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Projecting future migration with
Bayesian hierarchical gravity
models of migration: an
application to Africa

Fabien Cottier*

Center for Integrated Earth System Information (CIESIN), Climate School, Columbia University,

New York, NY, United States

In this paper, I present and discuss a novel approach to parameterize a gravity

model of migration using Bayesian hierarchical models with random intercepts

that are free to vary by country of origin, destination, and directed origin-

destination country pairs. I then utilize this model to project transboundary

migration flows between African countries to the horizon 2050. To do so, I use

data on projected future crop yields and water availability from the ISIMIP2b

scenarios in combinationwith projections on future economic and demographic

trends from the Shared Socio-Economic Pathways (SSPs). The results indicate

that over the period 2010–2050 between 8 to 17millions people are projected to

migrate internationally on the African continent. Yet, only a small portion of these

migrants will be induced to move because of climate change. To the contrary,

comparisons between SSPs scenarios suggests that economic development will

have a far larger impact on projected level of international migration on the

continent than climate change.
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1 Introduction

In light of the expected global warming over the course of the 21th century, it is

becoming urgent to model and, crucially, project future trans-boundary migration in

order to understand how climate change will impact the network of internal migration

over the coming decades and support policy development. Of specific interest is to

model these flows for sub-Saharan Africa, an area of the world, which has historically

received less scholarly attention when it comes to migration flows between countries on

the continent. Unlike migration from the Global South to the North which have drawn

most of the interest from the scholarly literature (Cattaneo and Peri, 2016; Cai et al.,

2016; Missirian and Schlenker, 2017; Hoffmann et al., 2020; Cottier and Salehyan, 2021;

Schutte et al., 2021; Rikani and Schewe, 2023; Rikani et al., 2023), international migration

across the global south has indeed been historically understudied. Yet, migration between

developing countries represents an important component of international migration

flows. Demographic projections suggest that the population of the African continent will

double by 2100 (KC and Lutz, 2017). It is thus important to examine how migration is

susceptible to develop in the future over the Africa continent in light of the expected future

demographic change.

In this article, I present and discuss a novel approach to parameterize a gravity model

of migration using a Bayesian hierarchical specification (for a similar approach but with

a different specification, see Xiao et al., 2022). I then leverage this model to incrementally
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project transboundary migration flows over the African continent

to 2050 at 5-year intervals under different combinations of climate

change and socio-economic scenarios. This approach was used

to generate projections of future international migration flows

between African countries, that were released as part of the African

Shifts report under the African Climate Mobility Initiative (see

Amakrane et al., 2023).

To calibrate the projection model, I use 5-year interval bilateral

migration data provided by Abel and Cohen (2019) computed on

the basis of UNmigration stock data for the period extending from

1990 to 2010 (United Nations, 2020). The Bayesian hierarchical

specification used for the calibration stage relies on the classical

gravity model of migration (Beine and Parsons, 2015; Bergstrand,

1985). I model migration as a function of population, GDP per

capita at origin, the ratio between GDP per capita at origin and

destination, the size of the diaspora at destination, the intensity

of political violence at origin and the distance between origin

and destination countries, as well as two climate predictors:

water availability and crop yields. In addition, the preferred

specification—used for projections of future migration flows—

incorporates origin, destination, and origin-destination country-

pairs random intercepts to model unobserved heterogeneity in

migration between countries of origin, destination and migration

corridors. Because hierarchical models leverage partial pooling,

such an approach makes it possible to obtain finer and more

reliable projections of future migration (Gelman et al., 2013). I

compare the posterior predictive performance of the preferred

model using out-of-sample validations against two simpler versions

of the model either omitting the hierarchical structure of the data

or incorporating only the random intercepts but omitting the

predictors, as well as a more flexible specification letting the climate

impacts onmigration vary by country of origin (Gelman et al., 2013;

Vehtari et al., 2017). The results suggests that the preferred model,

which include the predictors and random intercepts, as well as

the more flexible specification with random slopes for the climatic

predictors, demonstrate a substantial improvement in predictive

accuracy, though these twomodels still struggle to capture temporal

variability within migration corridors, reflecting existing concerns

about the ability of gravity models to accurately model migration

dynamics (Beyer et al., 2022).

Using the parameter estimates of the preferred model, I then

incrementally project future migration over the period 2010/15 to

2045/2050 at five year intervals. To do so, I draw on the Shared

Socio-Economic Pathways (SSPs) projections for population and

GDP (Riahi et al., 2017; KC and Lutz, 2017; Cuaresma, 2017),

updating at each time step population figures, as well as estimates

of foreign-born populations disaggregated by origin based on

the projected number of net migrants both at the country and

migration corridor levels. Future trends for crop yields and water

availability that drive the model projections are obtained from the

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

scenarios (Lange and Büchner, 2017).

The results of these projections suggest that by 2050 between 8

(lower bound) to 17 (upper bound) millions will have cumulatively

moved internationally within the African continent. Yet, among

these, no more than a maximum 1.2 millions are projected

to leave because of climate change. In other words, at best

<5% of the projected cumulative number of migrants might

be associated with the impact of climate change. As opposed

to the dominant discourse on the link between poverty and

migration, the results indicate that higher levels of economic

prosperity is set to increase future migration on the African

continent. Thus, the model indicates that for the foreseeable future

economic development will remain a more important driver of

migration compared to climate change. These results are in line

with the findings from the calibration stage, where crop yields

at origin are positively associated with out-migration. Arguably,

this conclusion is suggestive of ongoing financial barriers to

international migration on the African continent and is line with

Dustmann and Okatenko (2014), who demonstrate that for low-

income countries economic development is likely to cause an

increase inmigration by enablingmore people to overcome barriers

to international migration.

In the ensuing text, I first introduce the calibration model in

Section 2. Section 3 then presents the data used for the calibration

stage. Section 4 discusses the results of the calibration model.

The forecasting framework and the projections of international

migration are introduced in Section 5. Section 6 examines the

performance of the calibration model using posterior predictive

checks and out-of-sample validations of the model predictive

accuracy. Section 7 concludes.

2 Calibration model

To project futuremigrations flows across the African continent,

reasonable estimates of the parameters reflecting the influence

of the migration drivers are necessary, as well as measures

of their uncertainty. To do so, I calibrate the model against

historical data for the period 1990/5–2005/10 at 5-year intervals.

The calibration model is inspired by earlier work by Jones

(2020) on modeling international migration out of Mexico and

Central America (see also Lustgarten, 2020). In his work, Jones

(2020) models international migration flows as a function of

population, economic conditions, corruption, political violence

and environmental conditions at origin. 1

While I generally take inspiration from this earlier model

reflecting the fact that it was developed as a follow-up to the

Groundswell project to which the African Shifts report is also

related (Rigaud et al., 2018; Amakrane et al., 2023), I depart

from this earlier work in three ways. First, I use a Bayesian

hierarchical specification to model unobserved heterogeneity in

migration rates between origin, destination and origin-destination

country pairs (Gelman et al., 2013). Hierarchical statistical models

1 The modeling of international migrations flows presented here di�ers

from the parallel model of internal migration flows in the African Shifts

report in that the latter uses a spatial-explicit population gravity model that

projects future climate-inducedmigration from the di�erences in population

projections comparing a scenario accounting for climate change to a

scenario that keep the climate conditions to their historical average (with a

∼ 7.5′′ degree minutes gridded resolution) (For more details, see Amakrane

et al., 2023). By contrast, the international migration model presented here

relies on a gravity model of migration.

Frontiers inClimate 02 frontiersin.org

https://doi.org/10.3389/fclim.2024.1384295
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Cottier 10.3389/fclim.2024.1384295

are useful when the unit of analysis is itself nested within larger

data structures (e.g. countries, administrative units), which can be

expected to influence the dependent variable. In other words, I

account for unobserved heterogeneities from three sources: specific

to the country of origin, specific to the country of destination, in

addition to heterogeneity that is peculiar to each directed individual

migration corridor (origin→ destination). There is a potential long

list of factors to which these sources of heterogeneities might be

tied with and which may assist or hinder international migration.

Examples of these sources of heterogeneities are cultural or ethnic

ties between countries, historical legacies (e.g. colonization), as well

as visa policies, which might make it easier for some nationalities

to enter a destination country and integrate in the labor market at

destination. Likewise, cultural affinities with migration in certain

ethnic groups, the form of political regimes and educational

opportunities offered at origin or destination may also cause

differing rates of migration between different pairs of origin-

destination countries.

Hierarchical models are particularly well suited to account

for unobserved heterogeneities as they leverage partial pooling,

in effect weighting the information contained in each hierarchical

grouping with information from the entire sample, shrinking the

parameter toward the latter.2 Explicitly modeling these hierarchies

generates more accurate country-level projections by accounting

for the fact that some countries send/receive an unusually large

or small amount of migrants given the model and predictors,

and likewise for individual migration corridors. At the same time,

partial pooling acts as a guard against bias in parameters estimated

on a limited number of noisy data points (Gelman et al., 2013,

p. 96). This latter aspect is important in this application as each

directed pair of origin-destination countries contains only four

observation at 5-year intervals, the means of each panel may thus

easily be influenced by an outlier.3

Second, instead of assuming a Poisson distribution on the

dependent variable conditional on the estimated model, I use

a log-linear specification. This is approach is motivated by the

fact that a Poisson distribution assumes that the variance is

equal to the conditional mean: Var(λ) = E(λ|X) (Greene, 2012,

p. 888). Assuming a log-linear regression framework is more

flexible in this context because the variance parameter is estimated

separately.4 Third, I specifically model the effects of diasporas

2 The amount of shrinkage is a function of the information in each

hierarchical structure (i.e. the number of observations and the distribution

of the data).

3 In addition to adding random intercept, I also experimented with setting

random slopes on the two climatic variables, crop yields and river discharge,

see Model 4 in Table 1.

4 I initially examined an alternative specification relaxing the Poisson

assumption of constant variance by using a negative binomial regression, but

the performance of the model proved problematic when using it to project

future migration flows resulting in implausibly large forecasts. Interested

readers may consult Model 2 of Supplementary Table A.2, which presents

the result of a negative binomial specification of Model 3, Table 1. Yet,

as revealed by Supplementary Figures A.2a–d, such a model su�ers from

misspecifications that results in projections of the largest migration flows in

the calibration dataset that are too large by orders of magnitude.

in countries of destination, as well as cross-sectional temporal

patterns. Accounting for diasporas at destination is important

as the size of the foreign-born population is known to strongly

influence future migration flows (Beine et al., 2011). Similarly,

“common shocks" affecting multiple countries in a given time

period, such as the 2015 Refugee Crisis in Europe, may correlate

with some of the predictors in the estimated model and thereby

should be controlled for.

The calibration model, used in this paper, is inspired from

the well-known gravity model of migration, which sees—in its

most simplistic form—migration as proportional to the product

of population at origin and destination and the inverse of the

distance between the two, or Migri,j = G
Pop

β1
i ×Pop

β2
j

Dist
β3
i,j

(Beine and

Parsons, 2015; Bergstrand, 1985 see also Ravenstein, 1889). As

is well-known, this model can be linearized and estimated by

taking logs on both sides of the equation, ln(Migri,j) = α +

β1 × ln(Popi) + β2 × ln(Popj) − β3 × ln(Disti,j). The Bayesian

hierarchical specification implemented in this paper is equivalent

to modeling separate intercepts for the set of origin countries,

destination and directed pairs of origin-destination countries. This

aspect, as well as a more flexible approach that lets the impact

of predictors vary by grouping structure, is important as gravity

models of migration have been criticized in the literature due to

their rigid framework that ignores significant variations in observed

migration between sources and destination countries and thereby

results in problematic inferences (Beyer et al., 2022). In formal

terms, I thus seek to estimate the following log-linearized gravity

equation with a Bayesian hierarchical linear regression:

yi,j,t ∼ N (µi,j,t + φi + γj + θi→j, σ )

µi,j,t = α +Wβ + Xδ + 1(t)ζ

φi ∼ N (0, τorig)

γi ∼ N (0, τdest)

θi→j ∼ N (0, τorig→dest)

In the context of the present application, which seeks to apply

this model to international flows between African countries, the

indices i and j represent the countries of origin, and destination,

respectively, while t represents time periods of five year interval. y

denotes the dependent variable, ln(migration + 1).5 The matrix W

denotes the climate variables (crop yields, water availability), while

the matrix X refers to the other predictors (population, economic

variables, diasporas, distance, and conflict). 1(t) is a matrix of

t − 1 times dummies, one for each 5-year period. φ, γ and θ are

vectors of random intercepts for origin, destination and directed

origin-destination pairs, respectively. α, β , δ and ζ are vectors

of population-level parameters to be estimated. σ is a variance

parameter for the dependent variable.

In addition, the model is parameterized with weakly

informative priors on the population fixed effects. Weakly

informative priors help constraining the domain of a parameter to

a realistic range (i.e. they provide regularization), thereby helping

5 I add unity to the migration value to avoid taking the log of zero: ln(0) =

−∞.
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with the convergence of Markov Chain Monte-Carlo (MCMC)

chains, without unduly influencing the values of the parameter

estimates (Gelman et al., 2008).6 For the β , δ and intercept α, I

use a t distribution with 3 degree of freedom, instead of a normal

distribution. This specification is an apt choice as the tails of

the t distribution are thicker and therefore better accommodate

unusually large, but still plausible, estimates of the parameters of

interest (Ibid.: 1364):

βk ∼ t(0, 2.5×
sd(y)

sd(wk)
, 3)

δm ∼ t(0, 2.5×
sd(y)

sd(xk)
, 3)

α ∼ t(ȳ, 2.5× sd(y), 3)

For the auxiliary variance parameter, sigma, and the scale

parameters of the random intercepts, τorig , τdest , τorig→dest , I use

half-t distributions with scale parameter set to 2.5 and three degrees

of freedom:7 ,8

σ , τorig τdest , τorig→dest ∼ t+(0, 2.5, 3)

3 Calibration data

In this section, I present the sources of data used for the

calibration stage. I start by discussing the dependent variable, trans-

boundary migration flows at 5-year intervals, before turning to the

predictors included in the regression.

3.1 Migration, y

The dependent variable is a bilateral measure of the number

of permanent migrants over a 5-year interval between countryi
(origin) and countryj (destination) on the African continent. Due

to data sparsity in the region, the source are 5-year migration

estimates provided by Abel and Cohen (2019).9 This dataset

is imputed from United Nations foreign-born population tables

disaggregated by country of origin and residence (United Nations,

2020). On this basis, the authors provide estimates of 5-year

6 In that regard, I also note that the large number of observationmeans that

likelihood equation will dominate the prior for the population fixed-e�ects

parameters (β, δ, α).

7 For additional information on prior specifications (see https://mc-stan.

org/rstanarm/articles/priors.html) (accessed on January 25th, 2024) and

(https://rdrr.io/cran/brms/man/set_prior.html) (accessed on January 25th,

2024).

8 For the model letting the climate e�ects vary by country of origin, I use a

LKJ(η) prior with η = 0 for the correlation of the group-level origin intercepts,

crop yields and river discharge parameters.

9 I use the 5th revision of the data released in

2021. See here https://figshare.com/articles/dataset/

Bilateral_international_migration_flow_estimates_for_200_countries_1990-

1995_to_2010-2015_/7731233/5.

migration flows using different methods to compute flows from

stock data on migration. I use here the “stock differences, reverse

negative" approach. This choice is motivated by concerns about

error propagation in demographic accounting estimation methods

(for a discussion of this issue, see Cottier et al., 2022). One particular

issue with these migration estimates is that they include a large

number of refugees, which by definition are unlikely to have

migrated due to the immediate impact of climate change on social

systems. I thus subtract the number of refugees from the estimates

of migrants for each directed pair of directed origin-destination

country dyads using estimates on the number of refugees provided

by the United Nations and adjusted for missingness by Marbach

(2018a) (see also Marbach, 2018b; UNHCR, 2022). The dependent

variable is included in the empirical model after adding unity and

taking logs.10

3.2 Climatic variables, W

I measure climatic variability using two distinct indexes one

for water availability, specifically river discharge, and the other

for crop yields. The primary motivation for the choice of climatic

variables is the need to coherently reflect the modeling of internal

migration flows on the African continent undertaken as part of

the African Shifts report (Amakrane et al., 2023, see also Rigaud

et al., 2018). Both water availability and crop yields can be arguably

tied to long-term climatic trends and are crucial to a continent

in which agriculture, fishing and animal husbandry remain the

primary economic sector.11 , 12 The source of the data is the Inter-

Sectoral Impact Model Intercomparison Project 2A (ISIMIP2A)

WaterGAP2 (Princeton) simulations for river discharge, and

GEPIC simulations for crop yields (summed across four types of

widely-used staple crops: maize, wheat, soybean and rice) (Lange

and Büchner, 2017;Müller Schmied et al., 2016; Arneth et al., 2017).

Both of these global gridded dataset are driven by reanalysis models

based on historical climatic and socio-economic conditions and

are available annually at a resolution of 0◦ 30′′ or ∼55 km at the

equator over the period 1971–2010.13

In a first step, I average the annual cell-level data over intervals

of 5-years (1971..75, 1976..1980, ..., 2006..2010). The gridded values

10 It should be noted that owing to the large distance between African

countries in the sample and the limitations of the underlying foreign-born

population tables due to problematic or infrequent censuses, about 77% of

the observations in the sample record zero migrants.

11 According to available statistics, agriculture, fishing and forestry

amounted to about half of total employment in sub-Saharan Africa in 2020

(International Labour Organization, 2024).

12 It is important to note that while crop yields and water availability

are important measures of climate change, these are not the only

environmental factors influenced by climate change of relevance in Africa.

Other environmental variables of relevance, albeit not included in the model

here, are flooding (including flash floods), heatwaves, sea level rise or tropical

cyclones.

13 I am grateful to Jacob Schewe at the Postdam Institute for Climate

Impact Research (PIK) for preparing the ISIMIP2a data in the required gridded

format.
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are then aggregated to the country level by taking the mean cell

value across a country’s territory.14 After averaging the variable

over the country level, I compute an index of climatic variability

as follows:

Dx(t) =
x(t)− x(t0)

x(t0)

With x(t) corresponding to the average over five year on

the original variable scale, and x(t0) corresponding to average

for the baseline period (1971–2010).15 The resulting Dx(t) is a

dimensionless scalar, which varies over the interval [−1;+∞], with

0 denoting 5-year averaged climatic conditions identical to the

baseline period. The baseline period was set specifically in view of

measuring how the climate might change in the future compared to

historical conditions.

3.3 Additional predictors, X

In addition to the climatic variability indexes, I add predictor

variables for economic, social and political drivers of migration.

First, I include a variable for the demographic size of the origin

country. The source of the data is the United Nations World

Population Prospects (United Nations, 2022). The Population

variable is log-transformed before inclusion.

Second, I include two predictors measuring (a) the level

of economic development in the sending country and (b) the

difference between the level of economic development in the

sending and host countries. The first variable, the level of

economic development in the origin country, is a measure of the

ability of individuals and households to overcome the financial

costs of international migration, which are typically substantially

higher than local or internal migration (Angelucci, 2015, see also

Dustmann andOkatenko, 2014). In a comparatively richer country,

resident should thus have a higher capacity to support the cost

involved with international migration, than in a poorer country.

The second variable proxies the economic attractiveness of the

potential destination as a function of the ratio of the level of

economic development between the two countries.16 As implied

from classical economic theory on migration (Todaro, 1969),

the desire to migrate should be proportional to expected wage

differentials between the origin and destination country. Thus, the

larger the gap, the stronger the desire to migrate.

Overall, the joint effect of these two variables should give rise

to the well-known “migration hump" function, whereby people in

low-income countries may have a strong desire to leave, but may

be constrained in their ability to do so by the financial costs of

migration, while people in high-income countries may face lower

financial barriers, but may experience a lower desire tomigrate (as a

result of limited expected economic gains of migration). Under this

14 The crop yields and river discharge averages were not weighted by

population, as the impact of the climate variables is assumed to be primarily

over the agricultural channel (Falco et al., 2019; Tuholske et al., 2024).

15 The scale of the original variables for river discharge is m3 · s−1, and for

crop yields is t · ha−1 per growing season for maize, wheat, soy and rice

16 formally: GDPpc ratioi,j =
GDPpci
GDPpcj

.

hypothesis, migration can be expected to peak in middle-income

countries, where the desire to migrate, albeit lower than in poor

countries, remains strong, while the relative costs of migration are

not overwhelming.17 The existence of this hump function has been

historically formulated in the context of south-north migration

flows (Dustmann and Okatenko, 2014). Yet, it is not unreasonable

to expect that it may potentially shape the structure of themigration

network in Africa. Both variables are measured using GDP per

capita data provided by the Penn World Tables 7.0 (Heston et al.,

2011) and included in the empirical model after takings logs.

Next, I add a count of the number of foreign-born population

originating from countryi and residing in countryj at the start of

each 5-year interval period. This Diaspora variable measures the

strength of migrant networks between the sending and hosting

states. Including such a variable is important as migrants rely

on ethnic kins and/or co-nationals to learn about economic

opportunities abroad, secure visa via family reunification, bear the

costs of migration, as well as obtain information about potential

smugglers’ networks if traveling irregularly. Diasporas are also

important in helping migrants integrating at destination (Beine

et al., 2011). Thus, diasporas are generally considered one of the

primary engines of migration (Massey et al., 1993). Moreover, from

a projection standpoint, accounting for change in the size of a

diaspora is crucial if the goal is to generate incremental projections

of migration flows over time, such as is the case here. The source

of the data is the United Nations foreign-born population tables

(United Nations, 2020). As for the other variables, the data is

included in the model after adding unity and takings logs.

The model also contains a predictor for the presence of political

violence in the origin country. The inclusion of this variable is

motivated by the need to adjust the calibration process for any

residual displacement processes linked to armed conflicts, which

might not have been corrected by the subtraction of refugees flow

from migration data (Moore and Shellman, 2006). The source of

the data is the UCDP GED dataset v20.1 (Sundberg and Melander,

2013). The variable, conflict intensity, is the log-transformed count

of the number of fatalities caused by armed conflicts over a period

of 5-year.18

Finally, the model includes a population-weighted measure

of distance between the sending and hosting country as a

proxy for migration costs faced by individuals and households.

Data on population is provided by the Gridded Population

17 It should be noted that the model implemented here does not entirely

do justice to the “migration hump" hypothesis. This is because the addition

of these two variables, GDP per capita at origin and GDP ratio, may

technically only approximate a non-linear monotonically increasing or

decreasing function, but not model an inverse U-shaped function. In other

words, this specification implies that an incremental increase in per capita

income results in an increasingly smaller increase in migration as the level

of income rises, but would never result in a decrease in migration flows.

Nevertheless, because Africa is predominantly composed of low or middle-

income countries, this is a limited concern for the present application. For

recent advances that attempts to capture non-linearities in the association

between economic development and migration, see Rikani and Schewe

(2023).

18 I add unity to avoid taking the log of zero.
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of the World (GPW) v4.11 dataset at a resolution of 0◦15′′

or ∼28 km at the equator (Center for International Earth Science

Information Network (CIESIN), Columbia University, 2018).

Using a population-weighted measure of distance is important as

a number of African countries, in particular those located along

the Sahel, demonstrate particularly strong variations in population

densities, with large sections of these countries only sparsely

inhabited (e.g. Algeria, Mali, Niger).19 In Supplementary Table A.2,

I show the results of a specification that includes as well predictors

for common language between dyads, common colonizer prior to

1945 and contiguity between two countries, using data provided by

CEPII (Conte et al., 2022).

4 Results and discussion

In total, the regression frame includes 8,190 observations

spanning 46 African countries over the period 1990–2010 at 5-year

intervals.20 ,21 The unit of analysis is the country of origin—country

of destination—time period. Supplementary Table A.1 provides

summary statistics for the regression frame. The parameters of each

empirical models are estimated by Markov Chains Monte Carlo

(MCMC) using the Stan Modeling Language framework within

R brms package environment (Stan Development Team, 2022;

Bürkner, 2017). Each model is estimated with four chains of 4,000

iterations each (incl. 2,000 warmup iterations) for a total of 8,000

post-warm up draws.

Table 1 presents the results of the Bayesian hierarchical

calibration model. Model 1 is a baseline specification including all

the population-level predictors, but none of the random intercepts.

Model 2 is the reverse specification. It excludes all the population-

level predictors, but includes the three sets of random intercepts

that capture time-invariant heterogeneities per country of origin,

destination and directed origin-destination country pairs. Model 3

includes both population-level predictors and random intercepts.

Finally, Model 4 is a more flexible specification, which let the effects

of the two climate predictors vary per country of origin.

For reasons of scope and model performance, I focus the

discussion here on Model 3, the preferred specification and the

one used to generate projections of future migration flows.22 In

general, the results indicate that the level of crop yields at origin

19 The GPW population data is set to the year 2000 to avoid generating a

time-varying distance measure.

20 The panel is balanced, except for Eritrea, which ismissing in the first time

period from 1990 to 1995.

21 Due to a lack of projection data, the following seven countries were

excluded from the calibration analysis: Cape Verde, Comoros, Djibouti,

Equatorial Guinea, Mauritius, São Tomé and Príncipe and the Seychelles. In

addition, Sudan and South Sudan were merged together because of limited

data availability prior to South Sudan’s independence in 2011.

22 In total, Model 3 requires estimating 2,178 parameters, including 12

population fixed e�ects, one regression variance parameter, three random

intercepts standard deviation parameters, and 2,162 separate random

intercepts (46 random intercepts each by country of origin and destination,

and 2,070 random intercepts for the directed migration corridors).

TABLE 1 Results of the calibration models.

Model 1 Model 2 Model 3 Model 4

Intercept 1.91 1.17 2.66 2.91

[1.13; 2.70] [0.94; 1.40] [0.77; 4.53] [1.02; 4.76]

Crop
yields

0.74 0.69 1.27

[0.32; 1.15] [0.32; 1.09] [0.45; 2.17]

River
discharge

−0.24 −0.07 −0.52

[−0.50; 0.03] [−0.35; 0.22] [−1.27; 0.21]

Population,
ln

0.03 0.01 −0.02

[−0.00; 0.07] [−0.08; 0.10] [−0.11; 0.06]

GDP pc
ratio, ln

0.08 0.08 0.08

[0.05; 0.12] [−0.02; 0.18] [−0.02; 0.18]

GDP pc
origin, ln

0.26 0.24 0.27

[0.20; 0.31] [0.10; 0.38] [0.12; 0.42]

Conflict
intensity,
ln

−0.01 0.03 0.03

[−0.02; 0.01] [0.02; 0.05] [0.01; 0.05]

Diaspora,
ln

0.42 0.39 0.39

[0.40; 0.43] [0.38; 0.41] [0.38; 0.41]

Distance,
ln

−0.50 −0.55 −0.55

[−0.57;−0.43] [−0.64;−0.46] [−0.64;−0.46]

t1995 0.10 0.01 0.07 0.20

[−0.02; 0.22] [−0.07; 0.10] [−0.04; 0.18] [0.06; 0.33]

t2000 0.07 0.09 0.07 0.19

[−0.03; 0.18] [0.01; 0.18] [−0.03; 0.17] [0.07; 0.31]

t2005 0.19 0.14 0.21 0.41

[0.06; 0.32] [0.05; 0.23] [0.08; 0.33] [0.26; 0.57]

τorig 0.49 0.38 0.39

[0.38; 0.62] [0.31; 0.48] [0.31; 0.50]

τdest 0.70 0.44 0.45

[0.57; 0.86] [0.37; 0.55] [0.37; 0.55]

τorig→dest 1.81 0.77 0.78

[1.76; 1.87] [0.72; 0.81] [0.73; 0.83]

τcrop yields 2.12

[1.46; 2.99]

τriver discharge 2.53

[1.90; 3.29]

σ 1.94 1.67 1.70 1.67

[1.92; 1.97] [1.65; 1.70] [1.68; 1.73] [1.65; 1.70]

Observations 8, 190 8, 190 8, 190 8, 190

elpdloo −17, 073.0 −16, 781.1 −16, 487.2 −16, 403.3

se elpdloo (99.6) (124.4) (112.5) (113.0)

p elpdloo 17.2 1, 601.0 932.4 1, 017.4

se p elpdloo (0.5) (43.2) (24.0) (26.2)

Median parameter estimates and 90% credible intervals in square brackets. Group-level

correlation parameters for Model 4 omitted.
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correlate positively with international migration. By contrast, I

find little evidence that water availability, as measured by river

discharge in the origin country, is associated with migration. At

face value, these results thus indicate that, over the period 1990-

2010, higher-than-usual crop yields may have correlated with more

people leaving their country of residence, and conversely for lower-

than-usual crop yields. I note that these findings are consistent

with literature arguing that adverse climate shocks may dampen

migration, when financial barriers to migration are high (Cattaneo

and Peri, 2016; Cottier and Salehyan, 2021, see also Hoffmann

et al., 2020). In these circumstances, higher agricultural yields

could reasonably increase the income of rural households and

ease the financial constraints they face. Thus, these results suggest

that adverse climatic conditions caused by climate change could

potentially create immobile populations.

Turning to the other predictors included in the calibration

model, population during the calibration period does not appear to

correlate with out-migration. This result is somewhat unexpected,

but is likely related to the fact that there are little clear temporal

trends in migration across the set of origin countries, as opposed to

a clear increasing linear trend in population.23 By contrast, the level

of economic development is associated with out-migration. In line

with the results reported above for crop yields, these results indicate

that financial barriers to out-migration may exert a constraint

on individuals and households ability to resort to migration. Yet,

while the median parameter estimate for the variable measuring

the economic attractiveness of migration (i.e. the ratio of economic

development between destination and origin) is consistent with

theoretical expectation (i.e. positive), the width of the credible

interval calls for caution about its interpretation.24

On the other hand, the intensity of armed conflict is positively

associated with out-migration, indicating that UNHCR data on

refugee flows may be incomplete and do not capture all forms

of conflict-induced displacement. Unsurprisingly the variables

measuring the size of the diaspora from countryi residing

in countryj correlates strongly with international migration,

indicating that migrants tend to prefer to travel to countries

hosting large populations of co-nationals. As expected, the distance

between the sending and the host countries is negatively associated

with the size of international migration flows on the African

continent.

Finally, the standard deviation estimates for the random

intercept parameters suggests that Models 3 and Model 4 capture

a significant amount of unobserved heterogeneities, even after

accounting for the effects of the population predictors included

23 In fact, if one examines the correlation between population and out-

migration at the country-level, only about 60% of the correlation estimates

are positive. Thus, once di�erences in populationmagnitude across countries

are accounted for, there is little information remaining to precisely estimate

the population parameter. This is what probably explains the di�erence in

the size of the credible intervals for the population variable between Models

1 and Models 3–4.

24 I note that sizeable uncertainty in the variable measuring the GDP per

capita ratio between origin and destination could be, at least in part, be

the product of the large negative correlation between the two economic

variables included in the model (ρ = −0.71).

in the regression. This insight is validated by an out-of-sample

examination of the predictive accuracy of the model discussed in

Section 6.

5 Projecting future international
migration on the African continent

5.1 Projection algorithm

To generate probabilistic projections of future migration flows,

I leverage the parameters estimates from the calibration stage to

simulate future international migration flows within the African

Continent under varying climate and SSPs scenarios up to the

horizon 2050. In doing so, I account for both the systematic

uncertainty due to imprecise parameter estimates, as well as

fundamental stochastic uncertainty that reflect randomness and

chance in the data generation process (see King et al., 2000). The

strength of this approach lies in enabling researchers and policy-

makers to more reliably identify the degree to which different

climatic, social and economic trajectories differ from each other.

As a side note, it is important to state here that the objective

is not to predict future migration flows per se, rather the goal is

to examine the implications of future climate, social and economic

scenarios for migration. In doing so, I draw specific attention to

differences in projected numbers of migrants between scenarios,

instead of focusing on overall migration numbers. Indeed, as

de Bruin et al. (2022, p. 2) state “[t]he goal of future scenario

assessment is not to gain knowledge on what is likely to happen in

the ‘foreseeable’ future with a high level of accuracy [...] but rather to

trigger deliberations about possible futures and, in turn, to provide

a starting point for interventions and adaptive policy options with

the long-term perspective in mind.” In that regards, I note that

future migration flows are deeply contingent on the migration

system and its evolution, as illustrated by recent exogenous shocks

on the international migration system caused by the 2008 Great

Financial Crisis or recent armed conflicts in West Africa and

Eastern Africa. Thus, it is inherently difficult to project even over a

limited timescales of the order of a few decades and any projections

should be interpreted cautiously.

The approach used to incrementally project future

international migration flows under different combinations

of climate and socio-economic scenarios can be summarized as

follows. Starting from the initial 5-year time period t0 (2010/2015),

I generate new international migration projections by interacting

the parameters estimated during the calibration stage, including

the random intercepts, with a new set of predictors data, that

is composed of both future projections of the drivers (climate,

economic and demographic variables), and from assumptions

about other predictors (conflict, distance, and temporal effects).

Next, I compute net-migration flows and update each country’s

population, as well as the stock of foreign-born population in

each country disaggregated by origin. Using the new sets of

estimate I then proceed incrementally one temporal step at a

time until reaching the final projection period tn (2045/50). The

process is then repeated for different combinations of climate and

socio-economic scenarios. Formally, the projection algorithm is as

follows:
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For each m in M combinations of [climate, socio-economic]

scenarios:

For each time period t (t0...tn):

1. Compute matrix Mn×s by linearly combining the calibration

matrices of population level parameters [α,β , δ, ζ ]k×s with the

projection data matrix [W̃, X̃; 1̃(t)]n×k and adding the matrix

of combined random parameters [φ, γ , θ]n×s, with s, k and

n indices for parameters estimates, predictor variables, and

directed origin-destination country pairs.

2. Draw matrix ln(Ỹn×s) ∼ N (Mn×s, σ 1×s).

3. Use the inverse log operation to obtain Ỹ and round values to

the nearest integer.

4. Update projected Diasporai,j,t+1,s = Diasporai,j,t,s + ỹj,i,t,s.

5. Update projected Populationi,t+1,s = Populationi,t+1,s +
∑J

j6=i(ỹj,i,t,s − ỹi,j,t,s).

6. Setting seed number to c(t), permute indices s of matrices of

calibration population parameters [α,β , δ, ζ ]k×s and random

parameters [φi, γ j, θ i→j]n×s.

I use this algorithm to project future migration from 2010/15

to 2045/50 at intervals of 5-years and for a set of six different

combinations of climate and socio-economic scenarios. To speed-

up the projection process, I randomly sampled 1,000 sets of

parameters draws from the 8,000 sets of parameters estimates

obtained in the calibration stage. The same set of 1,000 parameters

was used for each scenario.25 The permutation process outlined

in step 6 of the algorithm aims at preventing a process whereby

projections become increasingly large the farther in time as a result

of systematically using the same sets of extreme parameters.26

After each time-step, the entire set of probabilistic projections

is stored. In total, for each scenario, I generate 14.39 × 106

individual forecasts distributed over seven time steps.27 Using the

percentiles of the predictive distribution, it is then straightforward

to generate probabilistic projections of future migration for a

desired confidence level.

5.2 Projection data

Data on future climatic trends come from the ISIMIP2b

projections. For crop yields, I use the GEPIC experiment, while for

river discharge I use the WATERGAP2 experiment.28 These two

experiments are driven by the Coupled Model Intercomparison

Project (CMIP5) GFDL-ESM2M climate simulations from the

NOAA Geophysical Fluid Dynamics Laboratory (Taylor et al., 2012;

Lange and Büchner, 2017; Müller Schmied et al., 2016; Arneth

et al., 2017). In line with the African Shifts report (Amakrane

et al., 2023), I focus on two Representative Concentration Pathways

25 All the parameters were sampled jointly from the same set to maintain

correlations between parameters.

26 Importantly, each round of projections used the same set of seed

number referred on step (6) of the algorithm to ensure that the projections

are comparable across scenarios.

27 1,000 samples × 2,070 directed migration corridors × seven time steps.

28 The two variables are generated in the same manner as outlined in

Section 3.1.

(RCPs): 2.6 and 6.0. The first represents a world in which CO2

emissions are quickly dropping and global temperature increasing

moderately over the course of the 21th century and reaching

about 2◦C in 2100. By contrast, the second is a more pessimistic

scenario that sees CO2 remaining high for much of the century and

temperature increase reaching 3–4◦C by the end of the century. In

addition, I set a counterfactual scenario, which keeps the climate

conditions constant to its average over the period 1990–2010 (i.e. I

use the average value of the two climate variables in the calibration

dataset).

To project future demographic and economic trends, I

draw on the Socio-Economic Pathways (SSPs) and use the

IIASA datset (Riahi et al., 2017; KC and Lutz, 2017; Cuaresma,

2017).29 Specifically, I use the SSP1 (“Sustainability”) and

SSP3 (“Regional Rivalry”) scenarios. SSP1 is a more optimistic

scenario, in which countries experience high levels of economic

growth and decreasing rates of fertility, while SSP3 is a more

pessimistic scenario, in which economic growth remains low

and fertility decreases more slowly. Because the original SSPs

demographic projections are generated based on assumptions

about how migration might evolve in the future, I use a

revised sets of demographic projections, which assume

no migration.30 Furthermore, I ensure that economic and

demographic projections are in line with the calibration

data by rescaling the data such that the SSP projections for

GDP and population in the initial period 2010/15 match the

observed data for 2010. This is done to prevent projections

from being inadvertently influenced by a gap in the initial set

of projections compared to the data used for the calibration

data.

The size of the foreign-born population (diaspora) is initialized

at its 2010 observed values based on the UNMigration stock dataset

(United Nations, 2020). In addition, I set the predictor for armed

conflict intensity to the average of the entire calibration sample for

the period 1990–2010 and set the times dummies to 1 for the 2005

dummy and 0 for the other two temporal dummies.31

5.3 Projection results

Future migration are projected under six different

combinations of climate scenarios (historical climate held

constant, RCP 2.6, and RCP 6.0) and SSPs scenarios (SSP1 and

SSP3). I obtain projections of climate-induced migration by

subtracting the number of projected migrants in the scenarios

29 GDP per capita projections for Angola are missing from the IIASA

dataset, I thus complement this dataset with the OECD GDP projections for

Angola (Dellink et al., 2017)

30 These demographic SSPs projections excluding migration were

graciously shared by Samir KC and Hélène Benveniste.

31 While I could have extrapolated the values for the temporal dummies

in the future using linear extrapolation to reflect that fact that migration may

become more prevalent in the future, I chose a more conservative approach

to guard against over-predicting future migration flows. This is because it is

unclear to what extent current migration levels are the results of incidental

dynamics (i.e. conflict) as opposed to long-term temporal trends.
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FIGURE 1

Total cumulative projections of international migration flows for 2045–50. The error bars represent the 90% predictive intervals of the projections.

Panels (A) Depict total cumulative projected migration, while Panels (B) depict total cumulative climate-induced migration.

that held climatic conditions to the historical average from the

migration projections under the RCPs 2.6 and 6.0 scenarios

(keeping the SSPs scenarios constant). Figure 1 depicts the total

cumulative projected number of international migrants by 2045/50

across the Africa. This 2 × 2 plot is produced by summing across

the seven time steps of 5-year intervals. The left-hand side panel

A depicts the total cumulative number of international migrants

projected by 2045/50 and the right-hand side panel B shows the

projected magnitude of climate-related migration. For its part, the

top row presents the projections under the more optimistic SSP1

scenario, while the bottom row depicts the same projections under

the more pessimistic SSP3 scenario.

Considering the projections of all the six rounds of projections,

the results suggest that between 8.4 million people (lower 90%

bound; SSP3 RCP 2.6) and 17.2 million (upper 90% bound;

SSP1 RCP 6.0) will have permanently settled in another country

on the African continent by 2050. It is worth noting that

the SSP1 scenario (top row, Figure 1) systematically projects a

significantly higher number of international migrants on the

African continent compared to the SSP3 scenarios (bottom

row) by about 2 millions. This result, arguably, reflects the

link between economic development and migration discussed

earlier. As income is projected to increase at a higher pace

under the SSP1 scenario, more people are thus able to

overcome the financial barriers to international migration on

the continent. By contrast, the model projects a lower level

of international migration under the more pessimistic SSP3

development scenario.

Turning to the impact of climate change on migration, the

differences in projected migration between the three climate

scenarios are relatively small and hard to discern as they lay firmly

within the margins of errors in the left-hand side of Figure 1A.

The right-hand side of Figure 1B thus sheds more light on the

projected magnitude of climate-induced migration. These two

panels explicitly compare each RCP scenario to the number of

international migrants projected under the assumption that future

climatic conditions would reflect average conditions over the

period 1990–2010. Overall, the results indicate that climate change

will likely increase migration, independent of the combination

of RCPs and SSPs scenarios. Yet, and unlike in the case of

internal migration (Amakrane et al., 2023), the total impact of

the climate will remain limited over the period extending to 2050.

Indeed, even under the more climate pessimistic, and arguably

realistic, RCP 6.0 scenario, the number of additional migrants

is projected to increase on the continent by between 100, 000

(lower 90% bound; SSP1 RCP 6.0) and 1, 200, 000 (upper 90%

bound; SSP1 RCP 6.0). Taken together, the projections suggest

that only about 4% of projected international migrants within

the African continent will have been induced to leave as a result

of climate change by 2050. By contrast, the more optimistic

CO2 emissions scenario, RCP 2.6 scenario projects a number

of additional migrants twice as small, and not fully distinct

from zero at the 90% prediction interval. Figure 2 depicts how

the projected cumulative number of climate-induced migrants is

susceptible to change over time. As revealed by the graph, a slight

acceleration in the number of international migrants induced to
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FIGURE 2

Temporal trends for cumulative projections of international migration flows. The error bars represent the 90% predictive intervals of the projections.

leave because of climate change can be observed after 2030 in all

four scenarios.

6 Model validation

In general, the MCMC sampling exhibited good convergence

for all four sets of calibration models. All the parameters had

R̂ < 1.01 for the reported parameters with large number of

Bulk Effective Sample Size (Bulk-ESS) and Tail Effective Sample

Size (Tail-ESS). R̂ provides information on the degree to which

MCMC chains have mixed and are stationary by evaluating the

scale at which the resulting parameter distribution may be reduced

if the chains would have run longer (i.e. for more iterations). As

MCMC proceeds iteratively, draws are naturally auto-correlated,

Bulk-ESS and Tail-ESS measures the number of draws, which can

be effectively considered independent (for details see, Gelman

et al., 2013). In effects, it is a measure of efficiency of the sampling

process. Supplementary Figures A.5–A.8 depict the trace of the

MCMC chains for the population parameters of Model 3, Table 1.

In addition, I examined the out-of-sample performance of the

estimated models using the expected log pointwise density (elpdloo)

for a new data point (Gelman et al., 2013; Vehtari et al., 2017).

I do so by using the R package loo (Vehtari et al., 2015), which

relies on leave-one-out Pareto-smooth importance sampling (PSIS)

to approximate leave-one-out cross-validation (Paananen et al.,

2021). Table 2 presents the results of a comparisons of each model

predictive performance ranked from best to worst. In the first

column, I report the difference in model performance summed

across all individual observations of the dependent variable, while

in the second column I report the standard error of the difference.32

The best performing model is the more flexible specification of

Model 4, which includes random slopes on the crop yields and

river discharge variables, followed by the preferred model, Model

3. Both of these models perform substantially better than Models

1–2. In effect, Model 3 and Model 4 result in an improvement of

the model out-of-sample performance by about 3.4%, respectively

3.8%. In all the four models, the Pareto shape parameters k,

that provides information on the reliability of the Pareto-smooth

importance sampling (PSIS) approximation, were all below the 0.7

threshold value (for each observation in the calibration dataset).

Supplementary Figure A.9 depicts the distribution of the Pareto k

values for Model 3.

Furthermore, I also conducted a number of posterior predictive

checks for Model 3. Unsurprisingly, replicated datasets on the basis

of the estimated parameters are able to capture well the mean of the

calibration sample, as well as the standard deviation and maxima.

However, due to its inability to model the number of zeroes in

the data, The log-linear model is unable to effectively model the

median (zero) observation in the original data. For this reason,

the model performance should be cautiously approached and

not overstated. Supplementary Figures A.1a–c visually summarize

posterior predictive checks for the mean, standard deviation

32 Readers interested in the original elpdloo values can refer to the last

four rows of Table 1. These also show the estimate of e�ective number of

parameters based on the elpdloo computation.
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TABLE 2 Out-of-sample evaluation of model predictive accuracy.

1 elpdloo se elpdloo

Model 4 0 0

Model 3 −83.9 15.6

Model 2 −377.8 55.9

Model 1 −669.8 58.2

and maximum, comparing the distribution of the test statistics

for replicated datasets to the original dataset. In addition,

Supplementary Figure A.1d depicts the posterior predictive density

of 25 replicated dataset compared with the original sample.33

Finally, I also inspected the within-corridor predictive

performance of the models for the 12 largest directed migration

corridors.34 The results, shown in Supplementary Figure A.3,

suggest that, while the model accurately capture the spatial

differences in the magnitude of migration flows, it struggles to

capture temporal variations within migration corridors. While

Models 3 and 4 are able to reproduce some of the temporal

variability observed in the data, the magnitude of the period-

to-period change in migration is nowhere near the variability

observed in the data. This conclusion is further reinforced when

examining the share of non-zero corridors with partial R2i,j above

zero. With the possible exception of Model 4, the vast majority of

the partial R2i,j are below zero, in other words they perform worse

than the sample average (see Supplementary Figure A.4). Overall,

this analysis, arguably, reinforces the critique by Beyer et al. (2022)

that gravity migration models are unable to appropriately accurate

capture temporal dynamics. It also invites important caution in

interpreting the projections presented in the previous section,

as they are likely to miss significant aspects of within-corridor

migration dynamics.

7 Conclusion

In this paper, I propose an original approach to estimating

gravity model of migration using Bayesian hierarchical models with

random intercepts for country of origin, country of destination

and directed pairs of origin-destination countries. I show that

such a framework substantially improves the predictive ability of

the gravity model, as compared to a model that only includes

population-level predictors.

The model parameters are then used to project future

international migration flows on the African continent at 5-year

intervals to 2050 based on the ISIMIP2b projections for crop

yields and river discharge, as well as the Shared Socio-Economic

Pathways. The results indicate that economic development is likely

to exert a strong influence on the magnitude of future international

migration. As revealed by the calibration models, financial barriers

to migration appears to limit international migration flows between

33 As a reminder, I also examined a negative binomial specification with

and without random intercepts, but when using these models for projections

I obtained implausibly large projections of international migration.

34 I am thankful to an anonymous reviewer for the suggestion.

African countries. By contrast, climate change is projected to have a

much smaller impact on international migration. In addition, close

inspection of the projections indicate that the increase in migration

flows as a result of climate change will be driven primarily by better

expected crop yields over Southern Africa (see Amakrane et al.,

2023).

Nevertheless, the present approach suffers from a number of

limitations, which future research should strive to address. For

reasons of scope, I focus here on four key aspects. First, the

calibration model currently uses a log-linear specification. While

the hierarchical specification improves the predictive ability of the

model substantially, it remains unable to account for some of the

key aspects of the calibration data as revealed by the predictive

checks, namely the excess number of dyads with zero migration.

Thus, future research should strive to use more flexible functional

forms, that specifically address this limitations (i.e.Poisson-log

normal or zero-inflated negative binomial) in conjunction with

a hierarchical structure. These specifications are, however, more

demanding of the data when estimated usingMCMC. Additionally,

gravity model as implemented in the literature have been shown to

suffer from a lack of reliability to project future migration flows due

to their inability to model dynamics taking place within migration

corridors, as opposed to between countries (see Beyer et al., 2022).

As revealed in Section 6, the models implemented in this paper

are no exception and the projections presented here should thus

be interpreted cautiously. Yet, the better performance of Model

4 suggests that more flexible specifications that let the effects of

the predictors vary by origin or destination, albeit computationally

demanding, may offer an avenue to overcome some the limitations

of gravity models in the future.

Second, the quality of migration and foreign-born population

data remains problematic on the African continent (United

Nations, 2017). To the extent that censuses are infrequent or of

problematic quality, this is susceptible to adversely impact the

parameter estimates of the calibration model, and thereby the

reliability of the projections.35 This is illustrated by the lack of

clear correlation between population in the country of origin

and migration in Models 3–4. In addition, because the migration

data used for the calibration model is computed based on 5-

year estimates of foreign-born populations, it is likely to exclude

significant number of migrants that may have traveled over shorter

intervals ranging from a few months to a few years.

Third, projections generated based on the methodology

presented in this paper used only one set of ISIMIP2b experiments

for crop yields and river discharge. Future research should aim

to use a larger set of climate projections models to generate an

ensemble forecast. In addition to being less sensitive to the choice of

the projection model, such an approach would also provide a more

reliable probabilistic range of the magnitude of future international

migration flows.

Fourth, the projections presented here assume that the impact

of climate change affects migration through a channel distinct from

the economic channel, as represented by the SSP projections for

GDP per capita. This is a significant limitation as it has been

35 The estimate for the population parameter in the calibrationmodel likely

su�ered from this problem.
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shown elsewhere that climate change does affect economic activity

(e.g. Carleton and Hsiang, 2016). Future projections should strive

to better capture how climate change is susceptible to influence

economic cycle and thus migration. In this regard, research has

since emerged in the literature that attempts to account for the

endogenous linkage between climate change and economic activity

in projecting future migration patterns (see Rikani et al., 2022).
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