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This paper presents an enhanced probabilistic flood displacement risk assessment 
methodology. Several techniques have been proposed to estimate the number 
of people at risk of being displaced triggered due to climatic extremes. Among 
these methods, the probabilistic approach is promising for its quantitative 
nature and versatility at different scales. However, it has so far been limited 
to assessing loss of housing as the sole cause of displacement. The proposed 
methodology addresses this limitation by considering two additional elements 
beyond the traditional evaluation of housing loss: the likelihood of losing means 
of livelihood, directly included in the computation, and the likelihood of losing 
access to essential services, such as schools and health centers, provided as a 
factor to increase the propensity to displace. This new methodology is applied 
to assess flood disaster displacement risk in Fiji and Vanuatu, where climate 
change, coupled with the vulnerability of exposed assets, poses an existential 
threat to these Pacific islands, potentially leading to internal and cross-border 
population movements. Different climate scenarios were considered: current 
climate conditions (1979–2016 period), medium-term projected climate 
conditions (2016–2060), and long-term projected climate conditions (2061–
2100). The average annual displacement increases in Fiji and Vanuatu by a factor 
of 3 and 4, respectively, in the projected long-term pessimistic climate scenario 
compared to current conditions. Depending on the country and climate change 
scenario, 20 to 40% of these displacements stem from loss of livelihoods as a 
dominant factor, highlighting the importance of considering this aspect in the 
vulnerability approach. The outcomes of these scenarios serve as the foundation 
for implementing displacement risk adaptation and management measures. 
This novel quantitative methodology holds significant potential for applications 
in larger domains and even globally.
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1 Introduction

Disaster displacement is defined as the movement of people 
forced or obliged to leave their houses or places of habitual residence, 
either due to the consequences of an occurred disaster or as a 
preventive measure to avoid the impact of a forecasted event (The 
NANSEN Initiative, 2015). Displaced people might either cross 
international borders or, more commonly, stay within their own 
country. According to the United Nations High Commissioner for 
Refugees (UNHCR), internally displaced people accounted for 58% of 
all displaced people globally at the end of 2022 (UNHCR, 2022). 
Displacement durations vary, with short-term displacement over short 
distances being more common (Danish Refugee Council, 2023).

According to the latest data from the Global Internal Displacement 
Database (GIDD) by the Internal Displacement Monitoring Centre 
(IDMC), weather extremes such as floods and storms trigger the 
highest number of new displacements, approximately 22 million 
globally in 2021 alone (Internal Displacement Monitoring Centre, 
2022). Floods have been a major driver of internal displacement over 
the years. From 2008 to 2022, more than 185.5 million new 
displacements were recorded worldwide because of floods, averaging 
around 13 million people being displaced each year due to floods 
(Internal Displacement Monitoring Centre, 2022). The 
Intergovernmental Panel on Climate Change (IPCC) also 
acknowledged in its latest report that climate change is exacerbating 
weather extremes, leading to more displacements and involuntary 
migrations in Africa, Asia, North America (high confidence), and 
Central and South America (medium confidence, Intergovernmental 
Panel on Climate Change, 2023). It is also reported that small island 
states in the Caribbean and South Pacific have been disproportionately 
affected relative to their small population size (high confidence, 
Intergovernmental Panel on Climate Change, 2023). The areas that 
face greater challenges are usually more exposed to environmental and 
climate hazards and are characterized by higher vulnerabilities and a 
lack of resilience.

Disaster displacement risk assessment models play a crucial role 
in identifying the nature and the extent of the risks associated with 
displacement. Quantitatively assessing displacement patterns and 
trends supports decision makers in designing effective intervention 
measures accordingly.

Various methods have been used to study the risk of displacement 
caused by disasters. One common approach is historical analysis, 
which involves examining past data on disasters and displacement in 
a systematic manner. By studying historical records, reports, and other 
data sources, researchers can identify patterns and trends in 
displacement over time. Important sources of data include the Global 
Internal Displacement Database (GIDD), the Displacement Tracking 
Matrix by the International Organization for Migration (IOM) (2022), 
and The Humanitarian Data Exchange by the Office for the 
Coordination of Humanitarian Affairs (OCHA, 2022). These sources 
provide information on the impact of disasters on people’s assets, the 
scale of displacement events, their duration, and their direction. For 
instance, data collected by the Internal Displacement Monitoring 
Centre (IDMC) revealed that the number of annual global 
displacements quadrupled between 1970 and 2013 due to more 
frequent extreme events (Ginnetti, 2015).

Recent research by Mester et al. (2023) has correlated estimates of 
human displacement from IDMC records, fatalities, and economic 

damages (recorded in the Emergency Events Database, EM-DAT) 
with flooded areas identified in the Global Flood Database (GFD). 
Similarly, Thalheimer and Oh (2023) have proposed an approach to 
assess recorded displacement events alongside weather and climate-
related events in order to better utilize displacement data in real-time, 
especially at the local level, where extreme weather impacts occur.

While historical analysis offers valuable insights into patterns and 
trends, it has limitations. Firstly, it relies on available observed data, 
which are often limited in scope and time. Secondly, it overlooks 
contextual changes such as population dynamics and climate change. 
Therefore, while historical analysis is essential for assessing and 
predicting future disaster displacement risk, it benefits greatly from 
being complemented by forward-looking methods.

One straightforward approach involves analyzing a set of reference 
scenarios. These scenarios can be quantitative, using historical records, 
geospatial data, and mathematical models to estimate the number of 
people at risk of displacement or affected by the event. Alternatively, 
they can be qualitative, focusing on narrative descriptions and expert 
opinions. Semi-quantitative approaches combine quantitative data 
with qualitative information to assess the potential impact of 
a scenario.

Machine learning approaches, utilizing big data, have emerged for 
analyzing datasets from various sources. These methods sift through 
large volumes of data to generate estimates of displacement figures. 
For instance, Martin et al. (2021) developed the Dynamic Model of 
Displacement (DMD) using machine learning techniques to 
understand the factors influencing decision-making and the 
consequences of disaster displacement.

System dynamics modeling is also employed, particularly for 
slow-onset events. For instance, the Internal Displacement Monitoring 
Centre (IDMC) developed a system dynamics model to assess the 
impact of drought on pastoralist groups in Kenya. This model uses 
causal feedback structures to explain the relationship between the 
hazard and involuntary mobility within a system of feedback loops.

Other studies utilize agent-based modeling (ABM) to investigate 
the link between disasters and displacement. ABM replicates the 
behaviors and decisions of individual entities within the model to 
understand macro-level outcomes. For example, Kniveton et al. (2011) 
studied migration drivers in Burkina  Faso, incorporating 
socioeconomic, demographic, political and environmental factors. 
Smith (2014) explored the effects of precipitation changes on 
economic resources, food production, and migration decisions in 
Tanzania. Abebe et al. (2019a,b) combined ABM with flood modeling 
to test flood risk reduction measures in Sint Marteen and observe 
residents’ responses to interventions and flood events. System 
dynamics and ABM are certainly fundamental tools to better 
comprehend the complex connection between the physical stressors 
and the social network stressed, but their complexity and 
overparameterization confine them to very specific case studies with 
limited possibility of being scaled up.

For sudden-onset hazards, such as floods, probabilistic risk 
assessment is one of the approaches currently used to understand 
displacement risk (Kam et al., 2021, 2023). This methodology aims to 
estimate the probability of occurrence of specific events in future 
scenarios, in this case the probability of being displaced due to 
sudden-onset disaster events. IDMC applied a probabilistic risk 
assessment methodology to estimate the number of people at risk of 
displacement in response to sudden-onset hazards. The model used a 
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simplified approach based on a hazard threshold (i.e., a reference 
water depth value) on residential built-up areas, assuming that above 
that threshold the houses would be rendered uninhabitable. In this 
case, the average number of household members multiplied by the 
number of houses affected by the modeled events gave the estimated 
number of displaced individuals (Anzellini et  al., 2017; Internal 
Displacement Monitoring Centre, 2019; Barrett et al., 2021).

Probabilistic analysis emerges as a promising method in the realm 
of disaster displacement risk assessment. Solidly based on the 
probability theory and on the IPCC risk definition as a function of 
hazard, exposure and vulnerability (Intergovernmental Panel on 
Climate Change, 2012), this approach offers the opportunity to 
transcend the mere analysis of past events and provides a more 
exhaustive analysis compared to the historical and scenario ones. 
However, its potential to assess displacement risk has not yet been 
fully exploited, since it is currently limited to the assessment of direct 
damage to residential buildings and does not include other relevant 
components (Internal Displacement Monitoring Centre, 2017).

Other elements need to be considered to better understand and 
assess the displacement risk associated with flood events.

People may need to leave their homes not only because their 
houses are damaged, but also because their livelihoods are affected, 
leading to food insecurity, or because they have limited access to 
essential services (Armah et  al., 2010; Ahmad and Afzal, 2021; 
Mühlhofer et al., 2023; Vestby et al., 2024). Displacement can be seen 
as movement triggered by events that threaten safety, security or 
livelihoods. Floods often cause significant harm to crops, livestock, 
and other assets, resulting in loss of income, which eventually becomes 
an economic driver of displacement (Armah et al., 2010; Black et al., 
2011; Ahmad and Afzal, 2021; Hossain et al., 2022). When floods 
repeatedly damage a community’s livelihoods, the likelihood of people 
being forced to move increases (Armah et al., 2010). Therefore, it is 
crucial to account for the vulnerability of crops, livestock and services 
when assessing disaster displacement risk, and this can help in 
designing and implementing effective policies.

In order to fill this research gap, the present paper proposes a new 
enhanced probabilistic approach that includes the likelihood of losing 
means of livelihood in different sectors and provides information on 
the likelihood of losing access to essential services, such as schools and 
health centers. This more comprehensive probabilistic model helps to 
better estimate the actual risk under different probable scenarios, 
including future climate scenarios, and thus supports a better design 
of intervention strategies and disaster risk reduction measures.

The model was implemented and tested in Fiji and Vanuatu, two 
Small Island Developing States (SIDSs) located in the Pacific Ocean. 
Since 2008, most of the displacements triggered by floods have been 
localized in Asia and the Pacific, with an estimated 129 million 
displacements. SIDSs bear the greatest displacement risk relative to 
their population size. Communities in the Pacific Islands face an 
existential threat due to the impact of climate change combined with 
the vulnerability of exposed infrastructure, housing and socioeconomic 
assets. In this delicate geographical context, we  conducted a first 
attempt to estimate riverine flood displacement risk at the national and 
sub-national levels, under present and future climates, with the final 
goal of better supporting decision-making related to this hazard. The 
methodology may be further extended to coastal and pluvial flooding 
in future for a comprehensive flood risk assessment.

2 Methods

In this section, we outline all the components of the methodology. 
Sub-section 2.1 provides a general overview of the methodology, 
independent of the specific models and datasets used in the case study. 
Sub-section 2.2 details how the methodology was implemented in the 
context of Fiji and Vanuatu, showing the history of observed 
displacements, all models used in the hazard modeling chain, the 
creation of an exposure model from available local and global datasets, 
and the method chosen for risk computation tailored to this 
particular case.

2.1 A new paradigm for disaster 
displacement risk assessment

Risk analysis was performed through a modeling chain that 
encompasses hazard, exposure and vulnerability (Figure 1).

Hazard computation follows a consolidated path, based on a 
climate-hydrologic-inundation modeling chain (Ward et al., 2015; 
Arrighi et al., 2018; Dottori et al., 2021). Climate drivers are extracted 
from global or regional climate models (either re-analysis or future 
projections) and bias is corrected before these drivers feed the 
hydrological model that converts the climate signal into discharge, 
which is the dominant variable determining flood conditions. Extreme 
value statistics allows the characterization of these discharges in terms 
of frequency, often expressed through the concept of the return 
period. These discharge quantiles are used as a boundary condition 
for inundation models that compute the flood hazard maps in terms 
of extent and related maximum water depth at each location in the 
flood plain. Such results stand as the basis of hazard characterization 
for risk computations.

The exposed elements (the second element of the risk equation) 
are generally characterized by people, infrastructure, housing, 
production capacities and other tangible human assets located in 
hazard-prone areas (UNGA, 2016). The methodology requires that 
assets (e.g., buildings, crop fields) should be characterized in terms of 
physical vulnerability to flood.

The third element of the risk equation is vulnerability. According 
to the UN terminology (UNGA, 2016), vulnerability corresponds to 
the conditions determined by physical, social, economic and 
environmental factors or processes which increase the susceptibility 
of an individual, a community, assets or systems to the impacts of 
hazards. In flood risk analysis, the physical factor is usually described 
by stage-damage functions (Romali et al., 2015), which are functional 
relationships relating percent damage to flood water depth, while the 
socioeconomic dimension is often described by indices capturing 
characteristics such as income level, education, gender and other 
factors that can affect the vulnerability of people and assets to a 
possible hazard.

In the context of disaster displacement risk, the concept of 
vulnerability is complex and depends on several physical and social 
factors. Although academic research exists in this direction (Přívara 
and Přívarová, 2019), significant simplifications have been applied in 
quantitative models that consider loss of housing as the sole factor 
determining displacement as a consequence of a fast-onset disaster. In 
addition, the criterion for deeming a house uninhabitable currently 
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relies solely on a flood-depth threshold, without considering the 
physical vulnerability of the building.

The proposed methodology refines and expands this concept by 
simultaneously taking into account two different elements that may 
trigger displacements: direct impact on houses; direct impact on 
livelihoods, namely damage to croplands, grazing lands, shops, 
industries and services. It also involves a third element that may 
increase the susceptibility to forced movement: direct impact on 
critical facilities and services, such as health centers and education 
facilities. Although still based on direct physical damage estimation of 
these three components, social vulnerability factors are indirectly 
considered. Loss of livelihoods can be  associated with a state of 
unemployment, even temporary, since this is recognized as a key 
theme in the literature on social vulnerability (Li et al., 2023). Access 
to education and health services, which are other social vulnerability 
factors, is also quantified, as additional information. In line with this, 
the World Health Organization (2009) highlighted the strong 
connection between physical vulnerability and other vulnerability 
dimensions (social, economic, physical, environmental, institutional 
and cultural dimensions, as further described by Malgwi et al. (2020), 
Birkmann et al. (2013), and Mazzorana et al. (2014), pointing out that 
the disruption of physical elements directly affects social and 
economic activities within a society.

The proposed methodology includes advancements on several 
levels. The first improvement concerns the method employed to 
determine whether a house is deemed uninhabitable. Frequently, 
displacement triggers are calibrated based on hazard (i.e., water depth) 
thresholds, resulting in limited spatial differentiation (e.g., Kam et al., 
2021, 2023). However, in reality, different types of buildings may 
respond very differently to flood events. While empirical calibration 
on specific events might ensure that overall figures align with 
observations distribution, this method cannot reproduce the spatial 
distribution of damage at the sub-domain level, because it does not 

account for spatial differences in house vulnerability. Moreover, this 
approach may yield a limited predictive capacity when applied to 
events with vastly different spatial patterns within the domain.

It is more appropriate to reason in terms of damage thresholds 
that might render houses uninhabitable. This concept is not only 
closer to reality but also allows the differentiation of impacts as a 
function of diverse house typologies. The proposed methodology 
employs a complete physical vulnerability model to compute the 
impact on housing. The vulnerability of an asset to flooding is 
commonly characterized by stage-damage curves (also known as 
vulnerability curves or damage curves) that show the relationship 
between hazard intensity (e.g., flood depth or velocity) and the degree 
of impact (e.g., damage ratio, and relative or absolute monetary loss). 
These curves are specific for each type of exposed element. The 
matching between the curve and the element is made according to 
different features, such as building use or main construction typology, 
depending on the vulnerability library used. By way of example, some 
flood vulnerability libraries for buildings differentiate the curves by 
occupancy type and number of floors, as proposed in HAZUS (Federal 
Emergency Management Agency, 2010), by occupancy and country 
(Huizinga, 2007; Huizinga et al., 2017), or by construction typologies 
(Cardona et al., 2012). A threshold on the damage ratio of the curve 
is assigned for the displacement evaluation. It is assumed that beyond 
this threshold the damaged structure is unable to provide its function 
(e.g., hosting people for residential buildings, providing jobs for 
commercial buildings, guaranteeing health or education services), 
thus causing the forced mobility of people. In this study, we adopted 
the European macroseismic scale (EMS-98, Grünthal, 1998) as a 
reference to describe what this threshold represents. The scale was 
developed in the field of seismic risk, and is referred to here for its 
description of damage classes, regardless of the hazard under 
consideration. The threshold value was mapped to the D3 EMS-98 
damage class, which corresponds to substantial to heavy damage; such 

FIGURE 1

Representation of the modeling chain developed for flood displacement risk assessment.
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a qualitative description of the damage suggests a lack of possibility to 
inhabit or use the building for its own purposes. In the seismic field, 
some studies connect damage classes to building loss ratio (e.g., 
Lagomarsino and Giovinazzi, 2006; Tyagunov et al., 2006), class D3 
being representative of a damage ratio between 0.4 and 0.6.

The second improvement, with respect to traditional models, is 
about assessing the direct impact of a disaster on people’s livelihoods. 
There are several studies that recognize loss of livelihoods as one of 
the major economic factors for displacement, especially in societies 
strongly dependent on certain sectors such as agriculture (e.g., Armah 
et  al., 2010; Black et  al., 2011), and this is more relevant when 
particular socioeconomic conditions are considered (e.g., individuals 
with low incomes who do not own homes). Loss of livelihoods is cited 
frequently as cause of displacement in the DTM as well as in the 
IDMC database. In implementing this piece of the methodology, two 
contrasting factors need to be explicitly accounted for: on the one 
hand only a proportion of the people would decide to displace if their 
means of livelihood became untenable, thus reducing the number of 
displacements to be considered; on the other hand, if the person losing 
his/her means of livelihood is the sole breadwinner within a 
household, all the people dependent on this person might be affected 
by the decision to displace, and therefore household composition 
should be carefully analyzed to gain reasonable estimates. Accounting 
for this additional factor provides a more comprehensive 
understanding of disaster-related impacts that may shape people’s 
decisions to move. Since people react differently to loss of livelihood, 
and are influenced by factors such as the availability of alternative 
employment opportunities, it is unrealistic to expect that 100% of 
those experiencing job loss would relocate. Accordingly, the 
methodology explicitly includes a parameter that represents the 
proportion of individuals who would relocate after losing their jobs 
due to a flood event. In the absence of literature, this parameter is 
assumed to be 35%.

Another consideration must be made regarding loss of livelihood. 
When the primary breadwinner of a household loses his/her means 
of livelihood and decides to move, the whole family follows. To 
address this, we  consider the “dependency ratio” data, which are 
usually available from the national census, to estimate the average 
household composition. The dependency ratio is a measure of the 
number of dependents aged 0 to 14 plus those over the age of 65, 
compared with the total population aged between 15 to 64. This 
approach allows us to account for individuals such as children and 
elderly people who rely on employed people and are likely to follow 
them in their move.

The third improvement is about addressing indirect impacts, such 
as the prolonged absence of essential services. People’s decisions to 
stay or move are often influenced by access to critical facilities, public 
infrastructures and services, including education and health facilities. 
This introduces an additional factor that increases people’s 
vulnerability and, consequently, the likelihood of displacement.

Collectively, these three elements contribute to a more accurate 
estimate of the potential displacement of individuals due to impacts 
of floods.

The implementation of the methodology imposes strong 
requirements in the preparation of the exposure model in a manner 
suitable for risk analysis. It is crucial to characterize the spatial 
distribution of the population in relation to different services and 

functions. Specifically: (1) to determine the number of people 
displaced due to house damage, it is essential to know the spatial 
distribution of the residential population across the housing sector; 
(2) to determine the number of individuals displaced as a result of 
livelihood loss, it is necessary to have information on the spatial 
distribution of employees within each specific sector (e.g., agriculture, 
industry, etc.); this aspect includes knowing the spatial locations of 
various workplaces and the corresponding number of employees 
associated with each; (3) to determine the group of people who lose 
access to basic services, potentially heightening their inclination to 
migrate, it is necessary to identify the locations of these services and 
the number and location of people relying on each of them. While 
points (1) and (2) are factored into the risk computation, estimates on 
a lack of access to basic services (point 3) are provided as 
additional information.

Since the methodology envisages that an individual’s mobility 
may be triggered by the loss of housing, livelihood, or both, that same 
person might be counted twice, i.e., being displaced due to the loss of 
both a house and a livelihood. Hence, a procedure to prevent 
potential double counting was implemented by unequivocally 
associating each person with his/her home and workplace, enabling 
the identification of individuals who simultaneously lose both 
housing and livelihood. The population density is computed for each 
administrative level and is used to determine the residence capacity 
of each building. The process of associating each person with his/her 
home and workplace relies on the minimum geometric distance 
between the two, and is executed iteratively in consecutive steps. 
Based on the percentages proposed at a national level, the workers in 
the different sectors and the students are quantified for each home at 
the beginning of the procedure. After this, starting randomly with a 
workplace (e.g., a factory), employees are allocated to the residences 
closest to their workplace, initially within a specified radius (e.g., 
1 km). If the residence capacity is reached within the specified radius 
and not all the workers are accommodated, the radius is progressively 
expanded (e.g., first to 2 km and then to 3 km). This iterative 
procedure continues until all the workers are successfully assigned to 
their respective residence. This association ensures that workers who 
experience flooding at both their place of residence and workplace 
during a single event are identified and counted only once. 
We provide an explanation of the application of this procedure in the 
Supplementary material.

Analogous to the average annual loss, the loss exceedance probability 
curve (also referred to as “risk curve,” Arrighi et al., 2018), and probable 
maximum loss curve commonly used in catastrophe risk modeling 
(United Nations Office for Disaster Risk Reduction, 2015; Rossi et al., 
2023), we  introduced similar risk metrics for displacement: average 
annual displacement (AAD), displacement exceedance probability curve 
and probable maximum displacement (PMD) curve.

Displacements are computed for each hazard map scenario and a 
displacement exceedance probability curve – a curve describing the 
probability to exceed a certain number of displaced people in 1 year 
– is built for each administrative level. The exceedance probability 
curve is constructed by plotting the frequency of each hazard map 
versus the number of displacements originated by those hazard maps. 
The integral under the displacement exceedance probability curve 
represents the average annual displacement, AAD, as described by 
Equation 1.
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AAD EP x dx= ( )

∞

∫
0  

1

Where EP = P (X > x) is the probability to exceed the number of 
displacements x.

This is the expected number of displacements per year, averaged 
over many years. A curve similar to the displacement exceedance 
probability curve, where frequency is expressed in terms of return 
period (RP) instead of probability, is the probable maximum 
displacement (PMD) curve. The PMD for different return periods can 
be defined as the expected number of displacements as a function of 
the return period, where the return period is the average interval time 
between two events equaling or exceeding that number of 
displacements. The PMD curve is constructed by plotting the number 
of displacements originated by each hazard map versus the return 
period for each hazard map. By depicting displacements as a function 
of return periods, the PMD curve has the capacity to better visualize 
the tail of the curve (very low frequencies and high return periods) 
when compared to the displacement exceedance probability curve, 
and therefore the PMD curve has been used in this paper to show the 
number of displacements during extreme conditions.

2.2 Applying the methodology to the case 
study of Fiji and Vanuatu

Fiji and Vanuatu are located to the east of Australia and north of 
New Zealand, and the two archipelagos are separated by approximately 
1,000 kilometers. The climate of the two countries is generally 
categorized as oceanic tropical, with a dry season from May to 
October and a rainy season from November to April. The El Niño 
Southern Oscillation (ENSO) plays an important role across the 
region in different ways and has impacts on the livelihoods of Pacific 
Islands communities (Weir et  al., 2021). In Fiji and Vanuatu, the 
ENSO can lead to prolonged rainfall and to an increase in the 
frequency and intensity of cyclones and other tropical storms 
(Kuleshov et al., 2020).

Fiji is one of the largest nations in the Pacific Islands region. The 
capital, Suva, on the island of Viti Levu, is home to about three-
quarters of the population. More than 90% of the population, both 
rural and urban, lives in coastal areas, where most of the services, 
infrastructure and agricultural production are located. The economy 
is large and developed as a result of a significant natural resource base. 
Tourism also makes up a substantial part of the economy, as does 
agriculture (Internal Displacement Monitoring Centre, 2020).

Vanuatu consists of a chain of 82 volcanic islands, including 13 
principal islands, extending 850 km from north to south. Vanuatu 
concentrates a large share of its population (about 36%) in the capital, 
Port Vila, in Shefa Province. About 80% of the population works in 
subsistence or small-scale agriculture. The economy is based primarily 
on the exploitation of natural resources such as copra, beef, timber, 
kava and coconut oil (Chen et al., 2015).

2.2.1 Disaster displacement in Fiji and Vanuatu: 
historical trends (2008–2022)

Empirical data are important elements to understand the 
magnitude, causes and triggers of displacement. Records of 

disaster-induced displacements worldwide have been compiled by the 
Internal Displacement Monitoring Centre since 2008 (Internal 
Displacement Monitoring Centre, 2022) through a rigorous process 
of research, data management, analysis and validation.

Disasters have triggered about 382,000 displacements in Fiji since 
IDMC began collecting data on the phenomenon in 2008. IDMC has 
detected 53 disaster displacement events (Internal Displacement 
Monitoring Centre, 2023). A large number of displacements in Fiji 
and Vanuatu have been triggered by weather-related events, which are 
classified according to the subtype of hazard: flood, storm, cyclone, 
avalanche, rogue wave. Storms and cyclones are the main triggers of 
displacement. However, when a cyclone has struck, it is impossible to 
discern from the records whether structures were damaged by inland 
flooding, storm surges, strong winds, or a combination of these 
factors. Table  1 reports data on internally displaced people, 
respectively, for Fiji and Vanuatu due to riverine flood from 2008 to 
2022, as recorded by IDMC. Several events between 2008 and 2022, 
mainly associated with tropical depressions, generated widespread 
flooding in Fiji. The most relevant of these events happened in the 
Western Division of Fiji, where torrential rains caused by multiple 
tropical depressions in 2012 resulted in severe damage to schools, 
homes, businesses, agriculture, and infrastructure. In Vanuatu, only 
the 2014 flood that hit Efate Island has been recorded.1

This dataset, although limited, serves as a basis for the comparison 
with our model results presented in Section 3. Moreover, additional 
IDMC datasets from the South-East Asia and Pacific region have been 
retrieved to broaden the scope of our comparison. These datasets are 
accessible in the Supplementary material.

2.2.2 Hazard modeling chain
As mentioned in Sub-section 2.1, hazard modeling was performed 

for both the current and projected climate conditions by using a full 
flood modeling chain, composed of three main steps: (1) climate 
models selection and bias correction; (2) the hydrological simulation 
for the estimation for the streamflow design values under different 
climate conditions; and (3) the flood mapping through the hydro-
geomorphological model.

In more detail, the physically-based distributed hydrological 
model Continuum (Silvestro et  al., 2013, 2021) was implemented 
separately for the two regions of interest. Continuum can reproduce 
the main hydrological processes, resolving both mass and energy 
balances at pixel scales. As main output, it provides time series of river 
discharge for each stream of the river network. The hydrological 
model was driven with the W5E5 (Lange, 2019) climate data of 
precipitation, air temperature, air humidity, wind velocity, and solar 
radiation, with 0.5° spatial resolution and daily temporal resolution to 
derive the streamflow time series in the present climate (historical 
period: 1979–2016). W5E5 is a merged dataset. It combines WFDE5 
data (Weedon et al., 2014; Cucchi et al., 2020) over land with ERA5 
data (Hersbach et al., 2020) over the ocean. The WFDE5 dataset (C3S, 
2020) was generated using the WATCH Forcing Data (WFD) 
methodology applied to surface meteorological variables from the 
ERA5 reanalysis. Bias-adjusted monthly precipitation totals of 

1 https://floodlist.com/

australia/1-dead-hundreds-evacuated-vanuatu-record-rainfall
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WFDE5 result in more plausible global hydrological water balance 
components when analyzed in an uncalibrated hydrological model 
(WaterGAP) than with the use of raw ERA5 data for model forcing.

In addition, the W5E5 dataset was used for the bias adjustment of 
climate input data for the impact assessments carried out in phase 3b 
of the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP3b dataset,2 0.5° spatial resolution and daily temporal 
resolution), therefore guaranteeing consistency between the present 
climate forcing and the projected climate forcing used in this study. 
The results of the ISIMIP3b project were used to drive the Continuum 
model in projected conditions. Five different General Circulation 
Models (GCM) for three Shared Socioeconomic Pathway (SSP)-
Representative Concentration Pathway (RCP) scenarios (SSP1-
RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5) provided an ensemble of 15 
combinations of models and scenarios. The variability of trends in key 
climatic variables (e.g., temperature and precipitation) among the 
different models/scenarios is very large, and thus, to reach a 
compromise between a proper representation of this variability and 
the available computational resources for this study, a selection was 
made. The choice was guided by the intent of the study, which is to 
provide sensible bounds to the displacement figures under possible 
climate change scenarios. The uncertainty in climate projections varies 
in nature, and can be traced on one hand to the uncertainties brought 
by the specific numerical model used for the prediction, and on the 
other to our inability to guess what scenario of greenhouse gas 
emissions connected to a specific socioeconomic development 
pathway will materialize in future. From the risk assessment 
perspective, both sources of uncertainty should be  explicitly 
considered, and therefore selection of the binding climate scenarios 
should be independent from the modeling suite and SSP considered. 
Since it was impossible to use all the ISIMIP combinations of GCM 
and SSP, due to computation limitations, we  opted to select two 

2 https://www.isimip.org/about/#simulation-rounds

climate scenarios that were representative of low (“optimistic”) and 
high (“pessimistic”) future emission conditions. We selected the two 
scenarios based on statistical criteria, employing percentile thresholds 
derived from the ensemble of temperature trajectories (precipitation 
trends were correlated with the trends in temperature for all the 
different models and SSPs). For each year of the future projection 
period (2017–2100), the 20th percentile and 80th percentile of the 
ensemble of average world temperature were computed, yielding two 
additional temperature trajectories produced as the 20th percentile 
and 80th percentile of the ensemble (for a further explanation, see 
Alfieri et al., 2023). Then, the most similar simulation among the 
model runs available was selected for each of the two percentiles. The 
selected simulations were SSP126/IPSL-CM6A-LR for 20th percentile 
- “optimistic” scenario - and SSP585/IPSL-CM6A-LR for 80th 
percentile - “pessimistic” scenario (Figure 2). It should be noted that 
even though they represent the state of the art in climate simulations, 
the global models of the ISIMIP3b suite can have poor representations 
of the terrain feature, especially when SIDSs are concerned. 
Specifically, the IPSL-CM6A-LR GCM represents only the main island 
in Fiji (Viti Levu) as land. Despite these approximations, no other 
option, such as regional downscaling of such models, was available at 
the time of the study. The Continuum model forced with these two 
selected GCM simulations generated two discharge time series from 
2016 to 2100, and this timespan was split into two parts so as to 
consider two different reference periods: medium-term projected 
climate conditions (2016–2060), and long-term projected climate 
conditions (2061–2100). The Continuum model results, analyzed with 
a statistical approach, were then used to identify the design discharge 
for the return periods of 2, 5, 10, 20, 25, 50, 100, 200 and 250 years for 
all the streams in all scenarios considered (i.e., current climate 
conditions, plus four projected climate scenarios: medium-term 
“optimistic” and long-term “optimistic,” medium-term “pessimistic” 
and long-term “pessimistic”). Flood protection measures especially 
close to urban areas play a dominant role in determining impact and 
risk figures. As information on the level of protection is rarely 
available, assumptions are made on the shortest return period to 

TABLE 1 Internally displaced people in Fiji and Vanuatu due to riverine flood from 2008 to 2022, according to the Internal Displacement Monitoring 
Centre (IDMC).

Country Year Event name
Date of event 

(start)
Internal displacements Hazard type

Fiji 2012 Fiji: Flood – 01/01/2012 2012-01-01 3,600 Flood

Fiji 2012 Fiji: Flood – 01/01/2012 2012-01-01 15,000 Flood

Fiji

2017 Fiji: Viti Levu Flood – 

08/02/2017 – Nawaka 

District

2017-02-08 190 Flood

Fiji

2021 Fiji: Floods – Central 

Division – 02/05/21 – 

Nasinu Municipality, 

Naitasiri Province

2021-05-02 5 Flood

Fiji

2021 Fiji: Floods – Countrywide 

– 02/03/2021 – Ba District

2021-03-02 2 Flood

Fiji

2022 Fiji: Flood – Nadi – 

05/02/2022

2022-02-05 130 Flood

Fiji 2009 Fiji: Flood – 01/01/2009 2009-01-01 9,400 Flood

Vanuatu 2014 Efate Flash Floods 2014-10-06 200 Flood
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be  considered. Since flood defenses are related to the values to 
be defended and to the spending capacity of a country, GDP has often 
been considered as a good proxy for flood defenses at national level 
(see e.g., Rudari et al., 2015). In this study, we assumed that rivers in 
Fiji are defended up to a 5-year event, i.e., events that have less than a 
5-year return period cause no damage to assets, while in Vanuatu even 
a 2-year event would cause some losses. This difference can be justified 
by a higher GDP per capita in Fiji (World Bank, 2022) and a 
consequent propensity to flood protection investment (Corugedo 
et al., 2023).

Long-term simulations were analyzed statistically to extract annual 
discharge maxima and to estimate extreme value distributions in all 
representative river sections along the simulated river network for both 
the historical and future climates. We  tested various analytical 
probability distribution functions on each set of discharge peaks, 
including the Generalized Extreme Value (GEV), Log-normal, 
Gamma, Weibull, Gumbel, Normal, Exponential, Generalized Pareto, 
and Log-Pearson. For each fitted probability distribution we calculated 
several quantiles, which presented finer refinement around both tails 
of the distribution, and we compared these with the empirical ones. 
The probability distribution with the minimum root mean square error 
between the empirical and the fitted quantiles was then selected.

It should be noted that the reliability of the results substantially 
diminishes as the return period increases, since the analysis is based 
on only around 40 years of data. Lastly, discharge values were used to 
feed the inundation model REFLEX (Arcorace et  al., 2019) that 
performs a hydro-geomorphological computation to provide hazard 
maps for each return period, i.e., maps of flood depth and extent over 

large areas for each return period. REFLEX was developed for a rapid 
identification of flooded areas of major rivers, and is an expansion of 
the Height Above the Nearest Drainage (HAND) approach (Nobre 
et al., 2011), designed as a reliable and slim tool able to provide rapid 
inundation mapping, constraining the possible geomorphological 
flood extent with the available flood volume. The REFLEX model 
starts from an initial streams and basins delineation derived from a 
Digital Elevation Model (DEM). The Strahler method is then used to 
order each stream and corresponding sub-basin. Concerning 
floodplain delineation, the HAND methodology is adopted to derive 
the relative soil gravitational potentials from topography. A HAND 
map is created for each river order, starting from the lowest one. 
Lastly, flood extent and depth information are derived for each 
sub-basin sequentially merging the HAND maps, using an optimized 
flood water stage resulting from a water balance between the volume 
underlying the HAND maps and the flood water volume. The 
limitations on flood plains, where the grid-based watershed 
delineation is more delicate, were solved by implementing the 
D-infinity approach, in order to increase the level of dispersion of flow 
direction over flat areas, and developing a coastal expansion 
methodology able to attribute the pixels falling outside of the main 
watershed to the nearest, and most appropriate, basin.

Both the hydrological model Continuum and the inundation 
model REFLEX require a DEM as the base raster data for identifying 
the model grid and deriving the main hydrological features. The 
FABDEM (Hawker et  al., 2022) with a spatial resolution of 1 
arc-second (∼30 m) is considered one of the best suited global DEMs 
available for hydrological and hydraulic modeling, and was thus used 

FIGURE 2

Model projections of future climate scenarios from ISIMIP3b. The green and red lines represent the optimistic and pessimistic scenarios (respectively 
SSP126/IPSL-CM6A-LR and SSP585/IPSL-CM6A-LR) used in this work.
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for implementing the hazard modeling chain, for Fiji and 
Vanuatu separately.

As usual in hydrological modeling practice, the DEM was 
aggregated to a coarser spatial resolution (1 km) to drastically reduce 
the computational load of the simulations, while preserving a good 
level of detail in representing the main hydrological processes (see e.g., 
Aerts et al., 2022; Li et al., 2022 for discussion on result dependency 
on resolution in hydrologic models). For the inundation model, where 
a more detailed representation of the local morphology is required, 
the original DEM resolution (∼30 m) was maintained.

The estimate of the soil characteristics required by Continuum 
was derived from maps of soil fraction in sand and clay at 250-m 
spatial resolution obtained by the ISRIC SoilGrids (Hengl et al., 2017) 
maps combined with land cover information at 300-m resolution 
derived from the ESA-CCI Land Cover map v2 (European Space 
Agency, 2017). The same map was used to characterize vegetation 
cover, which plays a key role in modeling evapotranspiration.

2.2.3 Exposure and vulnerability evaluation
The exposure model for Fiji and Vanuatu considers people 

(residents, employees, and students), buildings (houses and 
workplaces), and agricultural areas, with the aim of describing the 
different population distributions introduced in Sub-section 2.1. To 
this end, various data sources were integrated: (i) statistical databases; 
(ii) available exposure models; (iii) global datasets on population 
distribution, settlement identification, and land use/land cover; and 
(iv) building footprints.

The primary statistical data source (i) considered for population 
distribution was the national census, which provides an official count 
of population, dwellings, and households. In Fiji, the most recent 
census of population and housing was conducted in 2017 (Fiji Bureau 
of Statistics, 2017). The country consists of 86 Tikinas (administrative 
level 3), which are aggregated into 15 Provinces (administrative level 
2). These Provinces, in turn, are grouped into 4 Divisions 
(administrative level 1). In Vanuatu, the most recent census of 
population and housing was published in 2020 (Vanuatu National 
Statistics Office, 2020). Vanuatu is divided into 6 Provinces 

(administrative level 1) and 66 Area Councils (administrative level 2). 
Figure 3 illustrates the population distribution for Fiji and Vanuatu, 
respectively, at administrative levels 3 and 2.

Furthermore, another statistical data source that was consulted 
and utilized for specific figures is the International Labour 
Organization (ILO) database (International Labour Organization, 
2022). This database encompasses a comprehensive range of 
information related to the labor market, including data on 
employment by economic sector adopted in the study. The ILOSTAT 
entry page provides access to country-specific or subject-specific 
statistics, along with information on concepts and definitions. 
Considering these two primary sources, the relevant statistical 
information pertinent to this study was extracted (Table 2).

The existing exposure model (ii) from PCRAFI (Pacific 
Catastrophe Risk Assessment and Financing Initiative, 2015) Project 
was used to derive asset attributes. The PCRAFI model is a point 
vector layer comprising about 140,000 elements, with attributes to 
describe the occupancy type, the number and type of buildings, the 
number of stories, the floor area and the economic value of each asset. 
The occupancy types considered in this model are industrial, 
residential, commercial, infrastructure, public and other. In this case 
study, commercial, infrastructure and public have been merged to 
describe the services category (Figure 4).

Several global datasets on population distribution, settlement 
identification, and land use/land cover (iii) are available. In the study, 
the analysis was performed with the data from the census available at 
administrative level 2. To evaluate the representativeness of the data 
and the coherence among the datasets available, these values were 
compared with two global products: High-Resolution Settlement 
Layer at 30-meter resolution (CIESIN, 2016) and WorldPop at 
100-meter resolution (Bondarenko et  al., 2020). The two datasets 
provide a spatial distribution consistent with the census. Some 
differences can however be noticed. For Fiji, the greatest differences 
are found in the inland area, which is more rural and difficult to 
survey. For Vanuatu, the greatest differences are concentrated in the 
northernmost island, where the global products underestimate 
compared to the census.

FIGURE 3

Residential population (A) and workers in agricultural, service and industrial sectors (B–D) at the administrative levels of reference for Fiji (admin 3) and 
Vanuatu (admin 2).
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FIGURE 4

Assignment of residential population to their homes (A) and workers in service sector to their workplaces (B). Residence population and worker totals 
from census were downscaled to building level, considering the “effective” area of each building.

While not strictly necessary for the construction of the exposure 
model, these layers may help the application of the methodology to 
other cases where local data are not available. To identify the cropland 
and grazeland areas in both countries, the ESA global land cover map 
at 10-meter resolution based on both Sentinel-1 and Sentinel-2 data 
(Zanaga et al., 2020) was used. The GHS-SMOD R2022A settlement 
layer (Schiavina et al., 2022) were used to identify the rural and urban 
areas for both countries.

The OpenStreetMap (OSM) (2020) layer of building footprints 
updated in 2020 was adopted (iv).

From these datasets, a high-resolution exposure model was 
created. This model meticulously characterizes built-up areas at 
building scale as a vector layer, where each polygon represents a 
building footprint taken from the OSM building footprint layer, with 
attributes drawn from the PCRAFI model. Additionally, it incorporates 
statistical data and land cover/use information. Following this, 
building occupancy was assigned from PCRAFI data. Residential 

population and worker totals at reference administrative level 
(Figures 3B–D) were downscaled considering the “effective” area of 
the building, i.e., building footprint area multiplied by the number of 
stories. The results are shown in Figure 4. To avoid double counting, 
a procedure that linked each worker to his/her home and workplace 
(based on the minimum geometric distance between the two) was 
applied. The association was guided by the criterion of minimizing the 
distance between each industrial or service building, cropland or 
grassland area, and each residential dwelling. Initially, each person 
employed in a specific sector was assigned to the nearest house within 
a designated distance, such as a radius of one kilometer. Subsequently, 
this procedure was iterated, gradually increasing the radius to 
accommodate workers who were not assigned in previous iterations, 
until all workers were matched with houses. The same iterative process 
was applied to users of basic services. Upon completion of the process, 
each house was linked with its occupants’ workplaces, the schools 
attended, and the hospitals providing services. In this way, workers 
who lose both home and job through a single event are counted only 
once. The procedure for building the exposure model is detailed in the 
Supplementary material.

For the built-up area, the set of physical vulnerability functions 
from HAZUS (Federal Emergency Management Agency, 2010) was 
adopted. The FEMA vulnerability library comprises water depth-
damage functions for buildings and is developed on the basis of 
20 years of empirical damage data, integrated with functions developed 
by the US Army Corps of Engineers (USACE). The curves depend on 
building type, number of floors, and presence of a basement, and 
provide damage estimates both for building content and structure.

The sensitivity of the results on the choice of the vulnerability curves 
was explored through some comparisons with the CAPRA vulnerability 
library (Cardona et al., 2012), and with the JRC (Joint Research Centre) 
curves (Huizinga et al., 2017). Figure 5 shows a comparison between 
different vulnerability curves for residential buildings: HAZUS (single-
story, no basement), JRC (single-story, no basement) and CAPRA 
(single-story, concrete and masonry). The final choice also depended on 
the type of attributes characterizing the exposure layer. In this context, 

TABLE 2 Statistical information derived from census surveys and from 
the ILO database.

Census and ILO data Vanuatu Fiji

Population 300,019 (2020) 882,407 (2017)

Employed population 78,004 353,955

Dependency ratio 54% 75%

Percentage of employed population 26% 40%

Percentage of employment in agriculture 

(% of total employment, 2019)

57% 18%

Percentage of employment in service 

sector (% of total employment, 2019)

29% 68%

Percentage of employment in industry 

(% of total employment, 2019)

14% 14%

Full time students (as percentage of total 

population)

29% 9%
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the HAZUS vulnerability library was the preferred choice compared to 
others, as it aligns most closely with the building characterization in the 
available exposure model. Specifically, it can be effectively linked to 
buildings using key elements such as usage and the number of floors. In 
contrast, using CAPRA curves (which are based on construction 
material) would necessitate additional assumptions about the 
correspondence between building usage and construction materials. 
Along the same lines, opting for the JRC library would not permit the 
differentiation of buildings based on their number of floors.

The gray area in Figure 5 represents percentage values of building 
damage that no longer allows the edifice to be used. As mentioned in 
Sub-section 2.1, we assumed the threshold to be when the building 
experiences “substantial to heavy damage,” and literature (e.g., 
Lagomarsino and Giovinazzi, 2006; Tyagunov et al., 2006) suggests the 
range to be between 40 and 60%. In the absence of literature suggesting 
a value within the 40–60% range to define when a building becomes 
unusable, we made the following considerations. We opted to exclude 
the extremes of the range and initially considered the middle value, 
50%. However, this corresponds to a water depth of about 4.6 m for 
HAZUS curves (structure), which seems highly unrealistic. Instead, 
we chose 45%, corresponding to a water depth of 2.8 m, which we find 
more reasonable. Additionally, upon comparing other vulnerability 
curves, we observed that the range of water depth values is narrower at 
45% damage (standard deviation 0.52 m) than at 50% (standard 
deviation 1.02 m). In essence, at 45% damage there is reduced epistemic 
uncertainty in the physical vulnerability compared to 50% damage.

In the context of agriculture, there is limited or no publicly 
available data on the spatial distribution of croplands in Fiji and 
Vanuatu, and global layers such as MAPSPAM3 (You et al., 2014) 

3 https://mapspam.info/

provide little useful information for these two countries. This 
limitation implies that it was not possible to reference the 
seasonality of single crops, as they cannot be spatially distinguished. 
Given these constraints, we opted for a single value to represent the 
phenomenon of plant asphyxia, encompassing floods with different 
possible durations. Some reference sources suggest 0.4–0.5 m as the 
minimum water depth causing damage to crops for different 
durations. These sources include Agenais et al. (2013) and Fӧrster 
et al. (2008) for maize, and Shrestha et al. (2021) for rice. The latter 
study provides a review of other models, among which the value of 
0.5 m appears to achieve a certain consensus. Therefore, the 
vulnerability function adopted for agriculture is a binary parameter, 
“flooded” or “not flooded.” It categorizes a field as flooded if it 
cannot support agriculture and pastoralism for farmers, leading to 
displacement. This classification is based on a threshold water depth 
of 50 cm.

Changes in exposure and vulnerability between current and future 
climate conditions were not considered in future projections. 
However, it is worth emphasizing that factors such as population 
growth, distribution, and the rapid urban sprawl that decreases natural 
areas available to absorb floodwater have the potential to significantly 
alter the future “riskscape.”

2.2.4 Risk computation
In probabilistic risk assessment for natural hazards, such as 

earthquakes, floods or hurricanes, it is essential to account for various 
scenarios of these events to understand their potential impact. 
Typically, these assessments involve a large set of scenarios to simulate 
the potential intensity and occurrence of the hazard over a specific 
area. However, the approach to be chosen depends on the geographical 
scope of the assessment to be conducted. When examining a wide 
geographical area, it is not advisable to rely solely on hazard maps for 
the computations. This is because hazard maps represent the 

FIGURE 5

Vulnerability curves for residential buildings from different sources. For those ratios of damage in the gray area, the building is considered unable to 
provide its function (home, job), thus triggering displacement. Curves from CAPRA (blue) differentiate based on constructive typologies (different 
hatching typologies represent different constructive typologies), while those from HAZUS are based on occupancy and are available for both structure 
and content (solid and dash-dotted black line, respectively). Residential curve for Oceania by JRC is represented in red.
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likelihood of an event occurring at specific locations but do not 
inherently account for how these events may be spatially correlated. 
In other words, hazard maps may not adequately capture the 
interdependencies or simultaneous occurrences of events across the 
entire region. Therefore, for large-scale assessments, use of a 
comprehensive scenario set that considers these spatial correlations is 
recommended in order to make more accurate risk assessments.

On the other hand, when the assessment focuses on a very specific 
and small geographical area, it may be  acceptable to conduct 
computations directly using the hazard maps. In this case, the spatial 
correlations may have less impact because what is looked at is a 
confined area where events normally strike with similar intensity in 
the whole area considered. In this case, hazard maps can provide a 
reasonable approximation of the risk within this limited scope without 
the need for an extensive scenario set (see e.g., Arrighi et al., 2018). 
This was the case of the flood displacement risk for Fiji and Vanuatu 
presented in this paper.

Each hazard map described in Sub-section 2.2.2 served as input 
for evaluating the impact on potentially displaced individuals. To 
accomplish this, we  took the following action. For each feature 
(polygon) in the exposure model, we computed the average value 
of water depths over the feature footprint, and we assigned this 
value to the considered feature (residential buildings for residential 
population, industrial or service buildings for population working 
in these sectors, croplands or grazing areas for employees in 
agriculture/pastoralism, and schools for students). Damage 
assessment was conducted at the individual building level using the 
vector exposure model and the HAZUS (Federal Emergency 
Management Agency, 2010) vulnerability curves. Elements that 
exhibited damage beyond the damage threshold of 45% were 
considered unable to fulfill their functions (e.g., provide shelter, 
workplace), resulting in displacement. The population associated 
with these assets was deemed susceptible to displacement. 
Individuals who experienced both housing and livelihood loss in 
the same scenario were counted only once to avoid duplication. To 
take into account that only a proportion of the people who would 
lose their means of livelihood would displace, a reduction factor 
was applied. While there is no specific dataset to be used to quantify 
this parameter, we applied a reduction factor of 0.35 in accordance 
with firsthand questionnaires applied in other parts of the world. It 
is recognized that in the present case study, this is a mere expert 
speculation and additional data should be retrieved for a proper 
calibration of this parameter. On the other hand, the dependency 
ratio from the censuses of Fiji and Vanuatu, respectively 54 and 
75%, were used as proxy for the household composition. This 
accounts for individuals who would move along with the 
breadwinner. The number of potentially displaced people across 
various sectors was aggregated at the relevant administrative level. 
These impacts were then used to determine the average annual 
displacement (AAD) and probable maximum displacement (PMD) 
values. While AAD expresses an average number of expected 
displacements due to flood events, it does not capture signals from 
rarer and more intense events. For this reason, it is useful to 
compare the PMD curves for current and projected conditions, 
which show the number of potentially displaced people in 
connection to frequent (low return periods) or rare (high return 
periods) events. For each administrative level, the PMD curve is 
constructed by plotting the number of displacements originated by 

each hazard map versus the return period for each hazard map, and 
then the integral under that curve is calculated, and this represents 
the AAD. The same process is repeated at national level.

3 Results

3.1 Flood hazard maps

Flood hazard mapping was conducted for various return periods 
following the methodology outlined in Sub-section 2.2.2. These maps 
serve as the foundation for the displacement estimation discussed in 
this section.

Considerable effort was dedicated to gathering alternative data 
sources on flood hazards from authorities in Fiji and Vanuatu, 
leveraging direct contacts at the local level through IDMC. Regrettably, 
official hazard maps for these two countries are unavailable, 
precluding the use of specific official data for benchmarking our 
results. However, some studies from UNOSAT, part of the project 
“Commonsensing: Building Climate Resilience with Small Island 
Nations,”4 have identified flood-prone areas using the basic HAND 
geomorphological method. Given that the REFLEX methodology 
builds upon the HAND methodology, direct comparisons between 
the results are challenging due to inherent similarities in both 
mapping approaches.

The accompanying figures (panels a and b of Figure 6) depict 
details of the hazard maps for 10- and 100-year return periods in Fiji. 
Various shades of blue indicate increasing water depth. Noticeable 
disparities in spatial extent and heightened water depths are evident 
between the two maps, particularly for the 100-year return period. 
While areas impacted by the shorter return period affect limited 
portions of inhabited areas, the longer return period reveals more 
exposed assets that are vulnerable to flooding.

Soft validation can also involve cross-referencing satellite 
observations of past flood events to verify the agreement between 
delineated flood areas and hazard map extensions, particularly in 
areas observed post-event. A commonly used resource for this 
purpose is the Global Surface Waters Dataset from JRC (Pekel et al., 
2016), which generates maximum water extension maps using three 
million Landsat satellite images spanning the past 32 years at a 
30-meter resolution. Unfortunately, optical data are often affected by 
cloud, and the extension available for Fiji and Vanuatu, despite those 
islands experiencing relevant events within the observation time 
window, do not show particularly interesting results, and the water 
extension is mainly limited to the permanent or seasonal water bodies.

While comprehensive datasets may be  lacking, isolated events 
have been documented by UNOSAT, such as during Cyclone Yasa in 
2020.5 Flooded areas were identified in two specific locations. Figure 6 
(panels c and d) juxtaposes these flooded areas with the 10-year flood 
hazard maps, revealing a notable alignment between the observed 
flooded locations and the hazard map delineations.

4 https://www.unitar.org/sustainable-development-goals/united-nations-

satellite-centre-unosat/our-portfolio/

commonsensing-building-climate-resilience-small-island-nations

5 https://unitar.org/maps/all-maps?page=18
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3.2 Comparison with historical 
displacement records

A direct validation of the methodology with data from Fiji and 
Vanuatu alone was not possible because of the small number of events 
reported in the IDMC database (§2.2.1). In the case of Vanuatu only 
one event is reported, while six events are recorded for Fiji in the 
period 2008–2022. An empirical AAD of 1,890 per year can be derived 
for Fiji, but the reliability of the data remains low. This number has the 
same order of magnitude as the model-derived AAD of 936 
displacements, corresponding to about 0.1% of the overall population 
(Table 3). However, this cannot be considered as a sound scientific 
validation, due to the very limited observed time series.

For a more comprehensive evaluation of the model performance, 
we expanded the impact dataset by incorporating data from additional 
countries in the East Asia and Pacific region, encompassing all flood 
events (Internal Displacement Monitoring Centre, 2023). To facilitate 
cross-country comparisons, the numbers were normalized by the total 
population, ensuring a meaningful assessment of the figures across 
different nations. Subsequently, we analyzed the estimated figures for 
Vanuatu and Fiji in relation to those recorded for the broader 
geographical region.

Figure  7 reveals that the AAD value of 71  in Vanuatu, 
corresponding to 0.03% of the total population, aligns closely with the 
median values for current conditions. In contrast, AAD in Fiji settles 
close to the third quartile, indicating a heightened susceptibility to 
flood impacts. Nevertheless, it is noteworthy that both estimates fall 

within the overall range recorded for countries in the same geographical 
region, emphasizing the contextual validity of the findings.

In projected climate conditions, while AAD for Vanuatu stays 
within the current interquartile boundaries of the recorded regional 
events, AAD for Fiji significantly exceeds those limits (Figures 7).

3.3 Comparison between current and 
projected average annual displacement

Fiji results are produced for different administrative levels from 0 
(country level, Table 3) to level 3, corresponding to Tikina (level 2 is 
not shown here for the sake of brevity). The analysis at country level 
shows an AAD value of around 936 people, corresponding to about 
0.1% of the overall population. The results indicate that AAD values 
are double those in current conditions in the optimistic and the 
pessimistic medium-term scenarios (Table 3). Instead, both AAD 
estimates at country and province levels (Table 3), and in Tikina units 
(admin level 3), show that the two scenarios diverge toward the end 
of the century (long-term projections), with the AAD value triplicating 
in the pessimistic long-term scenario. While in a relevant number of 
Tikinas (admin 3) the expected level of displacement increases, their 
AAD spatial pattern in Tikina units is comparable when considering 
results in current climate conditions in comparison to the projected 
ones (Figure 8).

Vanuatu results are obtained at administrative level 0 (country 
level, Table 3) through to level 2 (districts). The analysis at country 

FIGURE 6

Hazard maps detail for Fiji. The upper panels present a comparison between the 10-year return period (A) and the 100-year return period (B), blue 
shades represent different water depths, the lower panels (C,D) present in red satellite-observed flooded areas for an event in 2020 due to Cyclone 
Yasa which is compared with the modeled Hazard maps (Satellite elaborations from UNOSAT, acquisitions from Sentinel-1 on 18-19/01/2020, event 
GLIDE, Number TC20201215FJI).
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FIGURE 7

Comparison between the simulated AAD for Fiji (blue) and Vanuatu (red) with the empirical average from the IDMC database. In the box-plot graphs 
the central mark denotes the median, and the lower and upper edges of the box represent the 25th and 75th percentiles, respectively. The whiskers 
extend to the most extreme data points that are not classified as outliers, while outliers are individually plotted using the “+” marker symbol. Solid fill 
symbols represent the “pessimistic” scenario, while no fill symbols denote the “optimistic” scenario.

level shows an AAD value of around 71 people, corresponding to 
about 0.03% of the overall population. The level-1 AAD results under 
current climate conditions show that a province in the north (Sanma) 
is by far the province most at risk (Table 3). The same also applies 
under future conditions, regardless of whether the optimistic or 
pessimistic projections are considered, and the time horizons involved. 
For some provinces, such as Penama and Torba, the overall AAD 
figure is small, and it does not substantially change in projected 
climate conditions. Other provinces show a significant increase, 
among them Tafea, where AAD is projected to strongly rise under the 
pessimistic long-term scenario, mainly due to the increase of 
displacement in the northern Erromango island. For all provinces in 
both countries, the mid-term pessimistic projection and the long-term 
optimistic projection show very similar results, identifying a clearly 
worsening path.

Regarding the disaggregation of AAD in terms of origin of the 
displacement (rural/urban), in Fiji almost 60% of displacements are 
currently originated in rural areas (Table  4). Such a proportion 
decreases significantly to 50% in long-term projected climate 
conditions. In Vanuatu, three-quarters of displacement is likely to 
originate from rural areas in current climate conditions. This 
proportion decreases to 54% under projected conditions.

It must be noted that factors such as future population growth and 
changes in distribution (e.g., urbanization), which might significantly 
change these estimates, are not considered in the modeled future 
scenarios. This increase in the urban share is likely to be even more 
pronounced in reality, given that the projected scenario does not 
account for population growth and the concurrent increase 
in urbanization.

Figure 9 depicts the causes of displacement as a proportion of 
AAD. In Fiji, under current climate conditions, nearly 70% of 
displacements are attributed to the loss of housing. Among the 

TABLE 3 AAD estimates for Fiji and Vanuatu at administrative levels 0 
(country) and 1 (provinces).

Admin
Current 
cond.

Opt. 
mid-
term

Opt. 
long-
term

Pess. 
mid-
term

Pess. 
long-
term

Total Fiji 936 1,637 1823 1743 2,709

By Province

Ba 223 360 414 398 613

Bua 3 6 6 6 13

Cakaudrove 10 30 31 30 69

Kadavu 0 0 0 0 0

Lau 0 0 0 0 0

Lomaiviti 0 0 0 0 0

Macuata 61 186 231 188 402

Nadroga_Navosa 81 146 165 159 228

Naitasiri 11 36 42 26 92

Namosi 0 0 0 0 0

Ra 1 1 2 2 3

Rewa 294 461 496 468 595

Rotuma 0 0 0 0 0

Serua 168 284 305 344 507

Tailevu 84 127 131 122 187

Total Vanuatu 71 118 163 163 325

By Region

Malampa 8 9 14 13 28

Penama 1 1 1 1 1

Sanma 56 99 130 131 247

Shefa 2 2 3 3 7

Tafea 3 6 14 14 38

Torba 1 1 1 1 4
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remaining 30% connected to the loss of livelihoods, people working 
in the service sector are the most affected. Similar distribution is 
observed in long-term climate projections.

In Vanuatu similarly, under current climate conditions, nearly 
60% of displacements are attributed to the loss of housing. Concerning 
the loss of livelihoods, individuals working in the agricultural sector 
are by far the most affected group (around 30%), while people working 
in the service sector are around 7%. The distribution undergoes a 
significant change in long-term climate projections, where the ratio of 
displacement linked to the loss of houses rises to more than 75 and 
80%, respectively, in the optimistic and pessimistic scenarios. 
Accordingly, the share of the agriculture sector reduces to 15 and 10%, 
respectively, in the optimistic and pessimistic scenarios. Displacements 
resulting from job loss in the service and industrial sectors show a 
progressive increase as conditions worsen, transitioning from the 
current to the optimistic long-term scenario and further to the 
pessimistic long-term scenario.

While lack of services affects people’s wellbeing, it cannot 
be  directly associated with a life-saving decision (or extremely 
precarious physical living conditions), at least in the short term, and 

therefore we assume that it is not sufficient to immediately trigger 
displacements. Nevertheless, the combined criticality of loss of 
housing and/or work and a general lack of services in the area can 
be a worsening factor that could also drive to displacement on a 
longer time window. In the present study, this was not considered 
as a factor inducing displacement directly. However, this can be a 
worsening element which increases vulnerability, leading to a 
higher displacement propensity, and should be  taken into 
consideration when formulating future policies. In Fiji, people who 
lose access to health and education services will double in the 
pessimistic long-term scenario compared to the current conditions. 
It is worth noticing that in Vanuatu floods do not affect health 
services in current conditions, while the number of students who 
lose access to schools increases considerably under long-term 
climate scenarios (Table 5).

3.4 Comparison between current and 
projected probable maximum 
displacement

In Fiji, displacements would increase significantly under projected 
climate conditions with respect to current conditions (Figure 10A). 
For instance, for a 50-year return period (RP), displacements more 
than double in the projected optimistic scenario and almost triple in 
the projected pessimistic scenario. Similar proportions are estimated 
for RP = 5 years and RP = 250 years. It is worth noting that in the long-
term pessimistic scenario, a 250-year event is associated to around 
23,000 potentially displaced people, corresponding to 3% of the 
current overall population.

In Vanuatu, the PMD curves show that an event with a 50-year 
return period could trigger up to 330 displacements under current 

FIGURE 8

AAD for Fiji (A) and Vanuatu (B) in current climate conditions and in long-term projections under optimistic and pessimistic scenarios. Results are 
aggregated at administrative level 3 for Fiji and level 2 for Vanuatu.

TABLE 4 Origin of displacements (proportion of AAD) at country level for 
Fiji and Vanuatu.

Origin
Current 
cond.

Opt. 
long-
term

Pess. 
long-
term

Fiji
Rural 61% 55% 50%

Urban 39% 45% 50%

Vanuatu
Rural 72% 58% 54%

Urban 28% 42% 46%
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conditions, but this figure could almost double in the long-term 
optimistic scenario and quadruplicate in the long-term pessimistic 
scenario (Figure 10B).

4 Discussion and concluding remarks

The main novelty introduced by this study concerns impacts of 
riverine floods on places of employment, implying a potential loss of 
livelihood that may cause displacement. The methodology is rooted 
in a comprehensive probabilistic risk assessment, incorporating 
climatic, hydrological and hydraulic modeling, as well as estimating 
the impacts on physical assets leading to displacement.

The assessment quantifies the risk in terms of Annual Average 
Displacement (AAD) and Probable Maximum Displacement (PMD), 
considering both current climate conditions and medium to long-
term projections based on optimistic and pessimistic scenarios. The 
benefits of AAD and PMD quantification lie in their ability to 
encompass rare scenarios, providing a more exhaustive understanding 
of potential displacement risks. Applied for the first time in the Pacific 
islands of Fiji and Vanuatu, the methodology yields valuable insights 
into the proportion of housing and livelihoods at risk, along with the 
quantification of potential disruptions to critical services such as 
education. Losing access to such services may not trigger displacement 
per se, but it acts as an aggravating factor that heightens vulnerability 
and makes movement more likely.

The methodology emphasizes a physically-based modeling 
approach rather than relying solely on historical data and empirical 
models, enabling simulation of future conditions in explicit terms.

The anticipated tripling of AAD in Fiji and quadrupling in 
Vanuatu underscores the urgency of addressing these risks. This is 
valid also for rarer events, e.g., for a 50-year return period, which 
might pose serious challenges in managing the displacement situation, 
exacerbating the potential criticality of the situation in terms of 
general disaster management. PMD curves further highlight a 
frequency shift, suggesting that events with a 250-year RP under 
current conditions may become more frequent by the end of the 
century, occurring on average every 5 to 25 years.

Crucially, the method allows for the differentiation of 
displacement causes, distinguishing between house loss and job loss. 

FIGURE 9

Cause of displacements (proportion of AAD) at country level for Fiji and Vanuatu.

TABLE 5 Average annual number of people who lose access to education 
and health services in Fiji and Vanuatu.

Admin
Current 
cond.

Opt. 
mid-
term

Opt. 
long-
term

Pess. 
mid-
term

Pess. 
long-
term

Fiji

Education 72 100 117 106 159

Health 974 1,456 1,467 1,477 1786

Vanuatu

Education 65 198 352 336 764

Health 0 0 0 1 36
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In Fiji, under current climate conditions, 70% of displacements are 
attributed to housing loss, with the remaining 30% attributed to the 
loss of livelihood. In Vanuatu, there is an approximate 60–40% split 
between displacements caused by housing loss and those caused by 
the loss of livelihood. This suggests that estimates focusing solely on 
housing loss are likely to be  significantly underestimated, as they 
overlook the impact of livelihood loss. In all the projected climate 
scenarios explored, a minimum of 20% of displacement results from 
job loss, confirming the importance of incorporating this aspect in 
vulnerability assessments also for future assessment.

This distinction offers actionable insights for implementing 
mitigation and adaptation measures. Explicitly differentiating the 
vulnerability by house typology, including loss of livelihoods and 
access to critical services, indirectly accounts for social and economic 
factors in determining displacement risk.

We acknowledge the data-intensive nature of the methodology, 
emphasizing the need for a robust data collection framework. With 
respect to traditional approaches, the proposed methodology requires 
greater effort during exposure model preparation, which needs to 
incorporate information not only on resident population but on 
occupation as well, distinctly mapping the relation between where 
people live and where people work to avoid double counting.

As a collateral implication of employing this method, 
we  emphasize the importance of differentiating the causes of 
displacement when collecting impact data on observed events. This 
enhances calibration of the vulnerability approach on the one hand 
and on the other strengthens knowledge of the factors to be accounted 
for in managing and reducing the displacement issue.

Direct validation of the methodology using historical data from 
Fiji and Vanuatu brought challenges due to the limited number of 
events reported in the IDMC database. While an empirical AAD for 
Fiji was estimated at about 1,890 displacements per year, the reliability 
of the data remains low. Despite a match with the model-derived AAD 
of 936 displacements at least in the order of magnitude, the scarcity of 
observed data limits the scientific soundness of this comparison.

While the overall approach shows promise, its scalability hinges 
on the availability of sufficient data to describe livelihoods and 
essential service features beyond residential population. However, the 
choices made in this study (e.g., use of dependency ratio to estimate 
the number of people who would be  displaced together with the 
breadwinner) are dictated by the intention to increase the portability 
of this method to the geographical areas where classic census data are 
available. We acknowledge that, in the absence of literature, certain 
assumptions had to be  made, especially regarding the damage 
threshold that makes houses uninhabitable and the proportion of 
people who would decide to move after experiencing loss of 
livelihoods. While the first one can be estimated to a certain extent 
from datasets, the second one would require firsthand data collection 
about displacement causes in past events (Table 5).

As climate-related risks escalate globally, this methodology opens 
avenues for similar assessments on a larger scale, contributing valuable 
insights for informed decision-making and adaptive strategies in 
vulnerable regions.

More specifically, the ability to estimate displacement numbers 
resulting from present and future climate change has significant policy 
implications across various sectors, including loss and damage, climate 
change adaptation and mitigation, and humanitarian aid and 
relief efforts.

Estimating displacement numbers due to climate change 
contributes to understanding the extent of loss and damage caused by 
climate-related events. This influences policies that revolve around the 
need for mechanisms to address the financial, physical and social 
impacts of displacement. A quantitative estimation in probabilistic 
terms may favor the development of insurance schemes, compensation 
mechanisms or liability frameworks to support affected communities.

Dimensioning the displacement issue with a prospective approach 
that highlights the main cause for displacement (e.g., loss of housing, 
loss of livelihood), disaggregated per sector, as well as some key 
aggravating factors (e.g., limited access to essential services) informs 
the design and implementation of risk reduction and 

FIGURE 10

PMD curves for current climate conditions and long-term projections under both optimistic and pessimistic scenarios: (A) Fiji, (B) Vanuatu.
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resilience-building measures to minimize future displacement and 
associated loss and damage.

Quantitative estimates of displacement numbers can also inform 
climate change adaptation strategies by identifying areas most vulnerable 
to displacement, in this case due to riverine floods. Policy responses may 
involve land-use planning, infrastructure development, and relocation 
programs aimed at reducing vulnerability and enhancing resilience in 
high-risk areas. In the context of humanitarian aid and relief, estimating 
displacement numbers is crucial for humanitarian agencies and 
governments to anticipate and respond effectively to the needs of 
displaced populations. Policy implications include the need for early 
warning systems, contingency planning, and coordination mechanisms 
to ensure timely and appropriate humanitarian assistance.

Furthermore, displacement estimates can inform resource 
allocation and funding decisions for humanitarian aid and relief 
efforts, ensuring that adequate support reaches affected communities.

When the dimension of the problem requires it, policies may also 
focus on ensuring the protection of human rights, including the rights 
of displaced persons, and promoting durable solutions such as 
voluntary return, local integration, or resettlement.

Overall, the possibility to estimate displacement numbers in 
present and future climate scenarios underscores the importance of 
integrated and proactive policy responses across multiple sectors. By 
addressing the challenges posed by climate-induced displacement, 
policymakers are given a tool to enhance resilience, reduce 
vulnerability, and uphold the rights and well-being of affected 
populations in the face of climate change.
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