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Urban ecology in the context of 
urban heat island vulnerability 
potential zone mapping: the case 
of Mekelle city, Ethiopia
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While urban heat islands (UHIs) have been thoroughly studied in cities worldwide, 
the specific risks and vulnerabilities related to urban heat in Ethiopia and Africa as 
a whole has given less attention. Urbanization often replaces green spaces with 
impervious surfaces, which diminishes natural cooling, precipitation, and water 
infiltration. This change can significantly affect land surface temperatures (LST) 
and contribute to UHI formation and its impacts. This study aimed to identify 
and assess the risk factors linked to UHIs, focusing on pinpointing the most 
vulnerable areas within cities using principal components explanatory factor 
analysis (HV-PC-EFA) and the urban heat vulnerability index (UHVI) model. The 
analysis utilized 19 composite indicators under well-established categories such 
as exposure, sensitivity, and adaptive capacity to assess potential risk zones. The 
results from the two models were compared, and their variations were examined. 
In the HV-PC-EFA model, indicators like urban density and roof type, along with 
adaptive factors such as vegetation cover, urban thermal field variances, and relative 
humidity, were not distinctly separated as individual components. This may cause 
discrepancies in the final outcomes, impacting the spatial distribution and extent 
of vulnerability. Despite observing some spatial variations in identifying risk areas, 
the study provides a broad perspective essential for developing evidence-based 
policies and strategies to enhance cities’ resilience to high temperatures and 
promote sustainable environments. Given the challenges in modifying existing 
infrastructure, it is practical to regularly implement adaptive measures, such as 
preserving and restoring urban water bodies, planting trees, creating green public 
spaces, and raising public awareness about these risks.
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1 Introduction

The urban heat island (UHI) effect indicates the degree of difference in temperatures 
between metropolitan and nearby suburban/rural areas, which can be quite significant at times 
depending on local heat sources, anthropogenic moisture, urban thermo-physical, 
geomorphological, and meteorological conditions (Jalalzadeh Fard et al., 2021; Masson et al., 
2020). The UHI is primarily caused by dense concentrations of heat-absorbing impervious 
surfaces and building materials, which trap more heat during the day and release it more 
slowly at night than natural ground cover (Hurduc et al., 2024; Deng et al., 2024; Zhang et al., 
2024; Masson et al., 2020; Wilhelmi and Hayden, 2010; Harlan et al., 2006). Urban surface 
temperature is predominantly influenced by two key regional factors: land cover and land use 
patterns, which could pose a significant challenge as a result of urbanization and 
industrialization (Adulkongkaew et al., 2020). Urbanization replaces vegetative areas with 
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impermeable surfaces that offer shading, evaporative cooling, 
precipitation interception, and infiltration (Ullah et al., 2023).

Given that the elevated temperatures associated with UHIs 
heighten the risks of thermal stress to human health (Zhang et al., 
2024), climatologists have extensively studied UHIs (Ramakreshnan 
et al., 2018; Huang and Lu, 2018). Higher body temperatures have 
been linked to psychological issues such as anxiety, depression, 
emotional instability, and aggressive behavior (Ebi et al., 2021; Mücke 
and Litvinovitch, 2020). Cramer et al. (2022) describe heat stress as a 
condition where the body struggles to release heat during severe heat 
waves, resulting in increased body temperature. Heat stress and 
associated conditions such as heat cramps, heat syncope, heat edema, 
heat exhaustion, and heat stroke constitute the majority of UHI-related 
health impacts on hot days and are significant causes of heat-related 
illnesses (Ullah et al., 2023; Piracha and Chaudhary, 2022).

Due to the fact that UHIs’ warmer temperatures amplify the risks 
that thermal stress (Zhang et al., 2024) poses to human health, because 
of this, climatologists have focused significantly on the phenomenon 
of UHI (Ramakreshnan et al., 2018; Huang and Lu, 2018). Higher 
body temperatures have been linked to psychological disorders such 
as anxiety and despair, emotional instability, and aggressive behavior 
(Ebi et al., 2021; Mücke and Litvinovitch, 2020). Cramer et al. (2022), 
describe heat stress as a condition where the body struggles to release 
heat during severe heat waves, resulting in increased body 
temperature. Heat stress and associated conditions—such as heat 
cramps, heat syncope, heat edema, heat exhaustion, and heat stroke—
constitute the majority of UHI related health impacts on hot days and 
are significant causes of heat-related illnesses (Ullah et  al., 2023; 
Piracha and Chaudhary, 2022).

When considering weather-related illnesses and mortality in the 
context of global warming, extreme heat is thought to be the primary 
contributing factor (Ebi et al., 2021; Mücke and Litvinovitch, 2020; 
Singh et al., 2020; Petkova et al., 2014; Loughnan et al., 2012; Wilhelmi 
and Hayden, 2010; Raymond et al., 2019). The summer heat waves of 
2003, for example, approximately 70,000 people died throughout 
Europe. In the first two weeks of the heat wave, 39,000 deaths were 
reported in 12 European countries, including France (96.5%), Portugal 
(+48.9%), Italy (+45.4%), Spain (+41.2%), and Luxemburg (+40.8%). 
The excess mortality rates in Germany, Switzerland, and Belgium were 
found to be 28.9, 26.7, and 21.6%, respectively (Robine et al., 2008). 
Research suggests that extended periods of high temperatures or 
warmer days are linked to an increased risk of mortality from heat-
related causes. Studies from Shanghai, China (Tan et al., 2010), the 
United  States (Harlan et  al., 2006; Chen et  al., 2023), Europeans 
(Harlan et al., 2006) provide evidence in favor of this.

UHI involves further impacts on accessibility to water and hygiene 
since it might boost the risk of contamination due to a source’s lower 
water level and warmer water temperature (Chaudhry, 2023). Water 
must be  further treated before it can be  consumed since rising 
temperatures would result in significantly less dissolved oxygen in the 
water. Warmer weather may cause consumers of water utilities to seek 
more water when there is a scarcity. Because urban expansion often 
involves paving over or extending concrete areas at the expense of green 
land, it can increase floods and runoff during a storm. Increasing runoff 
can introduce potentially hazardous substances into water supplies for 
consumption, such as chemicals, oil, and microorganisms (Agonafir 
et al., 2023; Mateo-Pérez et al., 2021; McGrane, 2016). Furthermore, due 
to high urban energy consumption especially for artificial cooling/

heating systems, high economic costs and the reallocation of funding 
from development agendas to initiatives targeted at preventing and 
mitigating this threat are also present in cities with high incidence rates 
of UHI (Sidiqui et al., 2022; van Raalte et al., 2012).

The IPCC (2022) indicates that extreme heat events, including heat 
waves, have become more intense and frequent in many terrestrial 
regions. Additionally, numerous studies have explored the relationship 
between variations in land surface temperature (LST) and local climate 
zones (LCZs), as well as the effects of various physical and non-physical 
factors on the development of urban heat islands (UHIs) and the urban 
thermal environment (Zhang et al., 2024; Deng et al., 2024; Sidiqui 
et al., 2022). It is anticipated that occurrences like the ones described 
will occur more often and with more intensity, leading to higher levels 
of population exposure, if global warming continues at its current 
pace. Because of urban heat island effect, individuals residing in urban 
areas are at a great risk of experiencing higher temperatures compared 
to those living in non-urban areas, making them more susceptible to 
heat-related illnesses (Chen et al., 2023; Sidiqui et al., 2022; Leal Filho 
et al., 2018b). Moreover, research indicates that varying degrees of heat 
susceptibility may arise within the same town due to factors such as 
environmental exposure, demographic variations, and socio-economic 
disparities among various urban populations. These groups include the 
elderly and very young, people with disabilities and medical conditions, 
people from lower socioeconomic backgrounds, people who are 
socially isolated, and minorities (Melis et  al., 2023; Piracha and 
Chaudhary, 2022). Future projections indicate that the heat gradient 
between metropolitan regions and their surroundings will increase, 
raising the relative health hazards for vulnerable urban populations 
(Zhang et al., 2024; Szagri et al., 2023; Raymond et al., 2019). Therefore 
policymakers could design integrated solutions that meet community 
needs and risk categories by analyzing possible dangers, vulnerability 
levels, and geographical variations in susceptibility.

Vulnerability is a measure of a system’s susceptibility to the 
adverse impacts of climate change, including its extremes and 
variability (Sidiqui et al., 2022). Though there are various approaches 
to vulnerability assessment, many of them are based on the IPCC 
working definition of vulnerability as a function of exposure, 
sensitivity, and adaptive capacity (Hahn et al., 2009). Researchers have 
evaluated the risks of heat-related disorders and came up with possible 
mitigation and adaptation measures in response to growing concerns 
about the health of current and future populations (Liou et al., 2021; 
Barron et  al., 2018). However, the majority of research has been 
conducted in highly developed metropolises, including the South of 
Quebec (Vescovi et al., 2005), Phoenix and Arizona (Harlan et al., 
2006), Delhi (Mallick et  al., 2024), Georgia (Maier et  al., 2014), 
Philadelphia (Li, 2021), Birmingham, Toronto (Li, 2021), and the 
Washington Metropolitan Area (Sheridan et al., 2021).

Over the years, numerous comprehensive researches on the 
impact of UHI and climate change have been carried out across 
Africa. These studies include those by Parkes et al. (2022) heat stress 
in Africa; Li et al. (2022) in the East African city; Jagarnath et al. 
(2020) in the Durban metropolitan region of South Africa; Gebreyesus 
et al. (2022) in Hawassa city; and Worku et al. (2021) in Addis Ababa. 
Our pervious study Tesfamariam et al. (2023) indicated that Mekelle 
has seen a substantial increase in UHI intensity compared to 
surrounding districts with different levels of urban development. The 
recorded UHI values for Mekelle during the driest seasons of 1990, 
2000, 2010, and 2020 were 2.73°C, 2.53°C, 2.83°C, and 2.98°C, 
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respectively, marking the highest UHI values ever recorded in the city 
compared to its neighbors. These findings provide us a foundation for 
the current study, which seeks to enhance our understanding of these 
risks and underscore the importance of prompt and environmentally 
responsible actions in addressing potential crises.

According to the WHO (2015) and the IFRC (2021), Ethiopia is 
classified as having a “high” risk of experiencing “extreme heat,” which 
is expected to occur at least once every five years. The increase in “hot” 
and “very hot” days is anticipated to lead to higher incidences of heat 
exhaustion, heat stroke, and heat stress, posing significant health risks 
for the elderly, individuals with pre-existing conditions such as 
cardiovascular disease, and young children (Leal Filho et al., 2018a). 
Additionally, it is projected that by 2080, the number of heat-related 
deaths among the elderly (65 and older) could rise to over 65 per 
100,000 people annually, compared to a current estimate of less than 
3 per 100,000 people (WHO, 2015; IFRC, 2021). Heat is also expected 
to negatively impact workers in low-altitude areas, such as farmers and 
laborers (USAID, 2016; Irish Aid, 2018; Ethiopian Academy of 
Science, 2015). It can make working conditions more difficult and 
uncomfortable, particularly at night, leading to increased stress on the 
body, reduced productivity, and decreased income, under a high 
emissions scenario, a significant decline in labor productivity 
is anticipated.

Unfortunately, the full extent of urban heat-related risks and 
vulnerabilities remains largely unknown in Ethiopia and much of 
Africa. Notwithstanding the fact that earlier studies have looked at 
the elements that lead to urban heat islands (UHIs), including how 
land cover affects them, they have also raised questions about the 
scientific validity of the metrics employed to compare the 
temperature of urban and non-urban areas. Conversely, the goal of 
this study is to identify the towns that are most vulnerable to the 
adverse impacts of urban heat island (UHI), as well as the factors 
that increase their likelihood and the most effective ways to measure 
them. Adopting a comparative analysis on the well-known 
vulnerability analysis models, such as the IPCC Urban Heat 
Vulnerability Index (UHVI) and Principal Component Exploratory 
Factor Analysis (HV-PC-EFA), the study aims to assess and identify 
high-risk zones to UHI scenarios, even though its scope is seems 
narrow than that of research on other cities outside of Ethiopia. 
Thus; this research seeks to answer the following questions: (1) 
which areas of the city are most vulnerable to UHI? (2) How are 
UHI risks and vulnerabilities assessed? (3) Under what conditions 
might the potential for UHI increase significantly?

2 Materials and methods

2.1 Description of the study area

The research was conducted in Mekelle, the capital of the Tigray 
Regional State, located between 13°26′40″ and 13°33′10”N latitude 
and 39°26′60″ and 39°35′5″E longitude in northern Ethiopia. Mekelle 
has experienced substantial growth in recent decades, with an average 
expansion rate exceeding 6%, as reported by Cities Alliance on 
December 8, 2023. The city’s population is approximately 559,000, and 
its built-up area has expanded nearly ninefold over the past forty 
years, increasing from 3,524 hectares in 1984 to about 32,000 hectares 
in 2023. Mekelle serves as the political, cultural, and economic hub of 

the Tigray region and is the second-largest city in Ethiopia. The city is 
currently divided into seven sub-cities: Ayder, Hadinet, Quiha, 
Hawelti, Adi Haqi, Kedamay Weyane, and Semien (Figure 1). The 
region features a tropical savanna climate, characterized by semi-arid 
and subtropical highland borders, with average annual temperatures 
of 23.8°C, ranging from lows of 17.6°C to highs of 26°C. The warmest 
months are May and June, averaging 27°C, while December sees the 
coolest temperatures, averaging 15°C.

2.2 Data type and pre-processing

When attempting to determine the level and extent of 
vulnerability emerging from the extreme urban heat wave, it is crucial 
to identify suitable ecological indicators. According to Perry et al. 
(2022), urban ecology studies aim to understand how people interact 
with their surroundings, examine the adverse impacts of cities on 
nearby natural habitats, and foster environmentally conscious urban 
policies that enhance urban quality of life while minimizing 
environmental damage. In addition to severe climates and rising 
temperatures, urban ecosystems also have to deal with air and water 
pollution, declining biodiversity, and other problems. These 
consequences of climate change have made urban areas less resilient 
to it; they also strain infrastructure, worsen air quality, and disturb 
the equilibrium of the urban environment (Yang, 2023; Theodorou, 
2022; Singh et al., 2020; Hinkel, 2011).

2.2.1 Urban overheating exposure identification
Exposure refers to the level of heat risk or the highest temperature 

that can be attained in a certain location. Heat exposure is largely 
caused by urban heat islands (UHIs), which can be measured directly 
or indirectly by taking into account UHI drivers such urban 
population density, land surface temperatures (LST), and urban land 
use dynamics. The satellite image from the Landsat-8 OLI/TIRS 
sensors was used to calculate the average LST for the months of 
March, April, and May of 2023 (Table 1). The appropriate dates and 
months for thermal LST estimate and spectral index analysis were 
chosen based on local weather conditions and the provision of suitable 
satellite images. An average LST was produced to solve the problem 
of comparing LST values from different days. Two thermal infrared 
(TIR) bands were processed for rectified brightness temperature, 
surface reflectance, and UHI (Ullah et al., 2023; Jalalzadeh Fard et al., 
2021; Jagarnath et al., 2020; Leal Filho et al., 2018b).

2.2.2 Urban overheating sensitivity identification
Sensitivity is the degree to which a person may be affected by 

exposure to heat in light of any underlying physiological conditions 
that may facilitate or obstruct these effects (Sidiqui et  al., 2022; 
Jalalzadeh Fard et al., 2021; Liu et al., 2020; Loughnan et al., 2012). 
Certain populations are usually more vulnerable than others due to 
factors like age, disease, low income (Liu et al., 2020; Jagarnath et al., 
2020; Tan et al., 2010). These characteristics are identifiable as critical 
indicators for mapping the urban population at risk for heat-related 
diseases like heatstroke and stress. The phenomena of urban heat 
islands (UHIs) and population expansion and density are intimately 
associated. One of the main causes of the UHI formation is the 
modification of the urban environment by human presence. More 
people lead to more greenhouse gas emissions, changes in the 
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dynamics of urban land use, and the conversion of open, barren urban 
space into impermeable surface (Imran et al., 2021). They also cause 
dramatic rises in temperature due to increasing energy consumption 
and traffic congestion (Fall et  al., 2023). Consequently, the 
demographic data used in this study were sourced from the www.
worldpop.org dataset, which included variables such as population 
density for elderly residents (age 65+), women of reproductive age, 
children under five, and working-age adults. Typically, women, the 
elderly and young children are most affected because they are less 
adaptable to extreme weather conditions and tend to have higher rates 
of pre-existing health issues compared to other age groups (Table 2). 
To identify and develop indicators of urban overheating sensitivity for 
the HVI model, various spectral threshold values and post-supervised 
classification techniques were employed (Table 2). Factors influencing 
urban surface temperature include the built environment, building 

density (measured in dwelling units per km2), land-use and land-cover 
dynamics (LULC), dry bare soil index (DBSI), built-up area (BUI), 
and biophysical characteristics (BCI) of the city. Specifically, the 
conversion of green spaces into built environments exacerbates the 
UHI problem (Shih, 2017; Sun and Chen, 2017).

2.2.3 Urban overheating adaptive identification
The ability of a person or a group to tolerate high temperatures 

is known as adaptive capacity. The adaptive indicators (Table 3) used 
in this study are generally associated with urban ecology factors, 
such as area covered with vegetation, open water surfaces, relative 
humidity, and the ecological effect of urban heat island, also known 
as the urban thermal filed variance index (UTFVI). In fact, surface 
temperatures are considerably lower in areas covered by vegetation 
and in/near water bodies than they are in places covered by the 

FIGURE 1

Map of the study area.

TABLE 1 Description of data type, and sources for exposure composite indictors (ESI).

Parameter Indicator 
level

Data source Formula for preprocessing Value range

Exposure UHI Landsat 8 OLI/TIRS remote sensing data was obtained from the 

USGS database (https://earthexplorer.usgs.gov). Path/Raw: 68/051 

Band Resolution: 30m, Cloud Cover (%) = 0.60, Date Acquisition= 

Mar 07 2023, Apr. 08 2023, May 26 2023

UHI −
=

T T
SD

s m
High: 2.92oC

Low: −1.203oC

Population 

density

WorldPop (www.worldpop.org—School of Geography and 

Environmental Science, University of Southampton; Department of 

Geography and Geosciences, University of Louisville; Department 

de Geographie, Universite de Namur) and Center for International 

Earth Science Information Network (CIESIN), Columbia University 

(2018). Global High Resolution Population Denominators Project—

Funded by The Bill and Melinda Gates Foundation (OPP1134076) 

(https://dx.doi.org/10.5258/SOTON/WP00674).

At a resolution of 30 arcs, or roughly 

one kilometer, the population density 

per grid-cell for Mekelle City and its 

sub-cities was derived from the dataset 

that can be downloaded in Geotiff 

format. To make the data compatible 

during aggregation method, resampled 

to 30 × 30 m spatial resolution.

High: 136.7/100m

Low: 8.4/100m
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TABLE 2 Description of data type, and sources for sensitivity composite indictor (SCI).

Parameter Indicator 
level

Data source Formula for preprocessing Value range

Elder population (> 

65 age)

WorldPop (www.worldpop.org—School of Geography and 

Environmental Science, University of Southampton; 

Department of Geography and Geosciences, University of 

Louisville; Department de Geography, University de 

Namur) and Center for International Earth Science 

Information Network (CIESIN), Columbia University 

(2018). Global High Resolution Population Denominators 

Project—Funded by The Bill and Melinda Gates Foundation 

(https://dx.doi.org/10.5258/SOTON/WP00674).

At a resolution of 30 arcs, or roughly one 

kilometer, the population density per grid-cell 

for Mekelle City and its sub-cities was derived 

from the dataset that can be downloaded in 

Geotiff format. The units used are persons per 

square kilometer. To make the data compatible 

during aggregation method, resampled to 

30 × 30 m spatial resolution.

High: 6.9 /100m

Low: 0.4/100m

Sensitivity Early age 

population (< 5 age)

High: 14.9/100m

Low: 0.8/100m

Women 

reproductive age 

(B/n 18-45 age)

High: 69.6/100m

Low: 4.3/100m

Working age 

population (18-45)

High: 37.96/100m

Low: 1.96/100m

Land surface 

temperature (LST)

Landsat 8 OLI/TIRS data was obtained from the USGS 

database (https://earthexplorer.usgs.gov). Path/Raw: 

68/051 Band Resolution: 30m, Cloud Cover (%) = 0.60, 

Date Acquisition= Mar 07 2023, Apr. 08 2023, May 26 

2023

( )[
λ

ρ

=

+ ∗
 
 
 

1

BT
LST

BT
Ln LSE   

(Meng et al., 2018)

High: 41.1oC

Low: 22.8oC

Dry bare soil Landsat 8 OLI/TIRS data was obtained from the USGS 

database (https://earthexplorer.usgs.gov). Atmospheric 

correction was made on green, red, short wave and infrared 

bands. Band Resolution: 30m, Cloud Cover (%) = 0.60, 

Date Acquisition= Mar 07 2023, Apr. 08 2023, May 26 2023

The bare soil includes both bare areas and seasonally 

bare farm lands obtained using dry soil bareness 

index (DSBI) proposed by Rasul et al. (2018).

( ) ( )( )
( ) ( )( )

ρ − ρ
−

ρ ρ

SWIR Green
DBSI = NDVI

SWIR + Green

High: 0.12

Low: −0.07

Kappa: 0.87

Built up areas Landsat 8 OLI/TIRS remote sensing data was obtained 

from the USGS database (https://earthexplorer.usgs.gov). 

The short wave & near infrared digital number (DN) 

Converted to atmospheric reflectance. Band Resolution: 

30m, Cloud Cover (%) = 0.60, Date Acquisition= Mar 07 

2023, Apr. 08 2023, May 26 2023

The enhanced built-up and bare ground index 

(EBBI) proposed by As-syakur et al. (2012) used 

to identified the urban area

( ) ( )( )ρ − ρ
10
DN DN

EBBI =
DN + DN
SWIR NIR

SWIR TIR

High: 0.36

Low: 0.01

Kappa: 0.83

Impervious surface Landsat 8 OLI/TIRS data was obtained from the USGS 

database (https://earthexplorer.usgs.gov). Radiometric 

correction, water masking and tasseled cap transformation 

for biophysical features was made after identified the 

coefficients using regression Impervious surface model. 

Band Resolution: 30m, Cloud Cover (%) = 0.60, Date 

Acquisition= Mar 07 2023, Apr. 08 2023, May 26 2023

The biophysical composition index (BCI) model 

used to identify the impervious surface (Li et al., 

2013; Deng and Wu, 2012; Kauth, 1976).

( )
( )

/

/

−2

2

H + L V
BCI =

H + L + V

High: 0.99

Low: −0.27

Kappa: 0.80

Degraded land Landsat 8 OLI/TIRS data was obtained from the USGS 

database (https://earthexplorer.usgs.gov). Radiometric 

correction was made on NIR and Red bands before 

executed the model. DEM & FAO Soil data was 

downloaded from FAO soil dataset. Average rainfall was 

extracted using linear least and interpolation method.

The degraded land was identified using the 

Revised Universal Soil Loss Equation (RUSLE) 

is an upgrade of USLE that is land use 

independent.

A = R* K* LS* C* P

High:35 t/ha-1yr-1

Low: -74t/ha-1yr-1

Roof typology The USGS database, located at https://earthexplorer.usgs.

gov, provided the Landsat 8 OLI/TIRS data. The NIR and 

Red bands performed radiometric adjustment prior to 

model execution.

Building footprint extraction technique in QGIS 

was used. Corrugated iron roofing (glazed in 

red, green, and blue), concert roofing & Hïdmo 

(local vernacular buildings).

Kappa: 0.72

Urban LCLU All Landsat 8 OLI/TIRS images downloaded from USGS 

database (https://earthexplorer.usgs.gov). Radiometric 

correction, band stacking and merged (mosaic) all band 

of layers before executed the classification.

The theme information from Landsat 8 OLI/TIRS 

was extracted using a supervised maximum 

likelihood classifier technique. The training 

samples were dispersed throughout the research 

region. In order to improve the training sample 

and increase the accuracy of the classification 

findings, all nine spectral bands were incorporated 

in the procedure. Urban Forest, Built-Up Areas, 

Barren Land, Vegetable Cover, and Water Body 

were the recognized LULC classes.

Accuracy

Urban Forest; 

80%

Built-Up Areas: 

80.9

Barren Land: 77.3

Cultivated land: 

83%

Water Body: 92%

(Continued)
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built-up environment (Zhang et al., 2024). A diverse range of open 
water bodies and enough green space within cities might enhance 
the ability to react to abrupt temperature rises caused by urban heat 
islands and regulate surrounding air temperatures. There is an 
inverse relationship between the UHI phenomena and the 
percentage of green space and water bodies in the built environment 
(Chaudhry, 2023; Fall et  al., 2023; Gebreyesus et  al., 2022; Liu 
et al., 2020).

2.3 Methodology

Communities that are at a higher risk of becoming the victims of 
extreme heat have been identified by the Heat Vulnerability Index 
(HVI), it is also the most popular urban HVI are being utilized by 
professionals progressively more for identifying high priority areas 
for intervention (Melis et al., 2023; Jalalzadeh Fard et al., 2021; Sidiqui 
et  al., 2022; Liu et  al., 2020). The model identifies vulnerable 
communities by evaluating a range of factors, including geo-climatic, 
geophysical, and socioeconomic elements (Table  1). Urban heat 
vulnerability involves multiple dimensions and is therefore assessed 
through the creation of composite indicators, which allow for the 
measurement of complex concepts that single indicators cannot fully 
capture (Ramli et al., 2023; Il Choi, 2019). To identify and evaluate 
potentially at-risk urban areas, two different methods are such as; 
Principal Component Exploratory Factor Analysis (PC-EFA) and the 
established Urban Heat Vulnerability Index (UHVI) model 
were employed.

Principal Component Analysis (PCA) and Exploratory Factor 
Analysis (EFA) are distinct methods but are sometimes used 

together in a two-phase process. Initially, PCA is employed to reduce 
the data’s dimensionality before interpreting the underlying variables 
with EFA. PCA is a statistical technique aimed at simplifying data 
by transforming a large set of correlated variables into a smaller set 
of uncorrelated principal components (Kyriazos, 2018). The goal is 
to distill the data into more manageable components that capture 
the essential patterns. EFA, on the other hand, aims to identify 
whether a group of observed variables can be explained by fewer 
underlying factors and to understand the relationships between 
these factors (Omura et al., 2022; Mathai et al., 2022). This combined 
approach helps in understanding variable correlations and 
identifying the main drivers of the data. In vulnerability assessments, 
three primary factors are considered: exposure, sensitivity, and 
adaptive capacity. An index of potential impact is created by 
combining exposure and sensitivity (Figure 2), which is then paired 
with adaptive capacity to form a comprehensive vulnerability index 
(Rathi et al., 2021).

Vulnerability refers to the degree, type, and rate at which a 
system is affected by environmental changes, as well as its 
susceptibility and capacity to adapt. The commonly used vulnerability 
equation assumes that sensitivity, exposure, and adaptive capacity all 
equally influence vulnerability, meaning that each factor contributes 
equally to the overall vulnerability score (IPCC, 2007). In this 
framework, adaptive capacity and potential impact are considered to 
have equal importance, as are exposure and sensitivity in determining 
potential impact. An overall index was created by rescaling the data 
and combining the composite indicators using non-linear unweight 
geometric aggregation method. This process identified potential risk 
areas for each category. The resulting index scores were then 
categorized into quintiles representing very high, high, moderate, 

Parameter Indicator 
level

Data source Formula for preprocessing Value range

Urban density Landsat 8 OLI/TIRS remote sensing data was obtained 

from the USGS database (https://earthexplorer.usgs.gov). 

Radiometric correction was made on SWIR, NIR, and 

Red bands before executed the model.

( ) ( )/=BD BA UA

The built-up area has been extracted through the 

application of the indices-based built-up index 

(IBI). Three land use indices serve as a basis for 

the IBI: the modified normalized differential 

water index (MNDWI), suggested by Xu (2006), 

the soil adjusted vegetation index (SAVI), and 

the Normalize difference built-up index (NDBI), 

which was first offered by Huete (1988). The 

built-up density/urban compactness ratio was 

then determined using the extracted built-up 

area (Shahfahad et al., 2021).

High: 15.6%

Low: 2.23%

Mean air 

temperature

Monthly minimum, mean, and maximum temperature 

GeoTiff (tif) format data with spatial resolution of 30 

seconds (~1 km2) downloaded for 2020-2023 (Fick and 

Hijmans, 2017) And metrological data obtained from 

Ethiopia Metrological Agency (EMA). Advanced 

Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) Global Digital Elevation Model 

Version 3 (GDEM 003) downloaded from NASA 

Earhdata (https://www.earthdata.nasa.gov).

After all raster (Tiff) format data were 

transformed into point data, their correlation 

was ascertained by using the point data as 

variable input data. DEM and mean temperature 

were used to run a multiple standard linear 

regression model. After obtaining a high 

negative correlation value of (R= −0.404), a 

slope coefficient of (βi = 0.087), and a value of 

16.857 for the model constant (y-intercept), 

interpolation was carried out using the linear 

least squares method.

( ) á = + ∗Mean Temp DEMâ

Max:27.26oC

Min: 12.1oC

Mean: 19.7oC

TABLE 2 (Continued)
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and low urban heat vulnerability, and these were visually mapped 
(Figure 3).

3 Results and discussion

3.1 Ground truth validation and accuracy 
assessment

Various spectral-based mathematical methods were employed to 
map the spatial distribution of physical features within the city. 
Validation was conducted using GPS data to establish ground truth 
before proceeding with empirical analysis. Specifically, 460 ground 
control point (GCP) data were collected and verified through 
established accuracy assessment procedures: 20 GCPs for water 
bodies, 200 GCPs for roof types, and 240 GCPs for other land use 
classifications. The result was achieved the minimum requirement and 
consistent with proposed kappa status (Table  2). Since relative 
humidity (RH) and temperature are theoretically inversely related 
(Pathak et al., 2021); the accuracy of the Landsat temperature map, the 
RH map, and the mean annual temperature map, derived from the 
DEM’s linear regression model, was confirmed using Pearson’s pixel-
based correlation coefficient. The study’s results, as detailed in Table 4, 
are consistent with the theoretical expectations.

3.2 Spatial distribution of composite 
indictor of exposure (CI-exposure)

Demographic, environmental, and climatological factors can also 
be  generically classified under the three primary frameworks of 
vulnerability: exposure, sensitivity, and adoptive component. When 
creating each map, consideration was given to the main folds of the 
vulnerability index as well as variables that may influence the 
possibility of urban heat vulnerability. To determine the CI-Exposure 
based heat vulnerability class for the study area, factors such as 
population density and urban heat island (UHI) were analyzed.

Demographic data for Mekelle city reveal a high population 
density, with the greatest concentration in the southeast, particularly 
in Quiha sub-city. Despite Quiha sub-city does not have significantly 
more urban infrastructure compared to other sub-cities, its higher 
population density is attributed to factors such as lower residential 
plot costs, proximity to key government institutions, and available 
land for urban agriculture. In contrast, the northern part of the city 
has a lower population density due to the presence of a cement mill, 
associated pits, and steep, rocky terrain suited for cement production 
(Figures 4a,c). About 79% of the city has a population density ranging 
from 10.16/100 m2 to 136/100 m2 (Table 5).

With a population of about 559,000, Mekelle has experienced 
rapid growth in recent years. In densely populated urban areas, urban 

TABLE 3 Description of data type, and sources for adaptive composite indictor (ACI).

Parameter Indicator 
level

Data source Formula for preprocessing Value 
range

Adaptive Vegetation 

cover

Landsat Surface Reflectance-derived Soil Adjusted 

Vegetation Index (SAVI) is produced from Landsat 8 

OLI/TIRS.

According to Huete (1988), SAVI is computed as the 

normalized difference between the red and near infrared 

(NIR) bands using the formula SAVI = ((NIR - R)/(NIR 

+ R + L)) * (1 + L) where L is a factor for soil brightness 

adjustment. Usually, L is 0.5. Applications in areas with 

little plant cover have demonstrated the value of soil 

reflectance modifications.

High: 0.12

Low: −0.07

Kappa: 0.85

Open water 

body

Landsat 8 OLI/TIRS remote sensing data was obtained 

from the USGS (https://earthexplorer.usgs.gov). 

Radiometric correction was made on Green and 

SWIR bands before executed the model.

Modified normalized differential water index (MNDWI) 

can enhance open water features while effectively 

reducing and even eliminating noise from built-up land, 

vegetation, and soil (Xu, 2006).

( ) ( ) ( )/ ) (− − + −1 1B B B BGreen SWIR Green SWIR

High: 0.33

Low: −0.38

Kappa: 0.70

Ecological 

effect of UHI

Landsat 8 TIRS remote sensing data obtained from the 

USGS (https://earthexplorer.usgs.gov) database. 

Radiometric correction was made on the thermal 

bands before executed the model.

The degree to which urban dwellers are susceptible to 

the impacts of UHI can be expressed using the UTFVI. 

In regions that are noticeably warmer than Among the 

noteworthy effects of UTFVI include higher death rates, 

decreased comfort, and adverse effects on local wind, 

humidity, and air quality, as well as indirect economic 

losses (Abir et al., 2021).
−

=
T TUTFVI

Ts
s m

High: 0.32oC

Low: 0.05oC

Relative 

humidity

Monthly (Min, mean, & Max) temperature GeoTiff 

format data with spatial resolution of 30 seconds 

(~1 km2) downloaded for 2020–2023 (Fick and 

Hijmans, 2017) & metrological data obtained from 

Ethiopia Metrological Agency (EMA). ASTERDEM 

downloaded (https://www.earthdata.nasa.gov)

The algorithm outlined and adjusted by Ruslan et al. 

(2019) was used to compute the RH. RH can 

be calculated as follows: it is the ratio of saturation 

vapor pressure (es) to vapor pressure (e).
( ) α β= + ∗Mean Temp DEM

( )= ∗100eRelative Humidty es

High: 60.72%

Low: 10%
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heat islands (UHIs) can develop, potentially threatening the 
environment, economy, and society. Increasing population density 
leads to higher greenhouse gas emissions, significant land use changes, 
and the conversion of open spaces into impermeable surfaces, all of 
which can elevate mean temperatures and energy demands. Thus, 
areas with higher population densities are likely to experience more 
severe impacts from UHIs (Fall et  al., 2023; Sidiqui et  al., 2022; 
Arifwidodo and Chandrasiri, 2015).

UHI distribution maps, generated using Landsat thermal bands, 
indicated that the most intense UHI effects were located in the 
northwest, center, and northeastern parts of the city (Figures 4b,d). 
The northeastern section, in particular, may experience higher UHI 
due to a dense concentration of built-up areas and impermeable 
surfaces. Table  5 reveals that 26% (5,272.32 ha) and 32.10% 
(6,312.36 ha) of the area fell within UHI temperature ranges of 

0.218°C to 2.924°C, suggesting these regions are highly exposed to 
urban heat vulnerability conditions.

Built-up areas alter surface characteristics, reduce natural cooling 
mechanisms like vegetation cover, and increase heat retention and 
emissions, all of which significantly exacerbate the urban heat island 
effect (Fall et al., 2023; Gebreyesus et al., 2022; Adulkongkaew et al., 
2020). In the context of this conceptual tie between population density 
and the emergence of UHI, four vulnerability class categories; low, 
moderate, high, and very high were established using population 
density data that was taken from the www.worldpop.org dataset. The 
northeast, northwest, southeast, and central areas of the city had the 
highest concentration of urban residents, according to the population 
density map. However, the population appears to be less distributed 
in the northern section of the city; this is probably because of the area’s 
distinctive geological and geomorphological features.

Principal Component Analysis (PCA)

Correlation Matrix Barlett Spericity Test and

Kaiser Meyer Olkin (KMO)

Exploratory Factor Analysis (EFA)        

Potential Impact (PI)   

PC-EFA-UHV Map      

∗

2

PCEFA- UHV

Composite Index Exposure Composite Index AdaptiveComposite Index Sensitivity

Composite Exposure (Explained 

by PCA)
Composite Sensitivity

(Explained by PCA)
Composite Adaptive (Explained 

by PCA)

{ ∗ ∗ ∗ }+{ ∗ ∗ ∗ }
Inverse non-linear 

Geometric 
Aggregation Method

∗ ∗ ∗

FIGURE 2

Schematics flow chart of PCA-EFA-UHV assessment.
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3.3 Spatial distribution of sensitivity 
composite indictor (CI-sensitivity)

The extent to which an individual may be impacted by excessive 
heat in relation to any underlying physiological variables that could 
either promote or impede these effects is known as their sensitivity 
(Pathak et al., 2021). They also broadly categorized in to demography 
(Figures 5a–f) indicators (women, elderly population density (+65 
age), early age (<5 years age), women reproductive age, working age 
population, and total population), environmental indicators (Urban 
LULC, degraded land, impervious surfaces, built up area, dry bare soil 
area, building density, and roof typology), and climatological factors 
(LST, and mean air temperature).

Numerous studies have indicated that the populations most at 
risk from severe urban heat waves and rising temperatures include 
the elderly, pregnant women, children, and very young individuals. 
The elderly (over 65 years old) and pregnant women are particularly 
vulnerable due to their decreased ability to adapt to extreme weather, 
limited mobility, weakened immune systems, and higher prevalence 
of preexisting health conditions compared to other age groups. They 
are more susceptible to the adverse health effects of prolonged heat 
waves (Imran et al., 2021; Rathi et al., 2021; Jagarnath et al., 2020). 
Additionally, heat exposure can affect the productivity of 
working-age individuals, which has direct implications for economic 
output (Fall et al., 2023; Jagarnath et al., 2020; Wu et al., 2013; Tan 
et al., 2010).

The impervious (bright, medium, and dark impervious surface) 
which were determined using the BCI technique (Figures 6a and c), 
were used to establish four UHV classes (Table 6). Impervious surfaces 
such as asphalt, concrete, and buildings affect the surface energy 
balance by reducing cooling processes, altering air flow patterns, and 
impacting local climate conditions. These surfaces absorb solar 
radiation during the day and subsequently re-radiate and emit it as 
long-wave radiation (Mohajerani et al., 2017).

This is a significant contributor to higher temperatures and the 
formation of the urban heat island effect (Hurduc et al., 2024; Fadhil 
et al., 2023). The cooling impact of evapotranspiration is minimal 
because impervious pavements keep water from leaking through 
(McGrane, 2016). Replace the impermeable pavements with pervious 

Composite Indictor Identification

∗ ∗ ∗

Inverse non-linear Geometric 
Aggregation Method

Potential Impact (PI)   

∗ ∗ ∗ +  ∗ ∗ ∗

UHIV Map

∗

UHVI Model (AR4 IPCC 2007)

Composite Index Exposure 
Composite Index AdaptiveComposite Index Sensitivity

∗ ∗ ∗

CIExp-HV Map CISen-HV Map

∗ ∗ ∗

FIGURE 3

Schematics flow chart UHVI (IPCC, 2007) model.

TABLE 4 Correlation matrix.

Correlation Year Variable

LST RH TMean

Pearson correlation 2023 LST 1 −0.049** 0.020**

RH −0.049** 1 −0.901**

TMean 0.020** −0.901** 1 **

N = 23, 686

LST, land surface temperature; RH, Relative Humidity; TMean, mean annual temperature. 
**Correlation is significant at the 0.01 level (2-tailed).
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pavements that allow water to permeate, and it is predicted that the 
temperature will be able to drop a little. Impervious Surface.

A key factor exacerbating the Urban Heat Island (UHI) effect is 
the presence of built-up areas, characterized by dense concentrations 
of roads, pavements, buildings, and other impermeable surfaces. 
These areas contribute to reduced vegetation and evapotranspiration, 

alter the surface energy balance, and increase heat absorption, 
retention, air flow changes, and heat trapping (Mohajerani et al., 2017; 
Ikechukwu, 2015). The formation of UHIs is closely associated with 
built-up areas. As demand for such areas rises, both vegetation and 
arid lands are being replaced, leading to an increased EBBI value in 
Mekelle city, which ranges from −0.18 to 0.52, with about 81.6% of the 

FIGURE 4

Spatial distribution of exposure indicator vulnerability class. (a) population density, (b) urban heat island (UHI), and (c) reclassified population density, 
d: reclassified UHI.

TABLE 5 Composite indictor exposure UHV class and area coverage.

CI-exposure indicators CI-exposure UHV

UHV-class Value Area (Ha) Area (%)

Population density Very low UHV 2/100m2 1,259.3 13.84

Moderate UHV 8.4/100m2 630.28 6.93

High UHV 10.16/100m2 101.99 1.12

Very High UHV 136.7/100m2 7,104.44 78.11

UHI class Very low UHV −3.893 – −1.203 2,378.54 12.09

Moderate UHV −1.203 – 0.218 5,703.15 29.00

High UHV 0.218 – 0.713 6,312.36 32.10

Very high UHV 0.713 – 2.924 5,272.32 26.81
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city’s surface covered by built-up areas (Table 6). This expansion has 
led to a densely packed city with high Urban Heat Vulnerability Index 
(HVI) scores (Figures 6b and d).

Although bare soil alone is not the only factor contributing to urban 
heat islands, its properties play a major role in the processes of heat 
absorption and retention that amplify the impacts of UHI in urban 
settings. When compared to vegetated surfaces, bare soil usually has a 
lower albedo, or reflectivity (Sultana and Satyanarayana, 2020). This 
indicates that higher surface temperatures result from bare soil absorbing 
more solar radiation. Increased heat absorption and higher local 
temperatures can occur in urban settings where there is a substantial 
quantity of bare soil as a result of infrastructure development. Hence the 
result obtained using the DBSI spectral induce value (Figures 7a,b) for 
Mekelle city reveled that, the spectral ranges extended from −0.43 to 0.31 
and 31% the city area covered with the dry bare soil land (Table 6).

Meanwhile, in order to ascertain their function in risk and 
susceptibility potential to heat exposures, this work has attempted to 
elucidate the spatial distribution and type of roof typology. The kind 
and variety of the city’s building roof typology were determined using 
the pixel based supervised classification methods. Most buildings in 
the city seem to have corrugated iron roofing (that is glazed in various 
shades of red, green, and blue) and concert roofing specifically 
appearing on high-rise structures.

In Quiha sub-city, especially in the southeastern area, very few 
buildings are identified as vernacular structures known locally as 
Hïdmo. These buildings typically feature wooden ceilings, masonry 

walls, and soil roofs. Due to the low resolution of satellite images, it is 
challenging to differentiate the reflectance values of soil-roofed 
buildings from the surrounding dry bare soil. This limitation hinders 
the study’s ability to accurately assess the potential impact and 
influence of these structures. As a result, the effects of these types of 
buildings are not included in this research (Figure 7c).

As per Wong (2005), roofs account for 26% of the total 
metropolitan area and play a crucial role in mitigating the urban heat 
island effect. It also says that by absorbing heat and cleaning the air, 
green roofs contribute to maintain low temperatures, because they 
can absorb water, they help to postpone the duration of runoff, which 
keeps cities colder for longer and consequently lowers the temperature 
because the roof itself stays colder (Getter and Rowe, 2006). 
Nevertheless, because green roofing uses less energy, the building’s 
energy balance will remain (Sharma et al., 2018; Getter and Rowe, 
2006; Carter and Fowler, 2008). Building energy balance, urban heat 
island development, and sustainable urban expansion are significantly 
impacted by the urban compactness ratio (UCR), which by Shahfahad 
et al. (2021) defines as the quantity of built-up area per square meter. 
To assess the potential vulnerability of different roof types to UHI 
risks, the study cross-referenced land surface temperature (LST) data 
with the various roof types present in the city. It was found that 48% 
of corrugated iron roofs, whether uncoated or coated in red or green, 
were associated with higher LST, while 35% of concrete-roofed 
structures showed lower average LST. These findings contrast with 
results from other studies conducted in the USA, such as those by 

FIGURE 5

Spatial distribution of population density. (a) Women, (b) elderly age, (c) early age, (d) women reproductive, (e) working age, and (f) total population 
density.
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Getter and Rowe (2006) and Carter and Fowler (2008) in Chicago, 
which reported different patterns.

The results from the building density analysis indicate that 
substantial concentrations of buildings are found in the southwest, 
southeast, and central parts of Mekelle city (Figure 8a). In general, a 
higher concentration of built-up areas is likely to increase UHI 
vulnerability (Table 6). Urban areas with high population densities, 
dense built-up regions, impermeable surfaces, and elevated land 
surface temperatures (LST) are usually expected to have a higher heat 
vulnerability index.

However, this does not guarantee that these areas will consistently 
experience severe urban heat vulnerability. The UHI effect, driven by 
greater heat absorption and retention by buildings, roads, and other 
infrastructure, typically results in higher LST in urban areas 
compared to surrounding rural regions (Fuladlu et al., 2018). Human 
activities primarily drive this UHI impact by altering heat exchange 
systems and changing land surfaces. Buildings and roads, which 
absorb and re-radiate solar energy more effectively than natural 
surfaces, play a significant role in this process (Fadhil et al., 2023; 
Vujovic et al., 2021).

At a specific height above the ground, air temperature is defined 
as the temperature of the air that surrounds the Earth’s surface. LST 

has an impact on it, but other variables like humidity, atmospheric 
circulation, and regional weather patterns can also cause variations 
(Naserikia et al., 2023). LST directly affects local air temperatures in 
cities; higher air temperatures can also lead to higher LST since they 
decrease evaporative cooling and increase heat retention in urban 
structures (Fadhil et al., 2023). The LST distribution map produced by 
identifying hotspots in urban areas using Landsat thermal bands is 
displayed in Figure 9.

The UHI impact is intensified by higher LST and air temperatures, 
which increases the susceptibility of urban residents and infrastructure 
to heat stress. The highest LST and hotspot area was found in the 
northeastern and central parts of the city; these areas were also 
characterized by greater densities of roads and buildings, high 
proportion of impermeable surfaces, poor vegetation coverage, and 
more barren lands.

3.4 Spatial distribution of adaptive 
composite indictor (CI-adaptive)

Adaptive indicators can explain the biophysical characteristic that 
allows one to withstand excessive heat in metropolitan areas. The 

FIGURE 6

Spatial distribution of UHV. (a) BCI value, (b) EBBI value, (c) BCI vulnerability class, and (d) EBBI vulnerability class.
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adaptive composite indicator, which includes the SAVI, relative 
humidity, MNDWI, and UTFVI, was employed to ascertain the area’s 
vulnerability to excessive UHV.

SAVI spectral analysis indicates that the city generally has a 
moderate amount of urban forest cover, with significant areas of 
dense vegetation found along the riverbanks and atop Mount Inda 
Yesus. This vegetation helps to lower land surface temperatures, 
which in turn reduces the HVI index score. The SAVI values were 
found to range from −0.162 to 0.518 (Table  7). According to a 
previous study by Tesfamariam et al. (2023), there has been a 0.86% 
(9.93 hectares) reduction in urban forest cover since 2000, primarily 
due to urban infrastructure expansion. The study also highlighted 
changes over the past 40 years, including increased development of 
residential areas and roads, decreased open soil-covered spaces, and 
an increase in subsurface water levels. Vegetation typically possesses 
a higher albedo, or reflectivity, than built-up surfaces like asphalt 
and concrete. This allows it to reduce the absorption of solar 
radiation, hence lowering surface temperatures. Lower air 
temperatures and consequently lower land surface temperatures 
(LST) are typically correlated with higher amounts of vegetation. 
This decreases the intensity of the UHI effect (Deng et al., 2024; 
Worku et al., 2021).

The SAVI images were classified into five vegetation classes dense 
vegetation, medium vegetation (shrubs), rare vegetation (cropland 
and grassland), and barren land (rocky, and built-up areas) and water 
bodies (Figures 10a,c) and reclassified in to four heat vulnerability 
class. It suggests that higher amounts of vegetation cover tend to lower 

UHI intensities due to the cooling effects of shading, evaporative 
cooling, and less heat absorption (Table 7).

Although urban heat island (UHI) predominantly affects 
temperature, depending on the local environment, it can also 
indirectly affect relative humidity levels. The relationship between the 
Urban Heat Island (UHI) effect and relative humidity (RH) is 
complicated and depends on a number of variables, such as local 
climate features, weather patterns, and urban morphology (Hass et al., 
2016). In urban areas, particularly those impacted by UHI and having 
high thermal mass (such as concrete and asphalt), the local 
temperature might be greater than in rural areas, particularly at night 
(Mohajerani et al., 2017).

Warmer air has the capacity to hold more moisture, which can 
lead to a decrease in relative humidity if the absolute humidity 
remains constant or increases more slowly than the temperature 
(Ruslan et  al., 2019). Higher temperatures combined with lower 
relative humidity (common in urban areas due to UHI) can affect 
human comfort and health (Hass et al., 2016). Low relative humidity 
levels can contribute to increased evaporation rates and potential 
dehydration, while high temperatures exacerbate the discomfort 
(Table 7; Figures 10b,d).

Water bodies are crucial in mitigating the effects of urban heat 
island effects due to their inherent cooling and heat-sink 
properties. Water can help lessen the intensity of the UHI effect by 
using evaporative cooling and reducing the amount of heat 
absorbed by nearby surfaces. Moreover, it possesses qualities of 
thermal inertia, or a greater specific heat capacity than land. Due 

TABLE 6 Composite indictor sensitivity UHV class and area coverage.

CI-sensitivity indicators CI-sensitivity UHV Remark

UHV-class Value Area (Ha) Area (%)

BCI UHV class Very low UHV 1.52 – 1.71 5,224.04 26.56 Mixed impervious

Moderate UHV 1.71 – 1.76 9,540.47 48.50 Dark impervious

High UHV 1.76 – 1.82 3,438.23 17.48 Medium impervious

Very high UHV 1.82 – 2.39 1,467.07 7.46 Bright impervious

EBBI UHV class Very low UHV −0.18 – 0.01 3,119.98 15.86 Vegetation

Moderate UHV 0.01 – 0.11 4,98.836 2.54 Water body

High UHV 0.36 – 0.52 9,044.01 45.96 bare land

Very high UHV 0.11 – 0.36 7,013.09 35.64 Built up

DBSI UHV class Very low UHV −0.43 – −0.07 692.424 3.52 Water body

Moderate UHV −0.07– 0.01 3,144.91 15.98 Vegetation

High UHV 0.12 – 0.31 6,285.49 31.94 Bare land

Very high UHV 0.01 – 0.12 9,553.27 48.55 built up area

Building density UHV class Very low UHV 0 – 2.23 5,139.86 26.12 Less crowded

Moderate UHV 2.23 – 6.32 8,223.80 41.80

High UHV 6.32 – 9.91 4,610.44 23.43

Very high UHV 9.91 – 15.6 1,702.24 8.65 Densely crowded

LST UHV class Very low UHV 22.81 – 30.06 2,378.54 12.09

Moderate UHV 30.06 – 32.72 5,703.15 29.00

High UHV 32.72 – 35.24 6,312.36 32.10

Very high UHV 35.24 – 41.14 5,272.32 26.81
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to its slower absorption and release of heat than land, water bodies 
are able to maintain more constant temperatures across time 
(Wallace and Hobbs, 2006). Thus, the open water spatial 
distribution of the city was mapped using the well-known MNDWI 
spectral induce mathematical index proposed by Xu (2006). The 
MNDWI map was categorized into classes linked to water and 
non-water (Figures 11a and c) using the suggested threshold (Xu, 
2006). It is also further categorized and evaluated in relation to 
vulnerability class (Table 7).

The UTFVI can assess how vulnerable urban residents are to the 
effects of UHI (Figures 11b,d). This index, widely used for evaluating 
surface UHI effects with high precision, was applied in this case (Al 
Kafy et al., 2021). The prevalence of impermeable surfaces, such as 
concrete roads and city buildings, has replaced natural areas like 
forests and rivers. This significant decrease in surface transpiration 
intensifies UHI impacts by increasing the proportion of sensible 
surfaces and decreasing latent surfaces (Zhang et al., 2024). UTFVI 
concentration is higher when the area is significantly warmer than 
surrounding areas (Table 7). The notable impacts of UTFVI include 
negative effects on local wind, humidity, air quality, reduction in 
comfort and increased mortality rate, indirect economic losses 
(Nuruzzaman, 2015).

3.5 Urban heat vulnerability assessment 
using principal component exploratory 
factor analysis (HV-PC-EFA)

3.5.1 Factor analysis using principal component 
analysis

To identify potentially vulnerable areas in the city, approximately 
19 indicators were selected based on attributes recommended in the 
literature (Tables 1–3). In the initial phase of the Principal Component 
Analysis (PCA), a correlation matrix is created to assess data 
suitability. The Bartlett’s Test of Sphericity and the Kaiser-Meyer-Olkin 
(KMO) measure are used for this purpose. The Bartlett’s Test, with a 
KMO value of 0.582, produced a significant result of 0.00, indicating 
suitability (p < 0.05). The correlation matrix showed a coefficients at 
0.3 or higher (Pallant, 2005). The variance in the raw vulnerability 
indicators is explained by three independent components, accounting 
for 64.41% of the total variance. The first component explains 27.59%, 
while the second and third components account for 25.21 and 11.61%, 
respectively. The first component includes indicators such as 
population density (0.996), density of elderly population (0.996), 
density of early age population (0.995), density of women of 
reproductive age (0.994), and working age population density (0.996). 

FIGURE 7

Spatial distribution of UHV. (a) Dry bare soil index (DBSI); (b) DBSI vulnerability class, and (c) roof typology.
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The second component, according to the rotating component matrix, 
includes DBSI (0.920), EBBI (0.895), LST (0.816), UHI (0.816), and 
BU density (0.814). The third component comprises mean temperature 
(0.558), MNDWI (0.704), and BCI (0.685).

3.5.2 Spatial distribution of HV-PC-EFA
After conducting a three-component PCA on the raw vulnerability 

indicators, the components related to adaptive capacity, sensitivity, 
and exposure potential were reorganized and combined using the 
inverse geometric aggregation method. Table 8 illustrates the results 
for the exposure component, revealing that a substantial portion of 
the city is classified as very low vulnerability. Specifically, 22.5% of the 
area (4,426.3 hectares) is deemed extremely sensitive, while 25.8% 
(5,064.36 hectares) is identified as highly susceptible.

By combining sensitivity indicators such as DBSI, EBBI, LST, BU 
density, BCI, and Mean Temperature using PCEFA methods, a 
sensitivity map showing the spatial distribution of the composite 
indicator was created. This map reveals a distinct pattern: higher HVI 
values are concentrated in the southeast, while lower HVI values are 
found in the central area of the city near the riverside (Figure 12b). 
The results of this analysis showed that 73% of the urban area was 
affected by HIV, with rates ranging from moderate to very high. The 

portions of the urban area that are least susceptible to HIV account 
for 11.8% (2,332.2 ha) of the total area (Table 8).

The MNDWI indicator is the sole adaptive component that the PC 
factor analysis method can explain. The HVI-PCA pattern adaptive 
component indicates that 70% of the city is frequently concentrated 
under the high and very high UHIV classes (Table  8). Using the 
un-weighted inverse geometric aggregation method, the exposure 
(Figure  12a), sensitivity (Figure  12b), and adaptive capacity 
(Figure  12c) features were combined to create the final HVI 
(Figure 12d).

It was observed that the sub-cities with the highest exposure HVI 
values are mainly located in the southeastern part of the city, which 
also has a relatively high population density. Areas most susceptible 
to UHI and exhibiting extremely high HVI values are concentrated in 
the northeast, northwest, and southeast regions of the city. According 
to the HVI-PCA pattern (Table 8), 24.3% (4,756.2 hectares) of the area 
has the highest HVI, 35.4% (6,928.13 hectares) has a high HVI, 26.5% 
(5,199.6 hectares) has a moderate HVI, and 13.6% (2,673.4 hectares) 
has the lowest HVI.

Quiha sub-city has been shown to have the highest level of risk 
(75%) due to its high sensitivity and high exposure (population 
density) then followed by Hadinet (46.9%), Hawellte (40.84%), and 

FIGURE 8

Spatial distribution of UHV. (a) Urban Built-up density (UBD), (b) degraded land, (c) UBD vulnerability class, and (d) degraded land vulnerability class.
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FIGURE 9

Spatial distribution of UHV. (a) Land surface temperature (LST), (b) mean air temperature, (c) LST vulnerability class, and (d) temperature vulnerability class.

TABLE 7 Composite indictor adaptive UHV class and area coverage.

CI-adaptive indicators CI-adaptive UHV Remark

UHV-class Value Area (Ha) Area (%)

SAVI UHV class Very low UHV 0.193 – 0.268 865.35 4.40 Medium vegetation

Moderate UHV 0.193 – 0.268 4,107.16 20.87 Rare vegetation

High UHV 0.130 – 0.193 11,037.75 56.09 Bare land

Very High UHV −0.065 – 0.130 3,666.65 18.63 Barren &water

RH UHV class Very low UHV 61.98021698 6,587.42 32.48 High relative humidity

High UHV 61.98020172 13,096.37 66.47 moderate

MNDWI UHV class Very low UHV −0.131 – 0.33 2,011.09 10.22 Water body

Moderate UHV −0.190 – −0.131 3,810.46 19.36

High UHV −0.238 – −0.190 7,520.37 38.22 Other land use

Very High UHV −0.387 – −0.238 6,335.36 32.20

UTFVI UHV class Very low UHV −0.31 – −0.09 2,418.54 12.30 Good EEI

Moderate UHV −0.09 – −0.01 5,754.79 29.26 Normal EEI

High UHV −0.01 – 0.05 6,327.47 32.17 Worse EEI

Very High UHV 0.05 – 0.23 5,165.53 26.27 Worst EEI

EEI (ecological evaluation index).
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Semen (49.9%) according to the final HVI-PCA-EFA result. Because 
of its adaptability to Martiyar City Park, which has a widely dispersed 
tree cover, Kedamy Weyane sub-city is the least vulnerable (58%) 
despite having a considerable sensitivity level (Figure 12d).

3.6 Urban heat vulnerability assessment 
using IPCC UHIV index

In order to quantify multidimensional concepts, vulnerability is 
defined in terms of many composite indicator dimensions as opposed 
to being captured by a single indicator (Sidiqui et al., 2022). Adaptive 
potential component impact index (AI), sensitivity potential impact 
component (SI), and exposure potential impact component (EI) were 
computed using equally weighted inverse geometric aggregation, 
which has the virtue of partial compensability. According to Sidiqui 
et  al. (2022), vulnerability is characterized using many composite 
indicator dimensions rather of being captured by a single indicator, in 
order to quantify multidimensional notions.

To calculate the exposure layers, all important exposure factors 
such as population density and the UHI layer were integrated 

using the inverse geometric aggregation tool (Figure  13a). The 
output of this analysis revealed that, 28.68 and 22.92% of UHVs 
are considered to have very high and high vulnerability, 
respectively (Table  9). In line with Sidiqui et  al. (2022), 
vulnerability is defined by various composite indicators to capture 
its multifaceted nature. For calculating exposure layers, key factors 
such as population density and UHI were integrated using the 
inverse geometric aggregation method (Figure 13b). The analysis 
revealed that 28.68% of UHVs are classified as having very high 
vulnerability, while 22.92% are categorized as having high 
vulnerability (Table 9).

The CI-Sensitivity map was initially developed by integrating 
various biophysical components (such as NDVI, LULC, roof type, 
DBSI, BUI, BCI, and EBBI), climatological factors (LST and mean air 
temperature), and demographic data (density of elderly, young, 
female, and women of reproductive age) using an inverse geometric 
aggregation method. Developing on this approach, the CI-Sensitivity 
UHV map for the study area was generated by combining these 
indicators with the inverse geometric aggregation method 
(Figure 13a). The results showed that 12.8 and 24.3% of UHVs fall into 
the very high and high vulnerability categories, respectively (Table 9). 

FIGURE 10

Spatial distribution of UHV. (a) Vegetation cover, (b) relative humidity, (c) SAVI vulnerability class, and (d) relative humidity vulnerability class.
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While only a small portion (7.25%) of the study area is classified as 
very highly vulnerable, open water and riverbanks (Figure  13c) 
significantly mitigate UHV risk (Table 9).

Overall, the UHI vulnerability pattern (Figure 13e) reveals that 
a large portion of the city is categorized under the highest (41.6%), 
moderate (31.9%), and high (19.87%) UHV classes (Table 9). The 
southeastern and western parts of the city have lower HVI values 

compared to the metropolitan core, which has higher HVI values. An 
integrated UHV map, intersected at the sub-city level, identifies the 
most vulnerable sub-cities as Adihaki (62.5%), Ayder (74.04%), 
Hawellte (49.5%), Kedamay Weyane (61.28%), Hawiltee (45.57%), 
and Semen (41.2%). Conversely, Quiha sub-city, with a highly 
concentrated population, has a high proportion (68.2%) of members 
in the lowest UHV category.

FIGURE 11

Spatial distribution of UHV. (a) Modified normalized difference water index (MNDWI), (b) urban thermal field variance index (UTFVI), (c) MNDWI 
vulnerability class, and (d) UTFVI vulnerability class.

TABLE 8 HV-PC-EFA class and area coverage.

PCEFA UHIV index class distribution

UHV-class CI-exposure CI-sensitive CI-adaptive Overall UHIV class

Area (Ha) (%) Area (Ha) (%) Area (Ha) (%) Area (Ha) (%)

Very low UHV 5,623.4 28.68 2,332.28 11.89 2,011.0 10.22 2,673.4 13.67

Moderate UHV 4,493.5 22.92 3,198.67 16.31 3,810.4 19.36 5,199.6 26.59

High UHV 5,064.3 25.83 1,3538.5 69.02 7,520.3 38.22 6,928.1 35.42

Very high UHV 4,426.3 22.57 545.11 2.78 6,335.3 32.20 4,756.2 24.32

Total area 19,607.71 19,614.56 19,677.00 19,557.30
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3.7 Comparison between HVI-PCA-EFA and 
IPCC UHVI model

A post-classification comparison was conducted to 
identify changes between the final urban heat vulnerability 
maps in raster format (Figure 14a). To enhance understanding, 
changes were identified, quantified, and illustrated 
separately for each vulnerability class using HV-PC-EFA and 
UHIV techniques. Areas shaded green and light brown in 
both methods show different vulnerability values and are 
categorized into different vulnerability classes by each method. In 
contrast, the blue-shaded area (Figure  14b) indicates regions 
where vulnerability classes remained unchanged with the two 
methods. These unchanged areas account for 15% (2,567 
hectares) of the total study area and exhibit consistent 
vulnerability classifications.

However, the regions shaded green and light brown, making 
up 84% of the study area, demonstrated varying vulnerability values 
and were classified into different vulnerability classes by both 
methods. The vulnerability classes derived from the two approaches 
were compared using a pairwise comparison matrix tool. The post-
classification differencing between HV-PC-EFA and UHIV revealed 
a matrix showing changes in vulnerability levels, as detailed in 
Table 10.

Notably, the area classified as low urban heat vulnerability 
increased significantly, shifting by 33.6% from 1,358.57 hectares 
(HV-PC-EFA) to 7,067.19 hectares (UHIV) (Table  10). This 
transition to a low UHIV class was primarily driven by shifts from 
very high UHIV (4,038.84 hectares) and high UHIV (2,758.84 
hectares). The region most exposed to HIV has also shown a 
significant decline, decreasing from 4,719.98 ha (HV-PC-EFA) to 
1,113.26 ha (UHIV).

The primary shift in the highest class of HIV identified by the 
use of the HV-PC-EFA technique is in the low and moderate UHIV 
classes. The difference between these two approaches is most likely 
due to uneven composite indicator assignment. The vulnerability 
class’s spatial coverage has also shown some notable differences 
between the two approaches. Such a spatial coverage variation has 
been observed, for example, in the vulnerability class of the 
Hadinet, Adihaki, Quiha, and Kedamay Weyan sub-cities 
(Table 11).

The study’s findings can help pinpoint which areas of a city 
are most susceptible to severe urban heat waves. Urban planners 
can use this information to focus on cooling strategies such as 
expanding green spaces, planting trees, installing cool roofs, and 
enhancing urban design to improve natural ventilation and 
shading. Policymakers can leverage these insights to develop and 
refine mitigation strategies, enhance early warning systems, and 

FIGURE 12

Spatial distribution of heat vulnerability using HV-PC-EFA. (a) PCA-exposure, (b) PCA-sensitivity, (c) PCA-adaptive, and (d) overall HV-PCEFA.
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improve heat emergency response plans. Although urban heat 
islands may not yet pose a significant public health threat in this 
context, the data can still provide valuable guidance for local 
public health officials in crafting strategies to prevent heat-
related illnesses and foster collaborations with healthcare 
providers for effective monitoring and response. Overall, 
assessing urban heat vulnerability is crucial for making informed 
decisions regarding community health, policy formulation, and 
urban planning. Urban stakeholders should identify the most 
vulnerable areas and populations, and proactively implement 
measures to boost resilience to extreme temperatures, thereby 
making urban environments healthier and more sustainable 
for everyone.

4 Conclusion

Previous research has examined vulnerability to various factors, 
such as temperature, population, education, income, and access to 
cooling facilities, in major global cities (McMichael, 2000; Cheng 
et al., 2014; Nuruzzaman, 2015; Chen et al., 2023). However, there has 
been no study specifically addressing Ethiopia or Mekelle City. This 
research utilized HV-PC-EFA and UHVI techniques to assess heat 
vulnerability at the sub-city level within Mekelle. To evaluate urban 
susceptibility to urban heat island (UHI) effects, the study focused on 
15 urban ecological characteristics and six demographic factors, 
including population density, elderly population, young population, 
women of reproductive age, and working-age individuals. The city’s 

FIGURE 13

Spatial distribution map of UHI vulnerability. (a) CI-sensitivity, (b) CI-exposure, (c) CI-adaptive, (d) potential impact, and (e) overall UHVI IPPC.

TABLE 9 IPCC UHIV class and area coverage.

IPCC UHIV index class distribution

UHV-class CI-exposure CI-sensitive CI-adaptive Overall UHIV class

Area (Ha) (%) Area (Ha) (%) Area (Ha) (%) Area (Ha) (%)

Very low UHV 4,426.34 22.5 735.7 3.7 7,245.9 37.1 7,080.4 41.6

Moderate UHV 5,064.38 25.8 11,532.5 58.8 6,869.3 35.1 5,429.1 31.9

High UHV 4,493.59 22.9 4,825.8 24.6 4,034.8 20.6 3,378.9 19.8

Very high UHV 5,623.4 28.6 2,511.2 12.8 1,418 7.2 1,114.7 6.5

Total area 19,607.71 19,605.20 19,568.00 17,003.32
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heat vulnerability was analyzed using unweight geometric non-linear 
aggregation method, based on UHVI and HV-PC-EFA models. 
Theoretically, there is an inverse relationship between Land Surface 
Temperature (LST) and vulnerability to extreme urban heat (Liu et al., 
2020). Pearson correlation matrix data show that UHV has a stronger 
negative correlation with LST (−0.116) compared to HV-PC-EFA 
(−0.029). The HV-PC-EFA and UHVI models significantly affect the 
spatial distribution and coverage of heat vulnerability. The 
HV-PC-EFA approach’s critical indicators for CI-Adaptive (such as 
vegetation cover, UTFVI, and relative humidity) and CI-Sensitive 
(urban density and roof type) may not be  distinctly captured, 
potentially limiting the depth of data when applying geometric 
aggregation methods.

As a result, the HV-PC-EFA approach may overlook important 
aspects of heat vulnerability by simplifying multiple indicators into 
fewer components, potentially distorting the outcomes. The study 
identifies significant land surface temperature (LST) and urban heat 
island (UHI) issues in five sub-cities: Adi Haki, Ayder, Kedamay 

Weyane, Quiha, and Semen. Rise in the Urban Heat vulnerability 
(UHV) is associated with a reduction in plant cover and an increase 
in impermeable surfaces. Although altering existing built-up locations 
is difficult, implementing adaptive measures such as planting trees, 
establishing green public spaces, and maintaining water bodies can 
be  effective. It is also essential to raise public awareness of heat 
concerns. Furthermore, the government might advocate the use of 
concrete or tile roofing rather than glazed corrugated roofing in 
residential areas.

4.1 Limitation

This study focuses exclusively only on key physical attributes of cities, 
such as their environmental zones, population demographics, and 
climatic indices. The study does not evaluate the socio-economic status 
of the community under this study. The recent extended conflict in 
Tigray (including Mekelle City) and the absence of systematically 

FIGURE 14

Change spatial distribution of overall UHV. (a) Overall changes, (b) Reclassified changes.

TABLE 10 Vulnerability class conversion matrix for the HVPC-EFA and UHIV.

Conversion matrix (PC-
EFA & UHIV)

UHIV

LUHV (Ha) MUHV (Ha) HUHV (Ha) VHUHV (Ha) Total Loss

HV-PC-EFA 

class

LUHV 6.41 152.90 680.23 519.03 1,358.57 1,352.16

MUHV 263.13 1,658.65 1,716.57 445.80 4,084.15 2,425.50

HUHV 2,758.81 3,015.49 898.25 138.00 6,810.55 5,912.30

VHUHV 4,038.84 592.26 78.45 10.43 4,719.98 4,709.55

Total 7,067.19 5,419.30 3,373.50 1,113.26

Gain 7,073.60 7,077.95 4,271.75 1,123.69

Net change 5,721.44 4,652.45 −1,640.55 −3,585.86

N.B: LUHIV, low Urban Heat Vulnerable; MUHV, Moderate Urban Heat Vulnerable; HUHV, High Urban Heat Vulnerable; VHUHV, Very high Urban Heat Vulnerable.
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recorded public health data directly related to these cases at health 
institutions have made it challenging to access and collect relevant 
information for this study.
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TABLE 11 Spatial distribution of heat vulnerability of Mekelle city.

Geometric non linear aggregated method UHIV class

Sub-city UHV-class HVPC-EFA value UHIV value

Area (ha) Area (%) Area (ha) Area (%)

Adihaki

sub-city

Very low UHV 814.71 79.26 18.79 5.41

Moderate UHV 157.67 15.34 111.28 32.05

High UHV 50.56 4.92 172.94 49.81

Very High UHV 4.95 0.48 44.18 12.73

Ayder

sub-city

Very low UHV 327.89 24.08 14.97 1.63

Moderate UHV 637.87 46.85 223.99 24.33

High UHV 339.369 24.93 506.51 55.01

Very High UHV 56.37 4.14 175.35 19.04

Hadinet

sub-city

Very low UHV 366.92 20.18 703.44 42.86

Moderate UHV 597.44 32.86 538.88 32.83

High UHV 628.02 34.54 287.32 17.51

Very High UHV 225.81 12.42 111.70 6.81

Hawellte

sub-city

Very low UHV 322.70 18.63 400.28 26.72

Moderate UHV 702.15 40.53 414.97 27.70

High UHV 564.52 32.58 509.07 33.98

Very High UHV 143.18 8.26 173.75 11.60

Kedamay Weyane
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Moderate UHV 186.41 28.82 114.50 26.24

High UHV 77.614 12.00 170.21 39.01

Very High UHV 1.95 0.30 97.25 22.29

Quiha

sub-city

Very low UHV 40.16 2.66 999.97 68.26

Moderate UHV 333.91 22.17 377.70 25.78

High UHV 585.30 38.86 70.40 4.81

Very High UHV 546.75 36.30 16.85 1.15

Semen

sub-city

Very low UHV 759.97 21.08 519.39 19.70

Moderate UHV 1,045.03 28.98 1029.53 39.06

High UHV 1,232.23 34.18 791.67 30.03

Very High UHV 568.37 15.76 295.25 11.20
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