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temperature in aquaculture 
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Introduction: Interannual climate variability in the Asian mega deltas has 
been posing a wide range of climate risks in the aquaculture systems of the 
region. Water temperature variation is one of the key risks related to disease 
outbreak, fish health, and loss and damage in fish production. However, Climate 
information can improve the ability to predict changes in pond water quality 
parameters at the farm level using publicly available weather and climate data. 
Little research has been done to translate weather data into water temperature 
forecasts using mechanistic models in order to provide farmers with relevant 
forecasting information in the context of climate services.

Methods: The advantage of mechanistic models over statistical models is that 
they are based on physical processes and can therefore be used in a wider range 
of environmental conditions. In this study, we used an energy balance model to 
investigate its ability to simulate pond water temperature at daily and seasonal 
timescales in the southwest and northeast regions of Bangladesh. The model 
was able to adequately simulate pond water temperature at a daily timescale 
using publicly available weather data, and the accuracy of the model was lower 
at the study site with very heavy rainfall events.

Results: Sensitivity analyses showed that the model was also able to simulate the 
impact of air temperature cold and hot spells on the pond water temperature. 
Connecting the model with seasonal air temperature forecasts resulted in very small 
variations in the forecasted seasonal pond water temperature, in large part due to 
the low variability observed in water temperature at seasonal scale in the study sites.

Discussion: Climate information can improve the ability to predict changes in 
pond water quality parameters at the farm level using publicly available weather 
and climate data. Hence, these improved predictions are important to help fish-
farmers make informed decisions for managing associated climate risks.
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1 Introduction

Global aquaculture continues to grow, at an average annual rate of 6.7% (FAO, 2020). In 
Bangladesh, aquaculture is one of the fastest growing sectors: it is the fifth most productive 
country in Asia, and it is a major source of income and food security in rural areas (Montes 
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et al., 2022; FAO, 2020). Bangladesh has been identified as the second 
most climatically vulnerable country in Asia for freshwater 
aquaculture, and has a low adaptive capacity due to its high climate 
interannual variability and high frequency of extreme weather events 
(IPCC, 2021; Montes et al., 2021; Barange et al., 2018; Hossain et al., 
2021; Siddique et al., 2022). Heat waves, cold spells, heavy rainfall 
events (flash floods), and dry spells have all been identified as key 
climatic phenomena which impact aquaculture (Hossain et al., 2021; 
Montes et al., 2022; Maulu et al., 2021; Hossain et al., 2021; Nhan et al., 
2011; Faruque and Kabir, 2016; Siddiqua et al., 2019). Thermal stress 
on aquatic organisms can impact growth rate, reproduction, and can 
induce thermal stress at all stages of fish growth (Cathcart and 
Wheaton, 1987; Prapaiwong and Boyd, 2012; Siddique et al., 2022).

The ability to forecast and predict major extreme heat and cold 
events is important for helping farmers to take early action and to 
manage associated risks (Maulu et al., 2021). This information can 
be used to build decision frameworks that help farmers to anticipate 
major weather events and to understand their impacts on the farm in 
order to adjust decisions and reduce damages. Consequently, work is 
being conducted to test and improve the availability of climate data to 
establish early warning systems in regions where climate variability 
increases risks and causes uncertainty in aquaculture farms (Montes 
et al., 2022). Efforts are also being done to use climate data to build 
comprehensive decision frameworks to communicate climate risk 
information along with advisory services to fish-farmers (Hossain 
et al., 2021).

For instance, skillful forecast information of high temperatures 
for the coming week that exceeds the thresholds identified for a 
specific fish species can be communicated to aquaculture farmers. 
That information can be used with actionable water quality and/or 
feed management relevant advisory services such as: feed 
conversion ratio, application of lime, use of aerator, adding ground 
water to balance pH, dissolved O2 and water temperature along 
with reduced disease outbreak and mortality rate, and optimal 
growth of fish stock (Hossain et al., 2021). If fish-farmers access 
this information with a 5–7 days lead time, they will be able to 
manage the risks of fish mortality rand disease outbreak taking 
climate informed management decisions earlier to that specific 
climatic event (Montes et al., 2022).

The effectiveness of climate information for farmer decisions 
can be enhanced when it is embedded in a climate information 
services framework. Climate services involve the production, 
translation, transfer and use of climate information for decision-
making and are increasingly viewed as critical to improve the 
capacity of farmers to adapt to climate variability and change 
(Vaughan et  al., 2017). Thus, to make aquaculture systems 
sustainable, climate data such as air temperature must be translated 
into sector-relevant information such as pond-specific water-
temperature variation, oxygen concentration and salinity (where 
applicable) in order to help fish-farmers adjust their management 
decisions and reduce stress on their fish and manage operational 
risks (Gao and Merrick, 1996; Culberson and Piedrahita, 1996; 
Cathcart and Wheaton, 1987; Béchet et al., 2011). Early warning 
systems that use climate information are often site specific, and 
typically include statistical models that use atmospheric data as 
predictors. Montes et al. (2022) developed an approach for seasonal 
forecasting to predict the number of warm days and number of 
heavy rain days at two sites in Bangladesh. Their research explored 

the relationship between maximum air temperature and water 
temperature, but the relationship is site specific and based on a 
linear regression which is not descriptive of the physical and 
environmental drivers of water temperature.

Our paper explores the implementation of the first stages of a 
climate information service for aquaculture (“generate” and 
“translate” climate knowledge) using a mathematical model which 
represents energy fluxes into and out of a pond via empirical and 
theoretical relationships (Gao and Merrick, 1996). Unlike 
statistical models which are site-specific, the type of generalizable 
models that we used in our research can be linked to climate and 
weather forecasts to build early warning systems for regions with 
a wide range of climatic and ecological conditions. Our research 
tested the ability of an energy flux-based model to simulate the 
variation of pond water temperature driven by observed air 
temperature. We then linked the model to a seasonal temperature 
forecast to explore the potential of establishing an early warning 
tool for fish-farmers. This research focuses on simulating only the 
pond water temperature, but the model used in our research can 
be used for simulating oxygen and salinity, and for exploring the 
impact of rainfall on pond temperature, oxygen, and salinity.

2 Materials and methods

2.1 Research sites

Bangladesh is characterized by a warm climate influenced by 
three circulations: pre-monsoon, monsoon, and post-monsoon 
which results in high mean annual rainfall. The rainy season in 
Bangladesh (April through September) coincides with the warmest 
months and the average total rainfall is about 2,200 mm, although 
some regions in the country experience as much as 5,000 mm. The 
mean temperature in July, the peak of the rainy monsoon season, 
is 28°C with minimum and maximum average temperatures of 
26°C and 31°C, respectively. We  used two study sites in this 
research for which there was available data on daily observed pond 
water temperature: (a) Khulna, in the SW with the highest average 
mean temperatures of the country, and annual rainfall that is 
similar to the average rainfall of the country, and (b) Sylhet, in the 
NE with the lowest average mean temperatures of the country and 
highest mean annual precipitation (The World Bank Group, 2021) 
and flooding is common in the region.

2.2 Data

2.2.1 Climate data
Climate data used to build and test the model were obtained from 

the NASA Langley Research Center (LaRC) POWER Project funded 
through the NASA Earth Science/Applied Science Program at a spatial 
resolution of resolution 0.50° × 0.625° (NASA, 2021). Data for the 
period 1990–2020 were downloaded for the latitude and longitude of 
Khulna, SW Bangladesh and Sylhet, NE Bangladesh (Table  1). 
Although observed climate data are available for the two study regions, 
we  chose to use a publicly available dataset (NASA’s POWER) to 
explore the ability of the model to simulate water temperature in 
regions where no climate observations are available.
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We created a 30-year climatology dataset (1990–2020) and 
we calculated the daily averages for each input variable for each day 
of the year. We then estimated the 1st and the 99th percentiles of 
temperature values. Temperature values corresponding to the 1st 
and the 99th percentiles and the associated solar radiation were 
used to create artificial “cold spells” and “hot spells,” respectively, in 
the climatology datasets. The hottest and coldest periods of the year 
in Bangladesh were identified, and air temperature and solar 
radiation values within these hot and cold periods were edited to 
include the values corresponding to the 1st and 99th percentiles to 
simulate extreme hot and cold spells with durations of 4, 7, and 
10 days.

The NASA POWER data were also used for creating the dataset 
used to test the ability to establish a seasonal water temperature 
forecast using a tercile-based air temperature seasonal forecast. 
We  used the downloaded data for the years 1990–2020 and 
seasonal averages were computed for each year. These seasonal 
averages were then sorted for each season by temperature to define 
the terciles of above-, near-, and below-normal seasonal 
air temperatures.

These ranges created the temperature cutoff values used in the 
sampling method for testing seasonal predictability of water 
temperature. Two seasonal forecasts were tested with large departures 
from the climatological distribution of terciles (i.e., 33-33-33 
distribution) in order to test the sensitivity of the model to contrasting 
expected seasonal conditions: 70% above-, 20% near-, 10% below- 
normal; and 10% above-, 20% near-, 70% below- normal.

2.2.2 Observed water temperature data
Observed water temperature data were obtained at each study site 

in both Khulna and Sylhet. Pond water temperature was measured for 
2 years (2018–2019) twice a day: in the morning (8.00–9.00 a.m.) and 
afternoon (4.30–5.30 p.m.) at an estimated depth of 0.15–0.25 m below 
the surface. Water temperature during morning hours was considered 

to reflect the minimum water temperature of the pond and afternoon 
hours to reflect the maximum temperature of a pond (Wax and 
Pote, 1990).

2.3 Water temperature simulation model

Pond water temperature simulations were created using a 
mathematical model based on theoretical and empirical relationships 
to numerically solve for different elements of energy exchange (Gao 
and Merrick, 1996, G&M model from now on). The model was built 
and run using Python Programming Language, and all of the code for 
running the model can be found in a public github repository (Van 
Rossum and Drake, 1995; Resnick and Kadam, 2021). The model was 
selected because it can be adapted to run at different timescales (e.g., 
hourly, daily), and because it requires minimal meteorological data 
(Table  2). It also makes assumptions that allow for a simplified 
application of the model, and it also allows the user to explore and 
apply further assumption.

The generalized equation used by the model is based on the 
fundamental heat energy balance equation which has been previously 
used to build energy flux models in aquaculture ponds (Béchet et al., 
2011; Gao and Merrick, 1996):

 phi phi phi phi phi phi phinet sn at ws e c r= + − − − −  (1)

Where phinet is the net energy flux, phisn is solar radiation, phiat is 
atmospheric radiation, phiws is water surface radiation, phie is 
evaporative heat loss, phic is sensible heat transfer due to convection 
and conduction, and phir is heat loss due to rainfall.

The model described in Gao and Merrick (1996) was created for 
a shallow, fully mixed marine pond and was built to run at an hourly 
time step. In our study we  modified the model to run at a daily 
time step.

TABLE 1 Characteristics of the study sites.

Constant name Constant description Value (units)

Area Measured pond area 4,047 (m2)

Volume Pond volume 6,153 (m3)

Depth Measured pond depth 1.5 (m)

Latitude (Khulna) Latitude of location of pond 22.78 (°N)

Longitude (Khulna) Longitude of location of pond 89.53 (°E)

Latitude (Sylhet) Latitude of location of pond 24.28 (°N)

Longitude (Sylhet) Longitude of location of pond 91.97 (°E)

TABLE 2 Variables required as input data for the Gao-Merrick model.

Variable Variable description Units

SRAD All sky surface shortwave downward irradiance MJ m−2 day−1

WS2M Wind speed at 2 meters m s−1

T2M Temperature at 2 meters °C

RH2M Relative humidity at 2 meters %

PRECIP Precipitation mm day−1
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FIGURE 1

Time series plots for the two study sites showing observed and simulated water temperature, and air temperature using the Gao Merrick model in 
2018–2019. Day 1 is 1 January 2018. (A) Khulna. (B) Sylhet.

The following assumptions were made in our research for using 
the G&M model:

 • The pond was assumed to be  fully mixed with negligible 
stratification with depth.

 • The pond was assumed to be unshaded.
 • Variation in hourly solar radiation was not deemed a significant 

factor influencing daily pond temperature.
 • Inflow and outflow heat exchange from water were deemed 

negligible and were omitted from the model.
 • Water-sediment heat exchange was assumed to be negligible and 

was also omitted.

2.4 Model outputs

Outputs of the model were used to generate plots to visually assess 
simulated and observed water temperature data, as well as observed air 
temperature. Sensitivity analyses to hot and cold spells were also 
performed running each model using the modified climatology datasets 
as described in the data section of this paper. The sensitivity analysis was 
performed by running the G&M model for each study site, using 
climatology air temperature data and inserting 4, 7, and 10 day hot/cold 
spells to assess the model sensitivity to different spell lengths.

2.5 Seasonal forecasting

The method for applying a seasonal air temperature forecast 
expressed as tercile probabilities was used to explore the predictive 
ability of the water temperature model at seasonal timescale. A 
tercile-based climate forecast uses probabilities of departure from 
seasonal above-, below- and near-normal air temperature terciles. 
We used a seasonal climate forecast with high probability of warmer-
than-normal seasonal air temperature (70% above - 20% normal - 
10% below) and a seasonal climate forecast with high chance of 
colder-than-normal seasonal air temperature (10% above  - 20% 
average - 70% below). The probability departures of these artificially 

created forecasts are much higher than the typical seasonal climate 
forecasts publicly available (e.g., from the IRI).1 We selected these 
extreme forecasts to test the sensitivity of the water temperature 
seasonal forecast: a low sensitivity of the water temperature model 
to such an extreme climate forecast would imply that the seasonal 
water temperature forecast will not be useful for informing decisions. 
The resulting seasonal average simulated water temperatures were 
sorted and used to define the terciles of above-, below- and near-
normal pond water temperature. The tercile-based forecasts of 
seasonal water temperature were then generated by running the 
model 100 times, and resampling the runs following the probability 
of the forecast terciles. For example, for the 70-20-10 forecast, 
we resampled 70% of model runs that used values from the upper 
tercile of air temperatures, 20% of runs that used data from the near-
normal tercile, and 10% of the runs that used data from the lower 
tercile (Han et al., 2019; Capa-Morocho et al., 2016). The results were 
then used to generate the probabilities of terciles of the forecasted 
simulated water temperature.

3 Results

3.1 Model results

The G&M model simulated water temperature values closely 
resembled the observed data (Figure 1) as evidenced by the good 
fit of the regression analysis (R2 = 0.88 for Khulna; R2 = 0.70 for 
Sylhet). The slope was close to 1.0 and the intercept was close to 
0.0, indicating a relationship close to a perfect fit (1:1 line) with the 
observed data (Figure 2). The performance of the G&M model was 
better in Khulna than in Sylhet. Two large negative spikes in water 
temperature observed in Sylhet resulted in both, a lower R2 value 
and a regression line which further deviated from the 1:1 line 
(Figure 2). A possible explanation to these results is related to the 

1 International Research Institute for Climate and Society, IRI, Columbia 

Climate School, Columbia University https://iri.columbia.edu.
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notably high rainfall which normally occurs in Sylhet. Episodes of 
very high rainfall increase runoff and floods which in turn results 
in high inflow and outflow of rainwater into and out of the 
aquaculture ponds, with a direct impact of reducing the pond 
water temperature. Also, large volumes of incoming water induce 
physical mixing of the pond water column which can further 
decrease the pond water temperature since deeper layers are colder 
than the surface layer.

When we simulated artificial mixing during the start of the rainy 
season in Sylhet, the model performance improved. In order to 
simulate the effect of flooding (influx) and mixing with deeper water 
levels, every time the accumulated rainfall in 3 days was higher than 
40 mm in the first 2 months of the rainy season, we forced the model 
to lower the simulated water temperature by 5°C. While the 
methodology that we  used for simulating this artificial mixing is 
arbitrary and only applicable to the conditions of our study, it suggests 
that in regions with very high rainfall like Sylhet, adding a mixing 
component will likely improve model performance and scalability 
(Figures 3, 4).

3.2 Sensitivity analysis

The G&M model showed high sensitivity to both, hot and cold 
spells of air temperature2 (Figure 5). This high sensitivity to positive 
and negative spikes in air temperature indicate that the model can 
be useful for generating early warnings of water temperature based 
on weather information. Thus, weather forecasts are usually skillful 
in predicting extreme air temperature events with a lead time of a 
few days, and the forecasted temperature values can be used in the 
G&M model to issue early warnings of potential problems in 
aquaculture production due to abrupt changes in pond water 
temperature. At higher temperatures, fish oxygen consumption 
increases while oxygen content decreases in pond water due to a 
lower saturation pressure, making oxygen a clear limiting factor. 
This is likely to affect fish health and growth. Moreover, high water 
temperatures and/or sudden temperature fluctuations exceeding the 

2 Days 82–88, 107–113, 151–157, 164–170 for 4-day hot spells; days 14–20, 

31–37, 332–338, 358–364 for 4-day cold spells.

physiological tolerance level of fish species lead to disease outbreak, 
mortality and harvest losses (Hossain et al., 2021; Montes et al., 
2022; Islam et al., 2024).

FIGURE 2

Regression plots for the model at (A) Khulna; and (B) Sylhet, of observed vs. simulated values for both locations (blue line). The red line is the 1:1 line.

FIGURE 3

Time series for Sylhet when artificial mixing is used for time periods 
with high rainfall. Day 1 is 1 January 2018.

FIGURE 4

Regression line for the Gao Merrick model when artificial mixing is 
included for the Sylhet location (red), and 1:1 line (blue).
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FIGURE 5

Simulated effect on pond water temperature of cold and hot spells of air temperature of: (A) 4  days, (B) 7  days, and (C) 10  days (Orange lines  =  air 
temperature, Blue lines  =  simulated water temperature).

FIGURE 6

(A) Terciles of a forecast with very high chances of colder than normal seasonal air temperature (70% probability of Below Normal -blue, 20% 
probability of Normal -white, and 10% probability of Above Normal -red) and tercile distribution of corresponding seasonal water temperature based 
on the seasonal air temperature forecast. (B) Terciles of a forecast with very high chances of warmer than normal seasonal air temperature (10% 
probability of Below Normal -blue, 20% probability of Normal -white, and 70% probability of Above Normal -red) and tercile distribution of the 
corresponding seasonal water temperature based on the seasonal air temperature forecast. In both cases the seasonal forecast of water temperature 
was calculated with 100 runs of the GM model for the May–June–July (MJJ) season.

3.3 Seasonal prediction

The simulated water temperature was not sensitive to large 
changes in the probability of terciles of the seasonal air temperature 
forecasts (Figure 6). One possible reason for this lack of sensitivity is 
the very low variability observed in air temperature values: the 
maximum difference between the coldest and the warmest values of 
seasonal water temperature was less than 3°C. Therefore, cutoff values 
of each tercile (below, near or above normal) had a difference of less 
than 1°C. Therefore, even when the seasonal forecast of air 
temperature had very large shifts to warmer or colder than normal 
(70% instead of the climatological 33%), the seasonal forecast for 
water temperature was very close to climatology. These results suggest 
that seasonal air temperature forecasts would not be  useful for 
informing decisions in aquaculture in this region.

On the other hand, given the results discussed above of the impact 
of hot and cold air temperature spells on water temperature, three 

sources of climatic information could be relevant for decision making 
at the farm level: (a) seasonal forecasts of the expected frequency of 
extreme events (hot or cold spells), (b) subseasonal forecasts of those 
same extreme events (e.g., likelihood of extreme events in the next 
2–4 weeks), and (c) weather forecasts (e.g., likelihood of extreme 
events in the next 2–7 days).

4 Discussion

Aquaculture has been a source of food and nutritional security 
and income for small farmers at a global scale (FAO, 2020; Maulu 
et al., 2021). A vast majority of aquaculture practices greatly depend 
on the weather and climate of the environments in which they 
function (Siddique et al., 2022; Maulu et al., 2021; Faruque and 
Kabir, 2016). Given the increase in extreme weather events linked 
to climate change (IPCC, 2021) and their impacts on vulnerable 
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populations, there is a need to implement early warning systems 
that use climate and weather information (Tall et al., 2018; Soares 
et al., 2018). There are also increasing evidences of the advantages 
of implementing climate information services that involve the 
generation, translation, transfer and use of climate knowledge to 
inform decisions and policies (Vaughan et al., 2017). Our study 
applied a model that can simulate pond water temperature at a daily 
time scale using publicly available climate information to fish-farms 
in Bangladesh (Equation 1). The goal of the research was twofold: 
to explore how a generalizable model can perform in predicting 
water temperature at different locations, and to explore the utility 
of connecting such a model with climate forecasts at different 
timescales. The use of such a model at various timescales can 
provide farmers with relevant information with enough lead time 
to adjust decisions and mitigate risks from adverse meteorological 
events. A generalizable model would allow the application of such 
a tool to farms across the globe, at a wide range of climatic 
conditions in order to contribute to improve the adaptive capacity 
to climate variability and change.

Our research suggests that the mechanistic model developed by 
Gao and Merrick (1996) can accurately simulate the temperature of 
pond water at a daily timescale. The application of the model in this 
research was based on several assumptions, including fully mixed 
water which could constrain the generalizability of the model. 
The model performed better at the study site in Khulna, where 
average rainfall (~1,700 mm year−1) is lower than the other study 
site, Sylhet which has exceptionally high levels of rainfall 
(~3,300 mm year−1). We suggest that the poorer skill of the G&M 
model in Sylhet is due to the frequent extreme rainfall events that 
cause heavy runoff that result in important inflow into the 
aquaculture ponds, with a direct impact on the incoming water 
temperature and the effect of mixing deeper (colder) layers of water 
with the surface (warmer) layers. We  therefore suggest that the 
model can be improved by including a mechanism to simulate the 
mixing of the water column due to high inflow of water in high 
rainfall events.

At the seasonal timescale, the model did not provide useful 
forecast information of the water pond temperature. This is thought 
to be a result of the low variability in the observed seasonal values 
of water temperature in the study sites (maximum difference of less 
than 3°C between seasons). The low observed variability of water 
temperature at seasonal scale results in threshold values to define 
terciles that are very similar, and therefore, the shifts in water 
temperature caused by shifts in air temperature were erratic. While 
the application of such an approach may prove to be more useful in 
regions with higher climatic variability and higher water 
temperature variability, we suggest that in Bangladesh the current 
model would be most informative when connecting it to forecasts 
at shorter timescales (a few days to a few weeks), or to forecasts of 
extreme weather events at seasonal, subseasonal or weather 
time scales.

An important practical implication of this research is that 
we demonstrate that the G&M model was skillful using weather data 
that is publicly available in global datasets (in our case NASA-
POWER). These global datasets are particularly useful in regions of 
developing countries where accessing observed climate data is a 
challenge. Although the ideal situation is to use observed weather data 
generated by the local meteorological institutes, our research shows 

that the G&M model can work well with global datasets where 
observed data is not available.

5 Conclusion

Our research aimed to test the ability of an energy balance model 
to simulate pond water temperature for aquaculture. While the study 
sites of this research are located in Bangladesh, mechanistic models 
such as the one we tested in this research can be used for pond farms 
in different regions of the world to establish early warning / early action 
systems, and in general to implement the climate services approach.

The results of this initial research evidenced that the G&M model 
performed well in simulating pond water temperature. The 
performance of the model was poorer in the site with very high rainfall 
(Sylhet, with more than 3,200 mm year−1in the study period). Although 
annual rainfall values of more than 3,000 mm are not common globally, 
modifying the G&M model to include physical mixing of water layers 
due to high rainfall or flooding events would likely improve the model’s 
skill in regions where high rainfall and runoff affect aquaculture.

The G&M model performed well in sensitivity analyses (hot and 
cold spells) and can therefore work well for linking it to weather forecasts 
and subseasonal forecasts of extreme meteorological events, and 
contribute to inform farmer decisions and implement early warning 
systems. However, given the small variability of observed water 
temperature values (maximum difference of less than 3°C) the model 
was not sensitive to using a tercile-based seasonal air temperature forecast.
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