Skip to main content

ORIGINAL RESEARCH article

Front. Clim.
Sec. Predictions and Projections
Volume 6 - 2024 | doi: 10.3389/fclim.2024.1419704

Future precipitation projections for Brazil and tropical South America from a Convection-permitting climate simulation

Provisionally accepted
  • 1 Met Office Hadley Centre (MOHC), Exeter, England, United Kingdom
  • 2 National Institute of Space Research (INPE), São José dos Campos, São Paulo, Brazil
  • 3 University of Exeter, Exeter, England, United Kingdom

The final, formatted version of the article will be published soon.

    Understanding precipitation properties at regional scales and generating reliable future projections is crucial in providing actionable information for decision-makers, especially in regions with high vulnerability to climate change, where future changes impact ecosystem resilience, biodiversity, agriculture, water resources and human health. The South America Convection-Permitting Regional Climate Model experiment (SA-CPRCM) examines climate change effects in convection-permitting simulations at 4.5 km resolution, on climate time scales (10 years of present-day and RCP8.5 2100), over a domain covering most of South America, using the Met Office Unified Model (UM) convection-permitting RCM.Under the RCP8.5 scenario, precipitation in the CPRCM decreases, becomes less frequent and more seasonal over the Eastern Amazon region. Dry spells lengthen, increasing the risk of drought. In the Western Amazon, precipitation increases in the wetter austral autumn (Apr. -Jun.) and decreases in the drier austral winter and spring (July -Oct.), leading to a more distinct dry season and imposing a greater risk of contraction of the tropical forest. Over South-eastern Brazil, future precipitation increases and becomes more frequent and more intense, increasing the risk of floods and landslides. A future increase in the intensity of precipitation and extremes is evident over all these regions, regardless of whether the mean precipitation is increasing or decreasing. The CPRCM and its driving GCM respond in a similar way to the future forcing. The models produce broadly similar large-scale spatial patterns of mean precipitation and comparable changes to frequency, intensity, and extremes, although the magnitude of change varies by region and season.

    Keywords: Climate Change, convection permitting model, Precipitation projections, Future changes, South America, Brazil

    Received: 18 Apr 2024; Accepted: 27 Aug 2024.

    Copyright: © 2024 Kahana, Halladay, Alves, Chadwick and Hartley. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Ron Kahana, Met Office Hadley Centre (MOHC), Exeter, England, United Kingdom

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.