera et  al., 2023). Moreover, the 
results of EEA are regularly and widely communicated to general 
audiences by many types of media, demonstrating the importance of 
these studies in shaping the conversation on how climate change is 
influencing the world we experience. For example, World Weather 
Attribution1 provides a rapid attribution analysis soon after the 
occurrence of an impactful extreme event, which is disseminated to, 
and often reported by, various media sources, particularly in the 
region where the extreme event occurred.

Whilst these developments are a testament to the power and reach 
of EEA and highlight scientists’ keen interest in advancing the field 

1 www.worldweatherattribution.org

towards practical and operational applications, there remain 
challenges that should be addressed. Moreover, new challenges emerge 
as the likelihood of compound and record-shattering events increase 
(Zscheischler et  al., 2018; Fischer et  al., 2021), and new types of 
compound events emerge (Matthews et al., 2019). Importantly, these 
challenges are interdisciplinary and cannot be resolved by the climate 
community working in isolation. Ongoing and co-ordinated 
interactions between climate scientists and statisticians, impact 
modellers, lawyers, the financial sector, communication experts, and 
other stakeholders are important so that substantial constructive 
developments in EEA take place over the next decade.

This article addresses six key areas where principal developments 
in this field are required, chosen due to either their central role in the 
methodological execution of EEA assessments or the application of 
EEA outside of climate science:

 1 The role and current limitations of observations used in 
EEA analysis;

 2 How events are defined for EEA and why this is important for 
the interpretation of corresponding results;

 3 Statistical methods commonly employed for undertaking EEA 
assessments, including developments for analysing compound 
and record-shattering events;

 4 The use of physical climate models for EEA;
 5 The emergence of impact attribution, and
 6 Communication of the results of EEA to non-scientist audiences.

We discuss important developments in each of these areas, as well 
as current and future constraints that may hinder the development 
and usability of EEA if not properly addressed. We conclude this 
concept paper by suggesting focus topics to overcome these 
highlighted issues, such that EEA is propelled further towards robust 
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assessments and the most relevant applications over the next decade. 
To help readers distil the considered topics and recommendations of 
this article, a schematic overview is provided in Figure 1.

2 Observational data for EEA

Trustworthy observations are critical for weather and climate 
extremes research and event attribution. However, high-quality data 
are often unavailable, inaccessible, and not long or dense enough to 
quantify and contextualise many extreme weather events (Doblas-
Reyes et al., 2021). Here, we discuss some of the challenges in using 
observational data and approaches to make the most of these datasets 
for EEA studies.

The quality and length of observational data vary worldwide and 
are dependent on the climate/weather variable of interest. Weather 
station records remain the most trustworthy source of observational 
data, particularly if quality-controlled and/or homogenised. Long-
running, quality-controlled station data or gridded data based on 
station data enable a more robust contextualisation of an extreme 
event in the historical record, both for the event itself, and for 
contributing factors such as regional warming and changes in the 
water cycle. However, weather station data are affected by various 
biases and uncertainties, particularly for extremes, due to human 
factors such as erroneous rainfall measurements (e.g., Viney and 
Bates, 2004) and other external factors (Trewin, 2010) such as site 
moves, changes in observing practices, and characteristics of 
instrument design (e.g., Harrison, 2010). For gridded data, the 

FIGURE 1

Schematic overview of the challenges and opportunities in extreme event attribution (EEA) this article addresses. The middle circle contains the six 
topics discussed in detail in the following sections, whereas the outer circle contains the recommendations listed in Section 8. Note that while the six 
topics of focus are separated for discussion in the following sections, they are ultimately interrelated and dependent on the current knowledge and 
limitations of one another, as highlighted by the circular arrows on the border of the inner circle.
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interpolation process also introduces uncertainties, particularly where 
the density of the underlying network is sparse or has changed over 
time (King et al., 2013).

There is a sparsity of current and historical station data in various 
parts of the world, particularly in many areas with high vulnerability 
to extreme events (Slivinski et al., 2019; Kimutai et al., 2023b). This 
may be  because the observations were never made or were 
discontinuous, the observation network is not dense enough to resolve 
localised extreme events, or observations have not been digitised 
(Brunet and Jones, 2011). Substantial quantities of data measured at 
national levels are difficult to obtain, as they come from networks 
which do not report internationally. Historical data are also often not 
freely available for data policy reasons, although once implemented, 
the WMO’s Unified Data Policy (2022) should assist here. Finally, the 
nature of some extremes is such that the impact of the extreme itself 
may lead to the observation being lost (e.g., an observing site being 
inundated by flooding). Lack of accessible measurement data 
complicates quantifying the weather extreme (e.g., intense 
precipitation), but also the impact assessment (e.g., flooded area or 
damages; see Section 6). A further limitation for attribution studies of 
recent events is that recent station data are generally drawn from real-
time synoptic data distributed through the WMO Global 
Telecommunication System (GTS). These encompass only a subset of 
all potentially available stations, have limited quality control, and 
sometimes inconsistent definitions (e.g., precipitation totals in a GTS 
report are sometimes only for part of a day, not a full 24 h). The 
dependence of recent data on GTS reports, and in particular the near-
total lack of non-GTS precipitation data from many parts of the world, 
is illustrated in Figure 2.

While satellite data have helped fill gaps, uncertainties, and biases 
are best understood where there are long-term observations for 
comparison. Even in well-observed regions of the world, there are 
significant biases in satellite representation of especially precipitation 
extremes and associated climate processes (Hegerl et  al., 2015; 
Hosseini-Moghari and Tang, 2022). Different products can exhibit 
large differences in precipitation extremes in data-sparse regions 
(Alexander et al., 2020; Bador et al., 2020), as was demonstrated with 
an attempted attribution analysis of flooding rains in parts of the 
Democratic Republic of Congo and Rwanda in 2023 (Figure  3), 
resulting in an inability to verify a gridded product suitable for the 
robust attribution of this event (Kimutai et  al., 2023b). Africa, in 
particular, has very limited in situ observations and large uncertainties 
across products (Ayugi et al., 2024) to perform event attribution. A 
possible alternative is the use of reanalyses that are improving in 
quality for analysis of extremes (Donat et al., 2014; Dunn et al., 2022) 
and can shed light on historical extremes (Cowan et al., 2020), but for 
some variables, including precipitation, and/or in data-sparse regions, 
the spread across products remains large, inhibiting accurate event 
attribution (Alexander et al., 2020; Sun et al., 2018). Therefore, in 
places where in situ observations may be  sparse and have other 
uncertainties, although reanalyses may be the best available option, 
they must be considered with caution (Kimutai et al., 2023b).

Many observational products do not include uncertainty 
estimates, which could hamper the examination of uncertainties in 
rapid analyses. However, utilising different observational products and 
reanalysis ensembles in the event definition (see Section 3) and model 
evaluation steps of EEA would be beneficial (Angélil et al., 2016). 
Variation due to choice of observational product and the subsequent 

model evaluation results should be  incorporated in uncertainty 
statements on the overall attribution of extreme events to 
anthropogenic influences. This would be useful since the uncertainty 
associated with a lack of observations is greater in data-sparse regions, 
leading to wider confidence intervals in attribution statements.

Long and reasonably homogeneous records (such as temperature 
extremes after the introduction of Stevenson screens) contain past 
extreme events that improve sampling and allow examination of the 
distribution of extreme events (van Oldenborgh et  al., 2021b). 
Regional historical extreme events can provide input to a storyline 
approach (see Section 5), from characteristics of the weather situation 
to its impact (Yule et al., 2023). Analogue methods, where events 
under common weather patterns may be identified and compared 
between these different climates (Cattiaux et al., 2010; Vautard et al., 
2016; Faranda et al., 2022), allow for investigation of such events in 
present-day or future conditions, but this is challenging due to 
uncertainty from methodological choices (Harrington et al., 2019) 
and in the application to record-shattering events (see Section 5). 
Palaeoclimatic records provide additional context, with some past 
extreme drought events substantially stronger than recently observed 
ones, indicating the presence of exceptional climate conditions in the 
past (Cook et al., 2022). While generally, paleoclimate records do not 
have a high enough time and scale resolution for EEA, historical 
events captured in them provide context for modelling and 
understanding rare events in the present. In summary, long, reliable 
observational records support event attribution by improving 
sampling, allowing for better model evaluation, and supporting the 
development of storylines and analogues for impacts.

Ultimately, EEA will be best supported by regular observations 
with dense spatial coverage over all parts of the world, available in 
near real-time, and supported by high-quality historical data. WMO’s 
Global Basic Observing Network (GBON) and Systematic 
Observations Financing Facility (SOFF) aim to strongly enhance the 
real-time component. Quality reanalyses and remote sensing datasets 
will further strengthen this, as would a mechanism for more effective 
exchange of precipitation data. Technological developments, including 
advances in remote sensing capabilities and low-cost sensors, can 
benefit the most vulnerable communities. In addition, stricter 
requirements by research funding agencies on open data sharing have 
improved the overall availability of observed climate data for EEA, and 
the adoption of WMO’s Unified Data Policy is a further step in this 
direction, particularly for historical data. Data rescue initiatives are 
also important for the recovery of historical data. The continuation 
and development of these initiatives will pave the way for a larger and 
more spatially consistent global network of high observational quality 
that is essential for EEA.

3 Definition of events for EEA 
assessments

Quantitatively defining “an event” for attribution involves 
selecting a relevant weather phenomenon of some significance (e.g., 
with known impacts, and/or at or near a climatological record), and 
identifying the time scale and region over which it will be examined. 
This identification is important for detecting the event, both in the 
observational record and, depending on how attribution is carried out, 
using climate model simulations (Section 5). Great care must be taken 

https://doi.org/10.3389/fclim.2024.1455023
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Perkins-Kirkpatrick et al. 10.3389/fclim.2024.1455023

Frontiers in Climate 05 frontiersin.org

to consider the duration, intensity, and spatial extent of the specific 
extreme event, whether necessary variables can reliably be obtained 
from observations (Section 2), and, in many cases, how the event 
relates to impacts. This process also requires consideration of possible 
compounding effects behind impacts (see Section 4.3; Bevacqua et al., 
2020; Zscheischler et al., 2020). The definition of the event is a crucial 
element within event attribution procedures (Otto et  al., 2016; 
Jézéquel et al., 2018; Leach et al., 2020) and is often the most time-
intensive step; however, there is no single objective approach. Here 

we  discuss various possibilities, along with challenges 
and recommendations.

In a broad sense, there are three approaches to event definition 
(van Oldenborgh et al., 2021b). These include a definition that will:

 i more clearly constrain any anthropogenic signal by averaging 
out variability over space and/or time. Opting for a large spatial 
scale can facilitate the detection of a trend and is a reason why 
large-scale precipitation events are more often attributable than 

FIGURE 2

Observational stations from the Global Historical Climate Network daily (GHCNd) network where 50 or more years of data are available (top) and data 
ending after 2000 (centre) and 2020 (bottom) for temperature (left column) and precipitation data (right column; excluding GTS precipitation data). 
White land areas show the data-sparse regions. The figure does not take into account that there may be a significant amount of missing data within 
the 50-year time slot. Since precipitation data from the GTS are excluded, there are almost no stations with recent precipitation data outside Europe, 
Australia, Canada, and the United States and its territories.
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small-scale convective precipitation storms (Kirchmeier-Young 
et al., 2019);

 ii as closely as possible focus on the observed event of interest by 
looking at the spatiotemporal window over which it has been 
particularly extreme. This can be  done by maximising the 
return period of the event over all possible space-time domains 
(Cattiaux and Ribes, 2018);

 iii focus on the aspect of the extreme weather event that 
contributed most towards impacts on society and ecosystems. 
For example, local extreme temperatures during heatwaves are 
demonstrated to increase human mortality (Vicedo-Cabrera 
et al., 2023).

A simple example of approach (i) could be  summer season 
temperatures averaged over Western Europe. For approach (ii) this 
could, for instance, be the annual peak 24-h precipitation extreme at 
the single station location exhibiting the highest return period for the 
region. Annual maximum wet-bulb temperature over a large city in 
India suffering from humid heat would illustrate the criteria of 
approach (iii). In some cases, these approaches are not mutually 
exclusive and the chosen definition may touch on aspects of each (see, 
e.g., Tradowsky et al., 2023). It is vital to communicate the variables 
and temporal and spatial definitions chosen (Philip et al., 2020), the 
rationale of the choice, and to make sure results are interpreted well 
and can be used as guidance (see Section 6). Both a storyline framing 
and a probabilistic framing can be applied to provide an answer to 
attribution questions (see Section 4; García-Portela and Maraun, 
2023), and while the former tends to be the more common approach 
in attribution, both framings can complement each other.

It is important to make clear that the outcome of EEA depends 
strongly on the event definition and framing (see, e.g., Otto et al., 
2012, 2016; van Oldenborgh et al., 2021b), and thus event definition 
is exceptionally non-trivial. However, this is not to say that attribution 
results are entirely subjective. As with any scientific analysis, EEA 
studies need to be precise about what is being assessed, and the event 
definition must be fit for purpose. It is therefore imperative to be clear 
about how and why the event was defined, and any potential influence 

these decisions might have on associated attribution results. Where an 
attribution analysis is motivated by providing information that is 
socially relevant, we advise that event definitions be selected to best 
capture corresponding and exacerbated impact(s) on society, whilst 
also quantifying the extreme meteorological nature of the event, 
temporal persistence, spatial domain affected, and where possible, the 
corresponding driving mechanisms. Indeed, conducting such analyses 
requires an understanding of the nature of the relationship between 
the physical hazard (temperature, precipitation, sea levels) and the 
resulting impact(s), which is not straightforward and requires a 
multidisciplinary approach (see Section 6).

When seeking to base an event definition on impacts, local 
knowledge is key. Wherever possible, local meteorological, 
climatological, and/or impact experts who can provide quantitative 
and lived experience information on the magnitude and scale of the 
event of interest should be part of the study (e.g., Philip et al., 2020; 
Kimutai et al., 2023a; Zachariah et al., 2023b; Junior et al., 2024). Their 
knowledge is essential in the initial discussions on event definition, to 
relay what the perceived impacts are, and to converge on an impact-
relevant event definition. Currently, there are limitations to how close 
to impacts a definition can be. Often a compromise is made between 
the impact of interest and what measures can be robustly estimated 
from both observational and model climatological data, e.g., a Fire 
Weather Index (FWI) rather than fire extent (van Oldenborgh et al., 
2021a) (see Section 5). In a rapid attribution study, metrics which are 
readily available or quickly computed are preferred (e.g., Philip et al., 
2020; Zachariah et al., 2023b).

Disasters are often related to “compounding” factors such as 
multivariate, concurrent, preconditioned, or successive extremes in 
several variables or in several locations (Zscheischler et al., 2020). The 
definition of compound events for attribution typically involves a 
trade-off between the different relevant spatiotemporal scales of the 
contributing atmospheric variables (Zscheischler and Lehner, 2022). 
It may be possible to combine the contributing factors into a single 
index, for example, the fire weather index (van Oldenborgh et al., 
2021a; Krikken et al., 2021), the heat index (Zachariah et al., 2023b; 
Mitchell, 2016; Wehner et al., 2016), or the spatial extent of a drought 

FIGURE 3

Five-day accumulated precipitation from 1 May to 5 May 2023 over the region surrounding Lake Kivu, in gridded data products using different sources 
of data: (a) CHIRPS (satellite and in situ), (b) CPC (analysis of in situ observations), (c) ERA5 (reanalysis), (d) MSWEP (reanalysis, satellite and in situ), and 
(e) TAMSAT (satellite and in situ). The red border indicates the larger region around Lake Kivu for which RX5day was analysed in Kimutai et al. (2023b); 
the figure is adapted from that paper’s Figure. The lack of sufficient regional measurement data complicates the selection of the most representative in 
situ, satellite, or reanalysis dataset for this specific case, and to establish why, for example, that CHIRPS is much wetter than the other products.
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(Bevacqua et al., 2024). The preferred index may depend on the region 
under study, and there is sometimes a trade-off between an index 
being more suitable for either climatological or impact purposes. A 
bivariate approach can be used to define compound events where such 
indices do not exist (Zscheischler and Lehner, 2022) or to complement 
a univariate analysis by disentangling the contribution of related 
variables (e.g., Kimutai et al., 2023a). For a more in-depth discussion 
around compound events, see Section 4.3. Moreover, storyline 
approaches can include compounding factors, multivariate aspects 
and preconditioning, and cascading impacts of extreme events in a 
way that may provide insight into the specific role of the different 
contributing factors (Lloyd and Shepherd, 2021; Mishra et al., 2023; 
see Section 5).

Attribution studies may also be motivated by research questions 
more related to the description of climate change, or the understanding 
of its dynamics and feedback, rather than impacts. In these cases, the 
event definition will tend to focus on a meteorological or hydrological 
extreme. For example, there is a rapidly emerging challenge in 
conducting attribution of record-shattering events (Zhang et al., 2024; 
Bevacqua et al., 2024), which are a feature of escalating climate change 
(Fischer et  al., 2021). In defining the event, these studies answer 
questions such as: How has climate change influenced this record-
shattering weather extreme? Are we witnessing events that could not 
have happened without climate change? Are there new physical 
processes leading to these record-shattering events or a combination 
of existing extremes that we do not yet have the tools to define? What 
is the likelihood of an as-yet-unseen extremity occurring in a 
particular city? Can models reliably simulate the defined event and its 
underpinning physical mechanisms? Some of these questions lean 
towards the discussion in Sections 4 and 5.

Having outlined what is desirable for constructing a useful event 
definition, we acknowledge there are still obstacles that can lead to a 
compromised definition or a decision to discontinue a study. The 
choice of which variable to attribute may be  influenced by data 
limitations, especially when evaluating impacts (Mitchell, 2016). Such 
limitations include short time series, missing data, changes in 
recording practices, and data being not publicly or freely available 
(Figure 2). Hence vulnerable countries that are likely also sparse in 
observational data (see Section 1) are also those for which attribution 
studies are most hindered since an extreme event cannot be suitably 
defined for an EEA assessment (Huggel et  al., 2016; Kimutai 
et al., 2023b).

Attribution of the impacts of a given weather extreme event (see 
Section 6) poses further challenges for event definition. This is because 
the timing and scale of the impacts of interest likely differ from the 
causal weather event. For example, heatwaves generally cover large 
spatial domains over multiple political boundaries and may persist for 
weeks (e.g., Dole et al., 2011; Otto et al., 2012; Karmakar and Das, 
2020), however, the impact of interest such as the mortality burden 
may be limited to just one political domain such as a small country or 
a large city (see Mitchell, 2016) over the hottest days. These 
considerations, as well as others, ultimately bear significant influence 
on how the impact is defined in the context of attribution. Moreover, 
the spatiotemporal differences between an impact and the causal event 
(Perkins-Kirkpatrick et  al., 2022), and the complexity of these 
relationships, may require the use of separate attribution methods to 
assess the links between climate change and the hazard, and the 
hazard and the impact (e.g., Schaller et al., 2016). This is important to 

identify at the initial phase of the study when the event is defined and 
can be  overcome by interdisciplinary collaboration between 
attribution scientists and impacts experts (Perkins-Kirkpatrick et al., 
2022), such that the definition is underpinned by contemporary 
scientific understanding of the impact, as well as how it relates to 
weather and climate variables.

4 Statistical challenges in EEA

Once the event has been defined in terms of the variable of 
interest, duration, and spatial domain, an attribution analysis can 
be carried out to understand the effect of climate change on the event. 
Often, this is done in a probabilistic framework: the variable is 
aggregated over the specified time scale and region, and a time series 
representing that class of event in that area is obtained (for example, 
annual maxima of 3-day accumulated precipitation over a pre-defined 
domain). Here we  discuss some commonly used probabilistic 
techniques, evolving challenges surrounding multivariate extreme 
events, and the emergence of record-shattering extremes.

4.1 Univariate probabilistic methods

Probabilistic event attribution uses a statistical model to represent 
the relationship between the variable of interest and the factors on 
which that variable depends—typically some measure of climate 
change, although other covariates may be included. A commonly used 
approach consists of modelling a variable’s annual maxima (or 
minima) by a generalised extreme value (GEV) distribution. This GEV 
is typically assumed to be non-stationary, using global or regional 
temperature as a covariate upon which the variable of interest depends 
(van Oldenborgh et al., 2021a; Robin and Ribes, 2020; Naveau et al., 
2020), as in Figure  4a. For a given change in the covariate 
corresponding to the change between a factual and counterfactual 
climate of interest—for example, the present climate and a cooler 
climate representing the pre-industrial period—the statistical model 
can be used to estimate the expected change in frequency and intensity 
of the event due to climate change. The change in frequency is typically 
expressed as a change in the probability of exceeding a particular 
threshold in any year and is known as the probability ratio, given by 
the ratio p1/p0 in Figure 4b. For very extreme events, and particularly 
for heat extremes where the climate change signal is very strong, this 
ratio may approach infinity; Paciorek et al. (2018) discuss how to 
estimate one-sided confidence intervals for probability ratios using 
likelihood ratio tests when this occurs. While the GEV focuses on the 
most extreme event over a given time period, the generalised pareto 
distribution (GPD), another family of probability distributions that 
model the tail behaviour of a parent distribution, can be used in a 
similar way for all rare events above a chosen threshold. In cases where 
an average of a given climate variable is analysed, a normal distribution 
is likely to be a more appropriate choice (Schär et al., 2004; Ribes et al., 
2020), and other distributions may be used in specific cases. Despite 
its apparent simplicity, univariate event attribution is still the subject 
of active methodological research, and several challenges are 
worth discussing.

Studies with a focus on extreme temperature often assume that 
only the location parameter (characterising “typical” extremes) is 
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shifting with the covariates—as in the example in Figures 4a,b—while 
others also allow the scale of the distribution to vary. Most studies 
assume that the tail shape of the distribution—critical for assessing the 
return period of extremely rare events—is constant, but this may not 
always be the case (e.g., Slater et al., 2021). Furthermore, accurately 
estimating the shape parameter of statistical distributions requires a 
large sample size, which is often a limiting factor in climate datasets 
(Fischer et al., 2021). Various studies have highlighted the benefits of 
incorporating additional covariates to account for physical processes 
known to affect the index of interest (e.g., large-scale modes of 
variability). Assuming that the underlying physical processes can 
be identified and captured, including process-based covariates, may 
improve the quality of the fit, allowing conditional attribution 
statements such as changes in the return levels and return periods 
given a certain state of internal variability (e.g., Sillmann et al., 2011; 
Sippel et al., 2020; Zeder and Fischer, 2023). The parameters of the 
statistical model may be estimated via frequentist approaches (e.g., 
maximum likelihood, van Oldenborgh et  al., 2021b) or Bayesian 
techniques (e.g., Zeder and Fischer, 2023; Auld et al., 2023). Recent 
research suggests that Bayesian parameter estimates, which 
incorporate parameter uncertainty and so tend to produce wider fitted 
distributions than maximum likelihood estimates, give more reliable 
return time estimates (Zeder et  al., 2023); however, these require 
careful specification of the prior parameter distributions.

In some cases, the chosen variable may not be well approximated 
by the assumed distribution, leading to biases in estimated 
probabilities. This may occur because the observations arise from 
different processes and so are drawn from a mixture of distributions; 
in the case of annual or seasonal maxima, the sampled events may not 
be far enough in the tail to ensure asymptotic convergence to the GEV 
(Ben Alaya et al., 2020, 2021) or the block lengths may be too short. 
While using longer blocks can be a solution, this may not be feasible 
in short observational datasets. An alternative involves using 

distributions such as the extended GEV (eGEV, Nascimento et al., 
2016). Furthermore, observation-only-based attribution assumes that 
the observational record is long enough to represent the response to 
external forcing. This is challenging for extremes at regional to local 
levels that are known to be affected by high internal variability, such 
as daily or hourly precipitation maxima or annual temperature 
minima. Recent work suggests that training statistical models with 
process-based covariates on Single-Model Initial-condition Large 
Ensembles (SMILEs) that simulate many realisations of possible 
extremes under a given forcing scenario (Suarez-Gutierrez et al., 2020; 
Bevacqua et al., 2023) and applying these models to reanalyses or 
observations (Zeder and Fischer, 2023) can help overcome this issue. 
If the response is expected to be  spatially homogeneous over the 
region of interest, an alternative approach is spatial pooling 
(Tradowsky et  al., 2023). However, in the case of spatially 
heterogeneous variables such as extreme precipitation, simple spatial 
pooling may not be an appropriate solution (Sun and Lall, 2015; Li 
et al., 2019). Another approach is to develop approaches that eschew 
climate models entirely in a data-driven approach using Granger 
causal inference methods (Ebert-Uphoff and Deng, 2012). This could 
be done by constructing a suitable statistical model of observations 
incorporating relevant non-stationary covariates (Risser and Wehner, 
2017; Risser et al., 2021, 2024).

A major challenge in recent years has been to combine 
information from climate models and observations to produce a single 
robust attribution statement. One approach is to re-fit the same 
statistical model to observations and climate models and report the 
weighted mean of the outputs of interest, typically the probability ratio 
or change in intensity (see Li and Otto, 2022). A Bayesian procedure 
to combine information from models and observations into a single 
non-stationary distribution has been proposed (Robin and Ribes, 
2020), in which models are used to define the prior distribution, 
although more work is required to generalise the approach to variables 

FIGURE 4

Plots illustrating probabilistic attribution of univariate and bivariate events. (a) Trend plot showing a non-stationary GEV distribution fitted to annual 
maximum temperatures at Portland International Airport (GHCNd). Points indicate observed annual maxima against global mean surface temperature 
(GMST), with the record-shattering 2021 event highlighted in pink. The black solid line indicates the centre of the distribution, which shifts with 
increasing GMST; the lines above represent expected 6- and 40-year return levels. Vertical bars represent uncertainty about the centre of the 
distribution in the 2021 climate and in a counterfactual 1.2°C cooler climate. (b) Schematic showing the modelled shift in temperatures between the 
present (solid line) and past climates (dotted line). The dashed vertical line indicates the magnitude of the event of interest; the shaded area underneath 
each curve represents the probability of observing an event at least as extreme as this in the counterfactual climate (p0) and the current climate (p1). 
The arrow labelled “I” shows the change in intensity of the event between the past and present climates. (c) As (b), but showing the shift in the bivariate 
probability distribution of temperature and precipitation. Ellipses represent contours of equal joint probability; the shaded area represents the 
probability of observing an event at least as extreme as the one represented by the dashed lines in the counterfactual (p0) and current climate (p1).
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other than temperature. Other observational constraints could also 
be used (e.g., model weighting; Brunner et al., 2019).

4.2 Attribution of record-shattering 
extreme events

In recent years, a number of record-shattering extremes (Fischer 
et  al., 2021, 2023) have been observed, for example, the Pacific 
Northwest heatwave in 2021 (Philip et al., 2022; Bercos-Hickey et al., 
2022). Such extremes can result in severe impacts, often stretching 
adaptation planning (e.g., Silberner, 2021; Tradowsky et al., 2023). 
Event attribution of such record-shattering extremes is particularly 
difficult, as many of the statistical challenges listed above are more 
pronounced, and some additional issues emerge particularly in 
observation-based methods in which data availability is limited. Many 
of the statistical approaches discussed above are unconditional, in that 
they assume that the events of interest (e.g., all annual maxima) are 
drawn from a single population. When a record-shattering event 
arises, this may no longer be a defensible assumption. In the most 
extreme cases, an event may be far outside the distribution in the 
previously observed record.

In such cases, numerical modelling approaches must be relied 
upon. Methods have been developed to simulate trajectories of very 
rare extremes, such as the UNSEEN approach using initialised 
hindcasts on subseasonal to seasonal timescales (Thompson et al., 
2017; Kent et al., 2017; Risbey et al., 2023) and ensemble boosting 
based on fully coupled models (Fischer et al., 2023; Gessner et al., 
2021; Ragone and Bouchet, 2021). Unlike the methods described 
above, the purpose here is to increase sample size virtually rather than 
address dynamical uncertainties. This is achieved by initialising a large 
number of model simulations with very similar dynamical conditions 
to those observed at or prior to the event of interest. This can then 
increase the accuracy of any extreme value statistics employed to 
assess changes in the frequency and/or intensity of the event due to 
climate change. Figure 5 demonstrates, with the mix of large ensembles 
and re-initialised conditions, how ensemble boosting resulted in the 
simulation of five heatwaves more extreme than the Pacific Northwest 
event of 2021 (see Fischer et al., 2023).

Moreover, for the attribution of record-shattering extremes, the 
availability of SMILES and large ensembles of experiments with 
prescribed SSTs offer novel opportunities, because due to their large 
sample sizes, they provide a better sampling of the tails of the 
distribution in numerous states of plausible climate variability. 
Additionally, in contrast to observational estimates, they also provide 
information about future climate states (Deser et al., 2020; Bevacqua 
et al., 2023). Recent work has also used re-initialised weather forecasts 
to simulate individual events in a counterfactual climate (Leach et al., 
2024), providing detailed information about the effect of climate 
change on the weather in that particular case. Section 5 delves deeper 
into the role of physical climate model simulations in attribution.

Many EEA studies deliberately exclude the event in question when 
fitting a non-stationary distribution, in order to avoid a selection bias 
(Miralles and Davison, 2023). Including the record-shattering value 
(e.g., the highlighted observation in Figure 4a) can distort the fit of the 
distribution, leading to low confidence in estimated return times, 
which can be  sensitive to the most extreme values in the sample 
(Bercos-Hickey et al., 2022; Philip et al., 2022; Bartusek et al., 2022; 

McKinnon and Simpson, 2022; Thompson et al., 2023). This problem 
may be mitigated by using Bayesian parameter estimates, which tend 
to be less susceptible to single influential observations (Zeder et al., 
2023). On the other hand, it has been shown for the case of the 2021 
Pacific Northwest heatwave that the observed event is beyond the 
upper bound of the fitted distribution if the event itself was excluded 
from the analysis (Bercos-Hickey et  al., 2022; Philip et  al., 2022). 
Excluding a record-shattering extreme implies another type of 
selection and may violate the assumptions in GEV distributions 
(Miralles and Davison, 2023; Zeder et al., 2023). Alternatively, record-
shattering events can be  considered as resulting from an implicit 
“stopping rule”: the event is investigated because the latest value is the 
first to exceed a threshold of interest, for example, the historic 100-year 
return level. Accounting for the stopping rule has been shown to 
reduce biases in return level estimates whilst still including the most 
extreme events (Barlow et  al., 2020; Miralles and Davison, 2023; 
Vautard et al., 2024).

4.3 Emerging statistical methods—beyond 
univariate probabilistic attribution

While probabilistic methods for univariate event attribution are 
relatively well established, some modifications are needed to handle 
situations where impacts arise from several weather events in 
combination; these compound events manifest in various forms, 
encompassing extreme and moderate conditions in multiple variables 
happening simultaneously or across space and time (Zscheischler 
et al., 2020). For example, concurrent precipitation and storm surges 
can lead to widespread flooding in low-lying coastal areas (Bevacqua 

FIGURE 5

Simulations of 5-day maximum temperature over the Pacific 
Northwest from the CESM2 climate model with lead times of 
5–23  days. Each lead time has a 300-member ensemble, where 
each member is perturbed by a round-off each in specific humidity. 
The result is a large ensemble of different background conditions in 
the lead-up to a heatwave pre-simulated in a transient run by the 
same model. Five individual members exceed the anomaly observed 
over the Pacific Northwest in 2021, demonstrating that appropriate 
samples of record-shattering events can be developed from current 
dynamical understanding and climate model capabilities. Adapted 
from Fischer et al. (2023).
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et al., 2020; Wahl et al., 2015), while compound hot-dry events can 
exacerbate tree mortality (Hammond et  al., 2022). Given that 
compound events drive many high-impact events (Zscheischler et al., 
2020; Bevacqua et  al., 2021), attribution statements based on 
independent univariate exceedances may provide only partial and 
potentially misleading information about the anthropogenic influence 
on extreme events. For multivariate events like moist heatwaves or fire 
weather, analyses have typically relied on collapsing multiple indices 
into a physically meaningful univariate index and applying univariate 
statistical methods (see Section 3). Truly multivariate extreme value 
statistical methods are only just emerging (Cooley et al., 2019), but in 
some settings (e.g., Zachariah et al., 2023a), multivariate attribution 
approaches may be used to jointly attribute multiple variables, which 
may then be combined in impact models; for example, physiological 
models that require inputs of multiple variables such as temperature, 
specific humidity, and wind speed (Havenith and Fiala, 2011). Copula-
based approaches may also be applied to effectively capture the nature 
of the relationship between physical hazards and their impacts (e.g., 
Baldwin et al., 2023). However, a compound event perspective that 
considers the underlying drivers of a representative univariate index 
can allow for a better understanding of the climate change effect by 
quantifying the contribution of the trends of the respective 
components of the index towards its longer-term changes (van 
Oldenborgh et al., 2021a; Kimutai et al., 2023a; Bevacqua et al., 2024). 
Moreover, understanding the dynamics of a compound weather 
extreme is particularly useful for evaluating climate models in terms 
of their fitness to conduct an attribution assessment (see Section 5).

Another way to approach compound event attribution is to extend 
the traditional univariate attribution approach to a multivariate 
setting, as shown in Figures  4b,c. When impacts are caused by a 
combination of extreme conditions in two hazard indicators—for 
example, concurrent hot and dry conditions that caused a crop 
failure—p0 and p1 can be defined as the probability of concurrent 
extremes (shaded in red in Figure 4c). Apart from the definition of the 
hazardous areas, which rely on two hazards rather than one, the 
framework is identical to the univariate case. While such extensions 
of the probability ratio framework to a multivariate setting have been 
proposed (Chiang et al., 2021; Zscheischler and Lehner, 2022), general 
guidelines and technical tools for compound event attribution are still 
limited. In particular, these concepts have only been illustrated for 
simplified cases, and a comprehensive framework that allows the 
attribution of complex compound event types to anthropogenic 
climate change is currently lacking.

The most prominent aspects that differentiate univariate and 
compound event attribution are related to (i) definition of the 
compound event, (ii) climate model evaluation, and (iii) the sample 
size required for the assessments. Challenges related to defining spatial 
and temporal scales become more prominent for compound events, 
where multiple variables driving the impacts need to be identified. 
Moreover, once multiple drivers have been identified, it is important 
to evaluate the ability of climate models to represent these drivers and 
their dependencies, for instance via simple correlations, copula theory, 
or multivariate extreme value theory (Villalobos-Herrera et al., 2021; 
Zscheischler et al., 2021; Zscheischler and Lehner, 2022; Qian et al., 
2023). Finally, when taking a probabilistic approach, larger sample 
sizes are typically required for compound than univariate event 
attribution (Zscheischler and Lehner, 2022; Bevacqua et al., 2023). A 
large sample size—for example, from SMILEs—is particularly 

important for high-dimensional compound events such as multi-year 
droughts, spatially concurrent precipitation extremes, and multiple 
co-occurring fire drivers (Bevacqua et al., 2023).

To summarise, all of the methods discussed in Section 4 are 
affected by uncertainties both in sampling and statistical assumptions; 
however, as noted by Stott (2016), confidence in the findings of a study 
can be increased by presenting the results of several complementary 
methods in combination, along with a discussion of the underlying 
physical processes. Care must be taken to communicate the event 
analysed in each case and the caveats associated with each method in 
order to avoid the impression of contradictory results that can arise 
from slightly different framings. Rather, emphasis should be placed on 
the strength of bringing together multiple lines of evidence and how 
this produces more robust attribution statements than relying on a 
single analysis.

5 Physical climate models and their 
application in EEA

5.1 Full probabilistic model simulations for 
EEA

A broad range of EEA approaches utilise physical climate models 
in combination with observations and statistical approaches, in 
particular to manage uncertainties. These models are employed to 
simulate the class of extreme events of interest in actual (with observed 
forcings) and counterfactual (with pre-industrial forcings) climate 
conditions. A widely used approach derives changes in occurrence 
probabilities following statistical methods in Section 4. This attribution 
approach, often called the probabilistic or risk-based approach, 
traditionally employs global climate model ensembles; however, over 
recent years ensembles of regional climate models (RCMs) have been 
developed for specific regional areas (e.g., Janes et al., 2019) and also 
examined in terms of EEA assessments (Stott et al., 2004; Stott et al., 
2016; Seneviratne et  al., 2021). A complementary conditional 
approach is based on event storyline simulations that can 
be implemented in different ways, utilising a range of climate models 
from global to convection permitting (Trenberth et al., 2015; Shepherd 
et al., 2018).

Physical climate models are useful tools that simulate many 
aspects of global climate, including atmospheric circulation and 
climate change. Climate models simulate many characteristics of 
observed extreme events in the present climate, as well as plausible 
patterns of changes. But the attribution of individual, often regional 
or local, extreme events to driving processes and external forcings 
requires setting a high bar. Two issues are particularly relevant. Firstly, 
climate models need to simulate realistic present-day characteristics 
of the extremes of interest, such as intensity, frequency, duration, and 
spatial extent. This depends on realistic representations of key 
processes underlying the event. Climate model biases in representing 
these processes may hinder the interpretation of results, and location 
biases may impede the subsequent use in impact attribution. Secondly, 
climate models should simulate realistic trends, and uncertainties in 
these trends need to allow for robust attribution statements. This 
involves both a realistic representation of key processes and the 
inclusion of all relevant forcings, which fall under the umbrella of 
fitness-for-purpose (Parker, 2009, 2020; Doblas-Reyes et al., 2021).
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Extreme events are caused by an interplay of dynamical factors 
such as the weather pattern causing the event, thermodynamic factors 
such as the amount of water vapour available for precipitation, and 
feedbacks that amplify or moderate the event (Seneviratne et  al., 
2021). These processes act upon a range of spatial and temporal scales. 
Depending on the representation of key processes, climate models 
may not realistically represent all types of extreme events on which 
attribution assessments are desired. For instance, midlatitude 
heatwaves are often caused by a large-scale blocking event (an 
underlying dynamical component), their initial temperature is set by 
the temperature of the advected air mass (a thermodynamical 
component), and subsidence, while regional temperature soil moisture 
feedbacks and land use can amplify local temperatures (Hirsch et al., 
2021). While anthropogenic climate change is, via thermodynamical 
processes, undoubtedly increasing the intensity and frequency of 
heatwaves, it is more challenging to ascertain the role of dynamical 
components, particularly in the presence of anthropogenic climate 
change. One approach that can isolate the role of anthropogenic 
climate change and other natural drivers is the storyline method, 
explained in greater detail in Section 5.2. When considering larger-
scale mechanisms such as modes of variability, another method is to 
separate simulations where certain phases are active (e.g., El Nino or 
La Nina) and compare the event of interest in these simulations to 
each other and neutral conditions, both under factual and 
counterfactual climates (Karoly et al., 2016). Another approach is to 
assess whether a given phase of a mode of variability is a component 
of the long-term trend of a given class of extreme, which can help in 
determining the relative role of anthropogenic climate change both in 
the long-term change as well as the specific event of interest (Kimutai 
et al., 2023a; Clarke et al., 2024).

Moreover, not all of the dynamical processes of many extreme 
events are fully understood or realistically simulated (van Oldenborgh 
et al., 2022). Of particular importance to many extremes is the spatial 
resolution of the climate models employed. Important meso- and fine-
scale dynamical processes are parameterised at coarser resolutions, 
with the result being a much less realistic simulation of the event. For 
example, lower-resolution regional climate models parameterise 
convection, resulting in less structurally defined hurricanes and lower 
precipitation and wind intensities (Patricola and Wehner, 2018). 
Figure 6 demonstrates this issue, with the finest resolution (1 km, 
Figure 6a) resulting in a very realistic hurricane structure in terms of 
cloud representation, outer rain bands, and the size of structure of the 
eye, especially when compared to the coarsest resolution presented 
(27 km; Figure 6c). It is worth noting that all spatial scales represented 
in Figure 6 are a result of bespoke dynamically downscaling analyses 
that are generally finer than many readily available climate model 
simulations, highlighting the need for targeted physical modelling for 
many types of EEA assessments.

As an example of large-scale circulation biases, Davini and 
d’Andrea (2020) and Schiemann et al. (2020) demonstrated that global 
climate models underestimate the number of blocked days in the 
northern hemisphere summer, a crucial weather pattern causing 
midlatitude heatwaves. Recent studies also emphasised that global 
climate model simulations do not represent regional increases in the 
intensity of extreme heat, owing in large part to lack of change in 
dynamical weather patterns, such as for the underestimation (resp. 
overestimation) of the heat extremes trend in Western Europe (resp. 
Eastern U.S.A.; Patterson, 2023; Vautard et  al., 2024, Singh et  al., 

2023). While these studies did not rule out internal interdecadal 
variability to explain such differences with exceptional situations in a 
few regions, it should be  kept in mind that potential systematic 
dynamical biases can significantly alter an accurate regional estimate 
of changes in return periods.

Misrepresentations of relevant processes also cause biases in the 
variables of interest for EEA, such as temperature, precipitation, or 
wind (Eyring et al., 2021; Doblas-Reyes et al., 2021), as well as their 
dependencies (Zscheischler et al., 2019). These biases may affect not 
only the magnitude of a variable, but also the simulated location of 
weather events and temporal distribution (Maraun and Widmann, 
2015; Maraun et al., 2021). Location biases are relevant for impact 
attribution (see Section 6), as the observed local impact cannot 
be correctly simulated should a climate model simulate the causal 
event in the wrong location (Mishra et al., 2023). Crucially, biases may 
depend on the state of the climate system and may thus change from 
present to future climate (Maraun, 2016). Thus, it is a non-trivial 
question how biases may be  reliably adjusted, for example, by 
statistical methods, and which adjustments are admissible (Maraun 
et al., 2017; Doblas-Reyes et al., 2021).

Regarding regional and local processes, it is well known that 
standard RCMs substantially underestimate the intensities of heavy 
summer downpours over southern Europe (Ban et al., 2021; Pichelli 
et al., 2021), and over Southeast Asia have wetter biases than their 
parent GCMs relative to observations (Nguyen et  al., 2022). It is 
therefore recommended that the representation of key processes is 
evaluated before proceeding with attribution (van Oldenborgh et al., 
2021b). Indeed, in the case of evaluating for certain types of extreme 
events, such as hurricanes, the simulation of the event itself may 
be sufficient for passing evaluation, given the complex physics that 
need to be resolved (i.e., not estimated) on small spatial scales for such 
an event to realistically appear (Reed et al., 2020).

Regional circulation patterns are important for initiating extreme 
events, and uncertainties in projecting changes in patterns are 
substantial (Shepherd, 2014). An example is the polar jet stream and 
storm tracks in boreal winter (Lee et al., 2021; Harvey et al., 2020) and 
how these relate to the North Atlantic Oscillation. The dynamical 
processes that underpin weather extremes during summer tend to 
be more consistent (Davini and d’Andrea, 2020; Dong et al., 2022; 
Kang et al., 2023), but the ability of climate models to realistically 
simulate these processes and their changes has been questioned 
(Mann, 2018). Thermodynamic changes are directly linked to global 
mean temperature by well-understood physical processes; therefore, 
they usually exhibit strong and significant trends and can be attributed 
to anthropogenic forcing more directly leading to smaller uncertainties 
(Shepherd, 2014). Examples for such changes are increasing regional 
temperatures and the resulting increase in heat extremes (Perkins-
Kirkpatrick and Gibson, 2017; Seneviratne et  al., 2021) and the 
increasing water vapour content following Clausius–Clapeyron over 
oceans (Lee et al., 2021). These signals are often so strong that robust 
attribution statements can still be  made, despite uncertain 
underpinning circulation changes (García-Portela and Maraun, 2023).

Finally, local-scale dynamical feedbacks may amplify or moderate 
forced changes in extreme events. Land-atmosphere feedbacks 
influence the severity of heatwaves and severe rainstorms (Seneviratne 
et al., 2010) and determine the likelihood of concurrent drought-heat 
events (Zscheischler and Seneviratne, 2017). While climate models 
can represent the underlying processes, the magnitude of feedbacks is 
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often biased (Dirmeyer et al., 2006; Hall et al., 2008; Sippel et al., 2017) 
and affects long-term trends (Vogel et al., 2018). As these uncertainties 
determine the magnitude of the simulated trend, they affect attribution 
statements about the strength of anthropogenic influences. Moreover, 
local physical processes and how they are simulated pose particular 
challenges to the attribution of some types of extreme events, as these 
processes often operate on sub-grid model scales and are 
parameterised (e.g., Seneviratne et al., 2021; see Figure 6).

Key for trustworthy attribution statements is the inclusion of all 
relevant forcings on the climate system. Regional climate trends are 
not only caused by greenhouse gas emissions and internal climate 
variability, but also by regional changes in non-greenhouse gas 
radiative forcings. For instance, a substantial fraction of the increase 
in summer temperatures over Europe and the Mediterranean has been 
attributed to decreasing aerosol concentrations over these regions 
(Dong et al., 2017). These forcings play a role in amplifying heatwave 
trends, but also for evaporation and thus soil moisture drought (Boé 
et al., 2020). A further complication for regional individual extreme 
events is the direct human role in land surface changes, which affect 
soil moisture, runoff, and temperature extremes when vegetation is 
managed, changed, or replaced (e.g., Thiery et al., 2020; Cowan et al., 
2020). Even radiative forcing by CO2 is not correctly represented in 
some RCMs, which assume constant CO2 concentrations and impose 
climatic changes purely via their boundary conditions (Jerez et al., 
2018). Regional climate simulations have also been shown to 
underestimate temperature changes in some regions due to the lack of 
aerosol-forcing change (Schumacher et al., 2024).

The issues described call for a systematic assessment of which—
if any—type of climate model is fit for the purpose of attributing 
the occurrence of a specific extreme event to anthropogenic 
forcings (Doblas-Reyes et al., 2021), including assessing whether 
the model simulates the event for the right physical reasons (Pfahl 
et al., 2017) and an extension of current model selection guidelines 
(García-Portela and Maraun, 2023). The evolving use of forecasting 
systems offers a novel opportunity to evaluate models used in 
attribution (e.g., Reed et al., 2020). Additionally, new approaches 
are emerging to better sample rare extreme events and the 
underlying dynamical set-ups of climate models. These include 
methods discussed in Section 4, such as UNSEEN, SMILES, and 

ensemble boosting (Thompson et  al., 2017; Risbey et  al., 2023; 
Suarez-Gutierrez et  al., 2020; Bevacqua et  al., 2023; Fischer 
et al., 2023).

Managing model uncertainties remains a challenge in 
EEA. Within the statistical approach of EEA, ensembles of models are 
considered, together with observations, and both variability and 
model uncertainties are considered (see, e.g., the WWA protocol, 
Philip et  al., 2020) using inter-model and within-model spread 
estimates, coupled with a strict model selection. The Bayesian 
approach also provides a built-in management of uncertainties with 
ensembles of simulations (see Section 4).

5.2 Conditional model simulations in EEA

As noted in Sections 3 and 4, the sophisticated statistical and 
physical climate model methods that underpin EEA come with 
challenges and limitations. This should not deter from using them in 
attribution assessments, however, combining the most appropriate 
statistical methods with climate model data can be complex, further 
hindered by the type of extreme event being attributed (see Section 4) 
as well as the quality of the observations to detect the event in the first 
place (Section 2).

Conditional attribution methods following a storyline approach 
(Shepherd et  al., 2018) are a potential solution. Here, attribution 
assessments may be split into the thermodynamical and dynamical 
components. The former includes keeping dynamical conditions fixed 
(Trenberth et al., 2015; Vautard et al., 2016), where the latter, which 
originated from climate analogue methods (Cattiaux et  al., 2010; 
Vautard et al., 2016; Faranda et al., 2022), estimates changes in the 
probability of occurrence of a particular weather pattern (e.g., Faranda 
et al., 2023). Large-member re-initialised climate model ensembles via 
ensemble boosting (see Section 4.2) have also been explored to 
develop storylines of exceptionally rare extreme events, allowing for 
attribution where lead-up dynamical interactions are considered 
(Fischer et  al., 2023; Figure  5). Traditional attribution methods 
typically concentrate on only thermodynamical components; however, 
conditional/storyline attribution allows for different types of models 
to understand how anthropogenic climate change is influencing the 

FIGURE 6

Hurricane Katrina as shown by outgoing longwave radiation (W/m2) at 1800GMT on 28 August 2005 from hindcasts simulated with the Weather 
Research and Forecasting (WRF) model at (a) 1  km, (b) 3  km, and (c) 27  km resolution. Simulations at 1  km and 3  km resolution did not use a convective 
parameterisation. Simulations from Patricola and Wehner (2018).
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resulting extreme event and underpinning mechanisms (e.g., Reed 
et al., 2020).

The pseudo-global warming approach (Schär et al., 1996; Doblas-
Reyes et al., 2021) is an alternative for conditional attribution, where 
specific physical model simulations are performed, bounded by the 
dynamical conditions of the event of interest. Fixing the dynamical 
conditions eliminates large-scale internal variability, such that 
typically a few simulations of the actual event are necessary to capture 
regional-scale randomness. Given that only individual events are 
simulated, these simulations are typically short and computationally 
efficient, allowing for very high resolution. Inherently, such a method 
focuses on the (better understood) thermodynamic contribution to 
such changes. As with analog-based methods, separate model 
simulations can be used to assess changes in the underlying dynamical 
conditions to arrive at a more complete understanding of the event 
(Maraun et al., 2022; Mishra et al., 2023).

Given the potential of conditional attribution to provide 
dynamically consistent extreme events for accurate statistical 
estimation and approximation, these methods should be  further 
explored and developed by the wider community in the coming years. 
Such developments would be of great benefit to anyone interested in 
attribution beyond climate or academic circles, for example, impact 
attribution (see Section 6), as the event samples generated are realistic 
in their physical nature as well as plentiful sample sizes, which are 
fundamental components towards robust attribution assessments. 
Moreover, conditional methods relatively easily link to observed 
impact data. These characteristics make the approach also suitable for 
application for resource-limited institutions. A challenge for the 
community during the next decade and beyond is that these 
simulations are intrinsically event-specific, and therefore also require 
physical climate expertise.

6 The attribution of impacts of 
extreme events

Despite the predominant focus of attribution analyses on the 
anthropogenic signal behind weather extremes, EEA was initially 
developed to assess the influence of anthropogenic climate change on 
the impacts that result from them (Allen, 2003). Studies that achieve 
this by assessing losses (e.g., health, agriculture, infrastructure, or 
financial) attributable to climate change are known as “impact 
attribution.” These studies demonstrate more precisely the 
consequences of climate change for individuals and communities, and 
can serve as a powerful tool for communication or evidence for 
evaluating the factual basis of claims made in climate lawsuits and 
other applications.

Impact attribution brings both challenges and opportunities. 
Studies require teams with interdisciplinary expertise, collectively 
addressing impact models with substantial data requirements and 
climate model uncertainties (Section 5) that may be amplified when 
combined with modelling impacts. Via a proposed framework, 
Figure 7 attempts to capture these complexities, highlighting what 
stages may be public-facing via communication (see Section 7) and 
what stages happen behind the scenes in an interdisciplinary manner. 
It is important to note that the omittance of any one of these processes 
would render an impact attribution assessment less robust, and in 
some cases, meaningless. Thus, it is imperative that impact attribution 

is truly interdisciplinary. As impact attribution methods have become 
more refined, the opportunities these studies bring for conducting 
societally relevant attribution assessments, specifying event definitions 
that reflect the processes by which impacts arise (Section 3), and 
shedding light on the burden of anthropogenic climate change on a 
greater range of climate-sensitive systems may be realised. In this 
section, we provide a short overview of existing methods for impact 
attribution, key challenges in conducting these studies, and the 
opportunities that this development in attribution brings.

6.1 Approaches to impact attribution

At present, the types of impacts exacerbated by climate change 
that have been assessed using formal attribution methods remain 
limited. Nevertheless, there is a strong theoretical basis indicating that 
climate change is already causing a wide range of health impacts 
worldwide (Callaghan et al., 2021). Moreover, data limitations have 
led to spatial biases in impact attribution analyses already conducted. 
Whilst observed climatological data challenges play a significant role 
(Section 2), so does the availability and quality of data from which 
relevant impacts are derived. This is important since some impact 
attribution studies combine climate change attribution methods with 
epidemiological, hydrological, agricultural, and land surface 
modelling. Collectively, these pioneering impact attribution studies 
have quantified financial losses from extreme weather events 
attributable to climate change (Frame et al., 2020a, 2020b) and a range 
of health (Mitchell, 2016; Vicedo-Cabrera et al., 2021, 2023; Stuart-
Smith et  al., 2024; Lo et  al., 2023), hydrological (Pall et  al., 2011; 
Pietroiusti et  al., 2024), and agricultural impacts (Verschuur 
et al., 2021).

Methods that achieve the initial aims of EEA (Allen, 2003) and 
assess the impacts attributable to climate change have been developed 
relatively recently. These attribution analyses have typically been 
conducted following one of two approaches, which we  term 
“probability-based” and “intensity-based,” respectively. Probability-
based analyses typically combine an assessment of the portion of the 
likelihood of the event that caused certain impacts attributable to 
climate change (fraction of attributable risk and/or probability ratio, or 
FAR/PR; see Noy et al., 2024) with the losses that were caused by the 
hazard, such as heat-related mortality (Mitchell, 2016) or property and 
infrastructural impacts (Frame et al., 2020a, 2020b; Lott et al., 2021). 
Intensity-based analyses use relationships between the magnitude of a 
hazard and the resulting impacts to estimate impacts under contrasting 
climate conditions (e.g., with and without anthropogenic influence on 
the climate). Versions of these methods have been applied to quantify 
heat-related mortality (Vicedo-Cabrera et al., 2021, 2023; Stuart-Smith 
et al., 2024), burned area changes (Burton et al., 2024), virus outbreaks 
(Erazo et al., 2024), lake changes (Grant et al., 2021), and net ecosystem 
productivity (Bastos et al., 2023) attributable to climate change. Others 
have used hydrological models to ascertain the change in global river 
flows (Gudmundsson et  al., 2021), flooded areas (Wehner and 
Sampson, 2021), and the area of the European river network facing 
drought (Bevacqua et al., 2024) under counterfactual climate conditions.

“Probability-based” and “intensity-based” approaches use similar 
resources and methods to assess different questions: the likelihood of 
exceeding an impact-relevant hazard threshold, or how the impacts in 
question would have been different under counterfactual climate 
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conditions. As such, they may provide substantially different estimates 
of attributable impacts. Given the distinction between the approaches 
applied, recent work advised that probability-based approaches 
be  reserved for binary impacts (that only occur when conditions 
exceed a threshold value), and intensity-based approaches for impacts 
that scale continuously with the hazard magnitude (Perkins-
Kirkpatrick et al., 2022; Brown, 2023). Despite the approach, attribution 
of the impact must usually be performed separately to attribution of 
the hazard. This is because the impact of a specific hazard is unlikely 
to be a linear response to hazard itself, and it should not be assumed 
that the anthropogenic signal behind the hazard is identical to the 
impact (Perkins-Kirkpatrick et al., 2022). Moreover, FAR and other 
similar probabilistic approaches should be used with extra caution in 
impact attribution since FAR assesses the fractional change in an event 
class (e.g., all heatwaves over a specified domain) and not an individual 
event (e.g., an observed heatwave), which is the scale on which relevant 
impacts are typically pertinent (Perkins-Kirkpatrick et al., 2022).

When quantifying impacts that are attributable to climate change, 
studies seek to determine an event definition that captures the hazards 
driving the impacts in question. Considerations herein include the 
meteorological variables included (Lo et  al., 2023; Baldwin et  al., 
2023), spatial, and temporal scale of the event in question (see Section 
2). Impact attribution studies may also make use of approaches 
developed using climate projections. This includes evaluating changes 
in hazard impacts under storylines of changing climate hazards and 
land use (see Section 5; Maraun et al., 2022).

6.2 Challenges in extending attribution of 
meteorological hazards to local impacts

While recent studies have set out methods for quantifying impacts 
attributable to climate change, various challenges persist. These 

include (i) the construction of plausible counterfactuals; (ii) 
quantifying local climate change impacts based on coarse climate 
model outputs (Fiedler et al., 2021); (iii) limited impact data in some 
regions; and (iv) attributing multivariate hazards to assess impacts, as 
well as disagreement in appropriate indices for estimating the effects 
of climate hazards on impacts (Baldwin et al., 2023).

In common with EEA analyses, the construction of accurate 
counterfactuals is a challenge for impact attribution because climate 
models may contain substantial biases (see Section 5). Three different 
approaches are frequently used. Counterfactuals can be constructed 
by removing the long-term trend in the observed climate (Mengel 
et  al., 2021), but this approach is unable to disentangle natural 
variability from forced climate responses. Another approach is a “delta 
change” method, where the projected trend from climate models is 
subtracted from observations. Here many different counterfactuals 
can be created from the different climate models, which allows a better 
separation between natural variability and the anthropogenic signal 
(Vicedo-Cabrera et al., 2023; Bevacqua et al., 2024). However, these 
approaches can lead to unrealistic counterfactual weather conditions, 
relevant to small-scale and compound events. Finally, climate models 
can be nudged towards observations (van Garderen et al., 2020) and 
counterfactuals created by changing boundary conditions (Hamed 
et al., 2024). For small-scale events such as heavy precipitation, this 
approach requires the creation of several counterfactuals to account 
for internal variability.

Secondly, biases in the location of large-to-regional-scale weather 
phenomena as well as the representation of local processes and 
feedbacks leading to an impact are additional challenges for accurate 
impact attribution assessments. To address some of these issues, 
conditional event attribution approaches such as storyline or forecast-
based methods (see Section 5) may be  better able to capture the 
multivariate and evolving nature of the impactful weather conditions 
than purely statistical approaches (e.g., Mishra et al., 2023).

FIGURE 7

Draft framework for attributing the impacts of extreme events to climate change. Different colours denote the different disciplines required for a 
successful impact attribution assessment. Should one step not be properly executed, there would be knock-on effects for the rest of the project, 
rendering the results less reliable and even meaningless in some cases. Note that not all impact attribution assessments would follow this framework 
specifically, however, would look similar in terms of steps involved and the interweaving of disciplines and expertise.
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Thirdly, running impact models may be limited by data constraints 
and computational needs. Whereas the data need for constructing 
robust hazard-impact relationships may be  substantial, in many 
locations detailed impact data may not exist, be patchy in time or 
space, or be unavailable. This constrains the range of studies that can 
be conducted in attribution research and explains why multi-location 
studies such as Vicedo-Cabrera et al. (2021) are not truly global. The 
complexity of accurately measuring local-scale impacts may be further 
enhanced by changes in the measured impact due to behavioural 
adaptation (e.g., Ebi et al., 2021) that are difficult to measure and are 
not commonly accounted for in traditional hazard-impact 
relationships. Moreover, since impact models are often developed 
based on empirical relationships, it may be difficult to assess their 
reliability under counterfactual conditions. Furthermore, running a 
complex impact model for a suite of climate models can 
be computationally expensive and potentially prohibitive.

Finally, in the case of impacts that arise due to the combination of 
multiple meteorological drivers, copula-based multivariate attribution 
approaches (e.g., Zachariah et al., 2023a) and multivariate indices may 
yield different results. For instance, different heat stress indicators 
such as wet-bulb temperature and the universal thermal climate index 
can provide conflicting assessments. These indices combine different 
meteorological variables and represent different physiological 
assumptions. It is therefore essential to understand how well a given 
index captures the effects of weather on the impacts being assessed 
(Simpson et al., 2023).

A bottom-up approach may shift the focus of impact attribution 
studies. It is important to remember that those events with the worst 
impacts may not be the same as the events that are most extreme 
meteorologically (van der Wiel et al., 2020) as many other factors may 
play an important role. To make attribution studies more 
comprehensive, extending EEA to non-climatic drivers has recently 
been suggested (Jézéquel et al., 2024).

6.3 Using impact attribution findings

There is growing policy interest in developing workable loss and 
damage mechanisms, with ongoing efforts in national and 
international fora. This raises the question of how we can effectively 
leverage insights from existing attribution research and improve 
theoretical understandings of how climate change is affecting different 
phenomena and regional changes to help policymakers. In particular, 
attribution could assist in determining which losses would be eligible 
for compensation, on the basis of the extent to which they can 
be attributed to human influence.

Criteria for determining what counts as an impact of climate 
change eligible for compensation is primarily a legal or policy decision, 
and there is no current suggestion that loss and damage funds will 
be  awarded for impacts that have met strict scientific attribution 
thresholds. However, as mechanisms for loss and damage funding 
become established, it may be helpful to draw on scientific insight to 
identify eligible impacts. This is where impact attribution might 
be  useful. Existing scholarship has documented limitations of 
attribution in this context, including heterogeneous spatial coverage, 
relatively few impact attribution studies, and limited ability to simulate 
certain event types (King et  al., 2023). Nonetheless, the deadliest 
weather events in developing nations (agricultural drought, tropical 

cyclones, floods, and heatwaves) are increasingly amenable to credible 
attribution analyses using storylines (Noy et al., 2023).

Certain storyline attribution studies of flooding have been 
combined with census and real estate data attempting to quantify 
environmental injustice (Smiley et al., 2022) and future exacerbation 
by climate change (Li et al., 2024). Smiley et al. (2022) found that 
30–50% of the properties flooded in Hurricane Harvey would have 
been untouched without anthropogenic climate change, and that these 
attributable impacts were predominantly experienced non-White 
neighbourhoods. It is widely documented that low-income and 
socially and racially marginalised communities have disproportionate 
exposure to extreme weather events amplified by climate change. In 
the case of Hurricane Sandy, areas of New York most affected were 
those in the lowest quartiles of household income and highest portion 
of non-White residents (Lieberman-Cribbin et al., 2021). Attribution 
analyses that directly assess who experiences the additional impacts 
from changes in events’ intensities attributable to climate change more 
precisely identify the unequal distribution of the socioeconomic or 
health impacts of climate change.

Finally, impact attribution is sometimes cited as providing 
adaptation-relevant information (e.g., Stott et al., 2016). However, 
research on this topic has questioned this (see, e.g., Osaka and 
Bellamy, 2020), and other areas of scientific inquiry, such as climate 
change projections, may provide more directly relevant information 
for adaptation. This is discussed in more detail in Section 7.

7 Communication of EEA statements

The global increase in attribution studies has been accompanied 
by an increase in communication of attribution results outside of 
academia. The development of rapid attribution studies (Philip et al., 
2020; Otto et al., 2022) and operational groups leading them, such as 
World Weather Attribution (WWA; Otto et  al., 2022), EWERAM 
(Tradowsky et al., 2023), and ClimaMeter (Faranda et al., 2022), has 
led to wider integration of attribution results in general extreme event 
and climate change news coverage. The press briefings WWA holds 
after rapid studies are well attended by journalists from different 
countries, including the country where the event occurred. Together, 
the journalists generate a wealth of stories in several languages, thus 
reaching a large general audience. Journalists have noticed a change 
in extreme weather coverage to include attribution results in the past 
decade (Osaka et  al., 2020). WWA uses its experience in 
communication over the years to tailor output to different audiences 
(van Oldenborgh et al., 2021b): (i) a scientific report focusing on 
technical reproducibility, (ii) a web summary with clear key messages 
in bullets and a main graphic for the science-literate audience, and (iii) 
a press release addressing the primary findings in simplified language 
for the public and media. The interest and media coverage depend on 
the event impact, regional occurrence, and estimated newsworthiness. 
Nevertheless, media interest in EEA continues to increase, and 
journalistic coverage of extreme events includes developing accessible 
resources such as EEA databases (e.g., https://www.carbonbrief.org/
science/extreme-weather/attribution/).

This increase in news coverage and general communication 
around EEA results poses a few questions related to the purpose of 
communicating attribution. The main narrative is that EEA could 
be used to raise awareness, to make climate change more tangible by 
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linking it to something everybody experiences: weather and its 
extremes (e.g., Stott et al., 2013; Demski et al., 2017; Shepherd et al., 
2018; van Oldenborgh et  al., 2021b), and ultimately as a tool to 
promote stronger public engagement with climate change science 
(Ettinger et al., 2021). An attribution study can also be a scientific 
substantiation for frequently occurring discussions about the role of 
climate change post-event.

On the other hand, there are still only a few academic studies 
analysing the outcome of EEA results on public opinion. Osaka and 
Bellamy (2020) conducted a survey of stakeholder and citizen 
perceptions on EEA of the California drought, for which several EEA 
studies provided seemingly contrasting results on the influence of 
climate change. They found that when presented with this evidence, 
laypeople would be  drawn to studies in agreement with their 
pre-existing beliefs. Ettinger et al. (2021) tested the potential of EEA 
as an engaging tool to communicate climate change in the UK. The 
participants found EEA to be compelling to connect their personal 
experience of the weather with climate change. Overall, to better 
understand the potential of EEA communication, more research is 
needed, ideally at larger scales and including a variety of demographics 
(e.g., different social backgrounds, pre-existing climate change beliefs) 
and assessing how they react to a wider range of EEA case studies.

It is also important to assess the increase in EEA communication 
may have on the general engagement to fight climate change. One key 
concern is that EEA results could be instrumentalised to serve the 
interest of different stakeholders. For example, EEA could accentuate 
the climatisation of disasters—ascribing all experienced impacts to 
climate change (Grant et al., 2015)—and obscure other sources of 
vulnerability and exposure. Similarly, there is importance in 
communicating when no clear anthropogenic signal is found and the 
role of various factors (e.g., internal climate variability, model, and 
methodological shortcomings). Lahsen and Ribot (2022) highlight 
how attribution results can be used as a way for stakeholders to avoid 
responsibilities in the wake of disasters that were at least partially 
caused by bad management. Otto et  al. (2022) and Ettinger et  al. 
(2021) argue that EEA results should be accompanied by messages 
about vulnerability, as disasters are often caused by multiple factors. It 
is therefore part of the WWA protocol (Philip et  al., 2020) to 
accompany a quantitative assessment of the role of climate change 
with an in-depth analysis of the role of vulnerability and exposure to 
the corresponding impacts. Especially for policymakers and 
humanitarian aid workers, the context of the event in terms of 
vulnerability and exposure is necessary to increase resilience (van 
Oldenborgh et al., 2021b). Identifying the role of climate change is 
particularly challenging when climatic events cause cascading impacts 
exacerbated by societal responses. Here, determining the role of 
climate change is challenging but important to better understand 
climate risk and will be an important challenge in the coming years.

Another challenge surrounds the communication of uncertainty. 
This message can become complex as studies using different 
methodologies or data can lead to diverging results for the same event 
(Otto et  al., 2012). Osaka et  al. (2020) found that differences in 
methodological choices are presented as disagreement within the 
scientific community rather than as answers to different questions 
surrounding the role of climate change behind the same event. 
Participants in Ettinger et al. (2021) were against the inclusion of 
uncertainty in general communications. This issue also relates to an 
active discussion within the scientific community regarding the best 

way to present uncertainties and the choice of the null hypothesis 
(Lloyd and Oreskes, 2018). At the core of this is whether the 
community prefers to avoid type I  errors, false positives, e.g., 
attributing an event that is not caused by climate change, or type II 
errors, false negatives, e.g., not attributing an event that is caused by 
climate change. The current practice, likely inherited from classical 
statistics, is to avoid type I errors, but there are arguments that this 
choice goes against the precautionary principle. Consideration of 
multiple lines of evidence, including physical process reasoning and 
previous literature alongside the results from the data, can help to 
provide a rationale, but risks introducing additional uncertainty and 
unclarity in communication. This problem will become more critical 
with the rise in attribution of compound events and impacts as results 
become more complex (Zscheischler and Lehner, 2022).

A crucial point is the communication of changes in probabilities 
versus changes in intensities. While recently WWA has communicated 
both where feasible, the media may only broadcast the probability 
statements as these sound more dramatic, which can result in 
misleading consequences. The statements for the Pacific Northwest 
heatwave from 2021 read “Western North American extreme heat 
virtually impossible without human-caused climate change” and “this 
heatwave was about 2°C hotter than it would have been if it had 
occurred at the beginning of the industrial revolution” (Philip et al., 
2020). Here the probabilistic statement means that any heatwave in 
that region exceeding the observed temperature of 49.6°C would have 
been virtually impossible. In the case of only the probability attribution 
result being reported, lay people may wrongly infer that without 
climate change, there would have been no heatwave at all. This is not 
the case, since the intensity attribution quantifies that climate 
increased the temperature of the heatwave by 2°C.

Similarly, where results are uncertain, it may be more informative 
to report the lower or upper bound of an analysis—for example, 
stating that an event was at least 10% more intense or up to five times 
more likely—but there is always a risk that this result will be reported 
or interpreted. A 10% change or 5-fold increase in probability distorts 
the findings, although many journalists are becoming better at 
presenting this nuance. WWA guidelines for journalists (Clarke and 
Otto, 2023) aim to educate journalists in more consistent ways of 
reporting. Here new ways of communication are needed, and great 
care is taken to neither exaggerate nor downplay the influence of 
climate change. This is a key challenge the community must 
collectively address, such that effective solutions are devised that are 
communicatively effective and uphold scientific integrity and rigour.

Finally, there are different ways to package EEA results. van 
Oldenborgh et al. (2021b) summarise key points learnt over the years 
by WWA: provide several communication media, different levels of 
details and complexity, tailored to different audiences, and the 
usefulness of in-person discussions between EEA experts and its 
intended audience, especially non-scientists. There is still significant 
work to be done in understanding which type of audience is more 
responsive to which type of message. Moreover, EEA may be useful in 
helping lay people to accept climate change science and lowering their 
carbon footprint. However, again, more research is needed on how to 
successfully reach relevant groups. There is still some debate about 
whether quantitative or qualitative results are more engaging. Lewis 
et al. (2019) argue that quantitative results might not always be the 
best communication strategy, proposing calibrated language similar 
to IPCC vocabulary. However, the majority of participants in Ettinger 
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et  al. (2021) found quantitative results more compelling. Less 
traditional communication techniques such as serious games (Parker 
et al., 2016), or “spinner boards” (Dryden and Morgan, 2020) are other 
paths to explore. Finally, generative AI could potentially play a role in 
adjusting the communication about climate change to meet the 
specific needs and interests of different audiences (Sanders and 
Hendricks, 2023).

To advance on these topics, more interdisciplinary work with 
social scientists, in particular from cognitive and communication 
science, will be needed. A key challenge for the community will be to 
provide a clearer view on why we want to communicate on attribution 
studies, to whom, and with which message. Until a greater body of 
evidence is achieved on how attribution assessments are absorbed by 
a wide range of audiences, it is difficult to offer practical solutions in 
how to make such statements more accessible and digestible. A 
challenge for the wider attribution community over the coming years 
is to increase this research base, such that evidence-based 
recommendations to improve attribution communication become 
clearer and can be implemented across the board.

8 Concluding statements and 
recommendations

The sophistication and widespread use of EEA have undoubtedly 
increased since its inception. This article has demonstrated where 
remarkable advancements have been made but also where significant 
challenges remain. To highlight recent progress, Figure 8 presents an 
updated schematic of the scientific understanding and the attribution 
of various event classes, along with the original figure presented by 
National Academies of Sciences, Engineering, and Medicine (NASEM) 
(2016). It is clear that considerable gains have been made in the 
understanding and attribution of temperature-related extremes, whilst 
knowledge in other event types has also improved. New event 
categories have also emerged, e.g., the separation of drought types and 
tropical cyclone characteristics. In both instances, the scientific 
understanding behind and attribution of one sub-class is higher than 
the other. It would be useful to see an updated version of this figure in 
another decade as EEA continues to progress.

Current challenges in EEA include large gaps in observations 
both spatially and temporally, inhibiting EEA over large parts of the 
globe, resulting in inequitable representation of how climate change 
is influencing high-impact events. This inequity also extends to the 
capacity of developing nations to perform attribution assessments of 
local extreme events. While recent initiatives (e.g., WWA) have 
helped address the inequity of which extreme events are attributed 
and are attempting to increase local expertise by involving local 
experts from underrepresented regions, significant issues remain 
in local capacity, infrastructure, and in-house frameworks necessary 
for these locations to perform EEA independently. While there have 
been success stories in providing EEA capacity and infrastructure to 
some regions (e.g., Tett, 2020), there are also significant challenges in 
perpetuating engrained imbalances of power historically shaped by 
colonialism (Dodsworth, 2019). Moreover, as extremely rare, record-
shattering and/or compound events become more prominent, 
traditional statistical and physical model-based attribution methods 
are challenged well beyond already known limitations. Furthermore, 
impact attribution and other applications of EEA such as quantifying 

loss and damage are increasing; however, the underpinning scientific 
methods are still in their infancy and are highly nuanced, requiring 
deep, co-ordinated, and ongoing interdisciplinary collaboration. And 
finally, the popularity of EEA as a communicative tool is steadfast; 
however, the community has only touched the tip of the iceberg in 
how to effectively communicate the scientific rigour embedded 
within EEA assessments. Whilst these challenges may appear 
insurmountable at first, they can certainly be overcome during the 
next decade, albeit with significant effort and with consistent 
interactions with expertise beyond climate science. Based on the 
findings of this article, we  recommend focusing efforts on the 
following key areas:

 1 Increased implementation of EEA studies across all regions, 
where possible, focusing on lower-income and more vulnerable 
nations. This requires not only increasing physical observations 
and corresponding access, as well as using reanalyses where 
appropriate, but also enhancing working with local experts. 
Proactive and sustained capacity building that no longer 
prolongs colonialist approaches and improves the 
infrastructure, skills, and knowledge required for 
underrepresented regions to independently perform EEA 
assessments must also be a priority. Moreover, this will also aid 
in directly answering any concerns these regions may have 
regarding EEA, whilst also using their input as to which events/
types of events should be studied and their local knowledge on 
corresponding impacts. In turn, a by-product of increasing 
observations will allow for event definitions to be  more 
objectively conducted.

 2 Protocol in assessing the suitability of physical climate models 
for EEA. Whilst some basic evaluation is generally performed, 
a contemporary set of guidelines on how different types of 
climate models should be  used, how to identify individual 
strengths and limitations, and how to evaluate their reliability 
for the class of event over the domain of interest is 
currently lacking.

 3 Development of methodologies and best practice guides to 
account for compound and record-shattering extremes in 
EEA. As climate change intensifies, so will the occurrence and 
severity of these types of extremes. Suitable attribution 
methods must keep up. Although some methods show 
potential and should be  explored further (e.g., storylines, 
conditional attribution; see Section 4), the understanding of 
these event types is currently rapidly evolving. This effort 
comes along with the continued progress of established 
statistical methods, as reviewed above. This will involve a 
crucial investment in computational resources to account for 
both dynamical and statistical uncertainty. Moreover, such 
resources would need to be  shared equally such that the 
geographic distribution of EEA is improved.

 4 Organised and ongoing engagement with impacts and legal 
communities to strengthen impacts data and develop protocols 
around impacts attribution and its role in associated 
applications. Given that the impact of a class of extremes is 
highly specific to a given field and/or region, deep collaboration 
with this field and attribution scientists is essential. New roles 
may emerge which straddle both fields. This will be  best 
achieved by long-term, co-ordinated, and funded research 
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initiatives, so that the underlying climate and impact methods 
are employed robustly and with high integrity.

 5 Significant and ongoing investment in EEA communication. 
While groups like WWA have been highly successful in 

conducting and communicating EEA results widely, as a 
community, we still do not understand how this information is 
absorbed by different audiences. As a starting point, statements 
about the same event which appear to be conflicting need to 

FIGURE 8

(a) Figure 4.7 from National Academies of Sciences, Engineering, and Medicine (NASEM) (2016), where the understanding of climate change (horizontal 
axis) on a given extreme event class is considered relative to confidence in the capabilities to attribute a specific event of that class to climate change 
(vertical axis); (b) an updated version of this schematic, based on assessments made in this article. Figure (a) is reproduced with permission from the 
National Academies of Sciences, Engineering, and Medicine (NASEM) (2016).
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be  calibrated so that the public-facing information is 
complementary and not contradictory. Moreover, many EEA 
statements continue to be misconstrued by the media. Climate 
scientists should collaborate with communication experts in 
developing partnerships and techniques to mitigate this risk in 
the future.

It is an exciting time for EEA, with the identified challenges 
presenting new opportunities. EEA is rapidly progressing towards a 
transdisciplinary field. Thus, for any approach in addressing the 
identified challenges to be successful, it must occur with ongoing and 
deep collaborations outside of traditional climate science 
and attribution.
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