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Anticipatory Action (AA), which involves timely and informed actions ahead of 
a crisis/impact, is increasingly being used/promoted as a way to mitigate the 
impacts of extreme climatic hazards, including droughts. Actions are initiated 
in anticipation of the occurrence of the hazard and its impacts, and depend 
on the lead time, likelihood of impact, as well as the effectiveness of, and the 
capacity to undertake such actions. A decision to initiate actions is taken with a 
support of the so-called trigger model that forecasts likelihood or magnitude of 
expected impact. To build efficient and credible AA trigger models, quantitative 
assessments of relationships between observed climate and environmental 
conditions, weather/seasonal forecasts, and variables expressing current sectoral 
and societal vulnerability (collectively referred to as indicators) and expected 
impacts, are required at varied lead times. These quantitative assessments are 
needed to: (a) avoid over-weighting (placing excessive trust in) non-skillful 
indicators; (b) avoid using several co-varying and correlated indicators (over-
emphasising their collective importance for the decision at hand); and (c) 
provide objective and defensible evidence for and consequently confidence 
in the AA trigger model. Motivated by the need to improve the current AA 
trigger model used for agricultural drought by FAO in Mindanao, a region of 
the Philippines which experiences periodic drought-related food insecurity, 
this study evaluates a range of climate and environmental indicators as a basis 
for developing a quantitative, objective trigger model. The analyses focus on: 
(i) an evaluation of efficacy of using a climate-only drought hazard index as 
an expression of impactful drought in the region, and (ii) an evaluation of the 
predictive utility of a set of indicators and formal statistical models combining 
these indicators, at various lead times. We show that the predictive utility of each 
indicator varies by season and lead time, highlight the varying skill of the trigger 
model and consequently advocate for transparent inclusion of model skill in the 
trigger mechanism.
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1 Introduction

Anticipatory Action (AA), which involves timely and informed 
actions ahead of a crisis/impact, is increasingly being used/promoted 
as a way to mitigate the impacts of extreme climatic hazards, including 
droughts. Actions are initiated in anticipation of the occurrence of the 
hazard and its impacts, and depend on the lead time, likelihood of 
impact, as well as the effectiveness of, and the capacity to undertake 
such actions. The development of effective AA involves several 
interlinked processes including: (i) the development of and agreement 
on pre-agreed actions (be it by humanitarian institutions, government 
structures, or individuals/communities); (ii) the financing of such 
actions (if needed); and (iii) agreement on a “trigger” which when 
reached will initiate a set of actions by different actors. A trigger model 
usually involves a forecast of the likelihood and magnitude of expected 
impacts using a formalised, quantitative, or semi-quantitative 
relationship between the expected impact and the observed climate 
and environmental conditions, weather/seasonal forecasts, as well as 
variables expressing current sectoral and societal vulnerabilities 
(collectively referred to as indicators). Actions are initiated when the 
likelihood of impact, as forecasted by the trigger model, exceeds a 
predetermined and agreed (trigger) threshold. Importantly, different 
actions are required at varying timescales leading to an impact, and 
therefore trigger models and indicators potentially vary with this 
lead time.

Anticipatory Action methodologies are being developed by a 
number of organisations (e.g., FAO, Red Cross, WFP, Start Network) 
with support of research projects and universities. Since the underlying 
science is relatively new, the concepts and nomenclature differ 
between organisations and individual implementations. In particular, 
trigger models vary and span such diverse approaches as machine 
learning, multivariate regression and qualitative models based on 
expert judgement.

To build efficient and credible AA trigger models, the quantitative 
evaluation of indicator-impact relationships are required, considering 
their dependence on seasonality, lead time, spatial scale of the impact, 
as well as confidence in the information collectively provided by the 
indicators, which is dependent on indicator co-variability and 
uncertainty. These quantitative assessments are needed to optimise, 
and perhaps more importantly, to articulate the predictive skill of a 
trigger model, as well as to provide objective and defensible evidence 
for and consequently confidence in the AA trigger model.

In 2020, an expert judgement-type trigger model was developed 
by FAO targeting agricultural drought in Mindanao, a region of the 
Philippines experiencing periodic drought-related food insecurity 
(FAO, 2020; Riquet, pers. comm., 2023). Motivated by the need to 
understand the confidence in and improve this model, the objective 
of this study is to evaluate a range of climate and environmental 
indicators and forecasts as a basis for developing a quantitative, 
objective data-informed trigger model. The analyses focus on: (i) an 
evaluation of the efficacy of using a climate-only drought hazard index 
as an expression of impactful drought in the region, and (ii) an 
evaluation of the predictive utility of a set of indicators and formal 
statistical models combining these indicators, at various lead times 
and seasons. The results allow for identification of critical challenges 
in the formulation of a trigger model for agricultural drought in 
Mindanao, but also highlight general recommendations which need 
to be considered when developing trigger models in the future.

1.1 Anticipatory action

Given the potential increased frequency and intensity of climate 
hazards under future climates and the high costs of responding to 
their impacts ex-post, preparing ahead of a forecasted hazard 
(ex-ante) to reduce its impact and its associated costs, can 
be beneficial from both a humanitarian and financial perspective. 
The latter approach embodies the principle of AA and bridges the 
gap between knowing when an impact is likely and reacting to an 
impact (traditional humanitarian response). Through AA and 
preparedness activities which reduce vulnerability to the hazard, the 
expected impacts (and hence resulting damages and losses) can 
be alleviated (IFRC, 2022). While forecasting the magnitude of a 
hazard/event and its associated impacts is an important part of AA, 
the value of AA lies in preparing populations, communities and 
businesses ahead of the hazard event, thereby lessening the impact 
through protecting or moving populations/assets and/or 
strengthening their capacity to cope with the event (FAO and WFP, 
2023). Such preparations for an anticipated event may involve 
activities which, even if a hazard does not materialise, increase the 
resilience of the population and reduce the impact they suffer from 
future climate hazards.

The development of AA frameworks and approaches involves 
interconnected components (OCHA, 2023) and the approach often 
depends on several factors, including: (i) the beneficiary of the actions 
(and their acceptance); (ii) the people/organisations undertaking the 
actions (and their agreement on the the most appropriate actions); (iii) 
the intended purpose of the action (and whether it is likely effective); 
(iv) the required resources (and whether their use justifies the likely 
level of reduced impact). For the purpose and focus of this paper, FAO 
highlights 5 key ingredients of Anticipatory Action (FAO, 2021):

 • Crisis timeline—understanding the timing of past occurrences of 
impact, and actions taken in response;

 • Early warning systems—a monitoring system capable of detecting 
indicator thresholds leading to potential future impact and 
correspondingly raising an alarm;

 • Anticipatory actions—actions tuning and ramping up 
preparation where needed, to facilitate and optimise impact-
reducing preparatory actions;

 • Flexible financing—supporting flexibility of anticipatory actions, 
particularly with climate-driven impacts which know no 
administrative boundary;

 • Evidence—demonstrating—over the long term—the financial 
and socio-economic benefits and reduced human impacts.

In order to maintain clarity around the analyses reported in this 
study, we adopt the terminology used in the FAO Technical Standards 
document (FAO, 2023), distinguishing trigger mechanism (overall 
framework and process for the initiation of action), trigger model (a 
formalised relationship between predictor(s) of impact or hazard and 
the magnitude or likelihood of the expected impact or severity of the 
hazard), trigger (a score made of one or a set of indicators generated 
by the trigger model) and trigger threshold (a particular value of the 
trigger at which action is initiated). The mechanism that links these 
areas and actions is referred to as an AA Protocol. It serves as a 
standardised operating procedure for implementing the AA approach 
in practical terms.
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1.2 Drought – in the region and in 
Philippines

Drought is a natural phenomenon arising due to climate 
variability, occasionally at any location on Earth, and it can become 
an impactful, destructive natural hazard when it intersects with socio-
economic vulnerabilities. Since the 1900s, over two billion people have 
been negatively affected by drought and a further two million have 
died from it worldwide (van Loon, 2015). With increased 
anthropogenic global warming, drought occurrence and intensity are 
projected to increase, and impacts are anticipated to be increasingly 
more severe (Trenberth et  al., 2014). Monitoring, forecasting and 
dissemination of drought is routinely performed up to several months 
in advance. Increasingly, however, forecasting is extended to include 
drought impacts rather than just the drought hazard (Sutanto 
et al., 2019).

Drought in the Southeast Asia is driven by processes linking 
variation of the monsoon season, and off-season rainfall to 
phenomena such as ENSO (El Niño Southern Oscillation) and IOD 
(Indian Ocean Dipole) at the year-to-year time scale, and PDO 
(Pacific Decadal Oscillation) at the decadal time scale (UNESCAP, 
2021). During recent El Niño years—2015/2016, as well as 2018–2020, 
Southeast Asia experienced the most severe droughts in decades, 
affecting over 70 percent of its land area. During the peak periods, 
more than 325 million people faced moderate drought conditions, 
with over 210 million enduring severe drought conditions 
(UNESCAP, 2021).

Drought impacts in the Philippines are considerable: the 2009–
2010 moderate El Niño event led to drought damages amounting to 
around USD 240 million, while the drought damages caused by a 
very strong El Niño event in 2015–2016 nearly reached USD 90 
million as of February 2016 (Perez et al., 2016). During the 2019 El 
Niño related drought, agricultural production reduced by 20% 
across the Philippines (Perez et  al., 2022). Studies of drivers of 
drought are rare, but Perez et  al. (2016) developed a statistical 
drought forecast model utilising ONI (Oceanic Niño Index) and 
observed rainfall anomalies, while a number of studies address 
drought monitoring using using standard SPI and SPEI (Perez et al., 
2016, 2022; Salvacion, 2022), and bespoke multi-variate drought 
indices (Valete et al., 2022).

1.3 Current drought AA trigger mechanism 
in the Mindanao

The first edition of the FAO Drought AA protocol in the 
Philippines focussed on Mindanao (FAO, 2020; Riquet, pers. comm., 
2023), a drought prone agricultural region in the south with a highly 
vulnerable population due to high poverty levels, but which is also 
commonly referred to as the breadbasket of the Philippines. In that 
protocol, three key monitoring periods were identified, oriented 
towards the primary rain-fed growing season of the main 
crop—rice:

 • Monitoring period 1: before the beginning of the rainy season 
(April/May).

 • Monitoring period 2: in the middle of the rainy season (July/
August).

 • Monitoring period 3: at the end of the rainy season (October/
November).

A wide set of indicators were used, including ten from 
hydrometeorological forecasts (rainfall, temperature and El Niño–
Southern Oscillation (ENSO)/Indian Ocean Dipole (IOD) from IRI1, 
PAGASA2, BOM3 and WMO4) and four from seasonal observations 
of rainfall, soil moisture and vegetation (from PAGASA and GIEWS5). 
Several of these indicators, whilst from different sources, are the same 
variable (e.g., 3 month rainfall forecasts from PAGASA, IRI and 
WMO). In the model, each indicator is given a value between 0 and 3 
depending on how far they deviate from normal/average or, in the 
case of ENSO, whether it is in an alert/declared phase. These values 
are then weighted by a variable-specific weight (e.g., 3 for rainfall, 1 
for air temperature forecast) added and converted to a percentage 
value (with 100% indicating maximum possible value of the trigger, 
where all variables indicate a high likelihood of drought), which is 
used to decide whether to trigger actions associated with continued 
monitoring (0–32%), assessments (33–50%), or action (>50%).

The model does not allow for regional differences in rainfall and 
thus seasonal cropping patterns, drought climatologies and associated 
impacts. Additionally, it uses the same weights during each monitoring 
period, and therefore does not allow for the potential seasonally 
changing role of each indicator in predicting drought. Importantly, the 
Mindanao AA trigger mechanism and triggers are based on 
monitoring and hydrometeorological forecasts of biophysical variables 
only, and whilst these remain a useful set of indicators of drought 
hazard, they do not account for situations where socio-economic 
vulnerabilities may make populations more susceptible/vulnerable to 
the impacts of drought. Whilst it is clear that operational 
implementation of the trigger mechanism should take place within a 
wider consultative process involving all stakeholders, this work is 
motivated by the need to ensure the trigger is based on a scientifically 
defensible combination of indicators, which allows for uncertainties 
associated with each indicator (due to forecast skill or relationship 
with the impact) to be known as a basis for setting and testing trigger 
thresholds and associated actions.

2 Approach and data

2.1 Data

We utilise a number of climate monitoring and forecast datasets, 
selected for evaluation using criteria of (a) regular availability at lead 
times relevant to the anticipatory action process, (b) in case of 
forecasts—availability of historical time series enabling evaluation of 
forecast skill. These include:

1 Columbia Climate School – International Research Institute for Climate 

and Society (https://iri.columbia.edu/).

2 Philippine Atmospheric, Geophysical and Astronomical Services 

Administration (https://www.pagasa.dost.gov.ph/).

3 Australian Government, Bureau of Meteorology (http://www.bom.gov.au/).

4 World Meteorological Organization (https://public.wmo.int/en).

5 Food and Agricultural Organization, Global Information and Early Warning 

System on Food and Agriculture (https://www.fao.org/giews/en/).
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 • Climate monitoring data (common overlapping period 
1981–2022):

 o monthly station data for Mindanao from Global Historical 
Climatology Network (GHCN),

 o monthly gridded rainfall monitoring data products (CHIRPS 2.0 
and GPCC v.2020),

 o monthly ERA5 reanalysis rainfall and air temperature,
 o observed indices of ENSO (Nino 3.4) and IOD.
 • Forecast data:
 o calibrated probabilistic seasonal rainfall forecast based on an 

ensemble of dynamical models generated by IRI (available for the 
period of 2017–2022),

 o seasonal rainfall forecast from the ECMWF SEAS5.1 model, 
distributed through Copernicus Data Store (CDS) (available for 
the period of 1990–2022),

 o seasonal forecast of ENSO from IRI (available for the period of 
2002–2022).

 • Land surface monitoring data (common overlapping period 
1984–2022):

 o Dekadal gridded soil moisture data derived from satellite 
microwave observations, developed at ESA, distributed through 
CDS, and

 o Agricultural Stress Index (ASI) and Vegetation Health Index 
(VHI), obtained through FAO GIEWS system.

In addition to the above, we utilise two datasets that are proxies 
for agricultural impacts of drought: event-based loss and damage data 
for the Philippines covering the period of 2000–2022 and quarterly 
harvest area and production volume data at region level from 
Philippine Statistics Authority.6

Anticipatory Action protocols encourage the use of climate 
information from local meteorological agencies rather than from 
global sources. Here we were unable to obtain the historical rainfall 
data and historical seasonal rainfall forecasts in a form allowing 
evaluation of its skill, and had to therefore rely on generic, global 
datasets. While this, on the one hand, reduces the potential accuracy 
of our analyses, on the other hand it allows for their generalisations in 
other regions.

2.2 Methodology

We focus on seasonal drought, i.e., drought at the time scale of 
3 months, identified with local experts as the most relevant from an 
agricultural perspective; consistent with the timescale of anticipated 
humanitarian actions; and with forecasts tending to have more skill 
when averaged over this timescale (as demonstrated by, e.g., Wanders 
and Wood, 2018) We perform analyses for all seasons, but focus on 
those that are important from the agricultural productivity point of 
view. These are identified from regionally-specific agricultural 
production data. We consider predictors (or indicators) at a lead time 
of 1 to 9 months before the last month of the 3-month target period.

The analyses include: (i) initial exploration of gridded and station 
data towards identification of datasets suitable for drought mapping, 

6 https://openstat.psa.gov.ph

identification of homogeneous climate regions and evaluation of 
relative role of rainfall and PET in causing agricultural drought; (ii) an 
evaluation of the relationship between a climate-only drought hazard 
index and the impact of drought in the region; (iii) the predictability 
of the drought hazard index from a variety of indicators; and (iv) 
evaluation of the predictive utility of a set of formal statistical models 
combining a range of indicators, at various lead times.

In our analyses, we differentiate the drivers or predictors of the 
meteorological drought from the variables expressing antecedent 
conditions, or in other terms precursors of drought’s impact. The latter 
do not have to have a causative relationship with future drought, but 
rather, they might increase the susceptibility to droughts, and thus 
affect the magnitude of drought’s impact. These variables include soil 
moisture, vegetation health-and agricultural stress-indices, as well as 
current rainfall anomalies and drought indices. Variables considered 
as predictors of future drought include current ENSO and IOD 
indices, as well as seasonal rainfall and ENSO forecasts. These 
variables are linked to drought through known chain of atmospheric 
processes and as such have a causal rather than just correlative 
relationship with drought.

We derive the commonly used drought indices, the SPI (McKee 
et al., 1993) and SPEI (Vicente-Serrano et al., 2010), and use 1981–
2010 as a base period. We consider the values of-1 or less to denote a 
moderate or stronger drought.

We consider Pearson’s correlation coefficient as indicative of a 
strength of relationships between variables and as the simplest, 
intuitively understood index of forecast skill.

3 Results

3.1 Initial analyses

We first conducted a set of climatological analyses to: (i) identify 
global gridded rainfall datasets that best replicate the main 
characteristics of the seasonal and interannual rainfall variability 
recorded by the GHCN station data, (ii) identification of homogeneous 
rainfall regions in Mindanao, which affect agricultural practices, and 
(iii) identification of the relative role of rainfall anomalies vs. PET 
anomalies in causing the agricultural drought.

These analyses, not reported here, are summarised as follows:

 • CHIRPS 2.0 adequately captures seasonality and interannual 
variability of rainfall over the Mindanao region (i.e., it has better 
correlation with available station data of monthly climatology 
and annual rainfall totals than other gridded rainfall dataset), and 
has been chosen for further analyses (whilst this data product 
assimilates station data, it still has inherent biases);

 • Hierarchical clustering of rainfall (standardised mean monthly 
rainfall in CHIRPS v.2.0 dataset) reveals strong differences in 
rainfall seasonality between the north-eastern part of the 
Mindanao and the rest of the island (central and western 
Mindanao), with less apparent differences in terms of interannual 
rainfall variability. As illustrated (Figure  1), the rainfall 
seasonality differences result in differences in planting and 
harvesting dates, and to some extent in dominant crops, and as a 
result, we analyse the two regions separately. The two regions 
coincide with the administrative divisions of the Mindanao 
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region, which facilitates aggregation of agricultural production 
and drought impact information. We conduct all further analyses 
on region-average rainfall/temperature and do not account for 
more detailed spatial subdivisions.

 • A comparison of temporal patterns of region-average SPI and 
SPEI reveal no systematic differences other than the weak 
(non-statistically significant) increase in intensities of SPEI-
indexed drought, suggesting that rainfall anomalies are the 
dominant driver of drought. This is unsurprising considering that 
mean annual rainfall exceeds mean annual PET by a factor of 2 
to 5. We therefore consider SPI an appropriate index to capture 
meteorological drought.

3.2 Drought and agricultural impacts

Given regions with different rainfall seasonality and a variety of 
crops with different cropping patterns, including a mixture of irrigated 
and rain-fed crops, the sensitivity to drought varies between crops and 
cropping practices. Hence, we  focus only on rain-fed rice, an 
important crop for food security, which is likely affected by drought. 
Figure 2 illustrates differences in cropping between the two regions, 
with the highest production in the North-East in the AMJ season, and 

in the West in the JAS-OND seasons. The relationship between the 
meteorological drought as indexed by SPI3 and rainfed-rice 
production is not clear, however. The relationship appears to be better 
at 3–6 month lead time, indicating the role of rainfall anomalies 
during the earlier growth stages rather than during the harvest period. 
Significant relationships manifest stronger during the off-season 
(JAS-OND in the North-East and JFM-AMJ in the West) which 
reflects the higher sensitivity of rain-fed crops in drier periods, 
compared to periods receiving sufficient rainfall and consequently less 
sensitivity to drought. The nature of the rice production-drought link 
is complex, and relationships also account for a variety of other, 
non-meteorological factors (e.g., inputs price/availability, manpower). 
This is apparent in the Figure 2’s panel depicting the relationship 
between reported drought impacts and the rice production, where the 
years with drought impact reports do not clearly coincide with the 
anomalous rice production. The relationships do not improve when 
either the harvested area, or yield per hectare are analysed instead of 
the total production (not shown). The poor relationships may, 
however, reflect uncertainty of the reported impacts data, as self-
reporting is affected by numerous external confounding factors, 
societal pressures, socio-economic setting, access etc. Overall, the 
results suggest a constrained utility of the available production data 
for the development of trigger models targeting drought impact rather 
than the drought hazard.

FIGURE 1

(A) The Mindanao region in the south of the Philippines, (B) the homogeneous rainfall zones in Mindanao, with (C) corresponding seasonal rainfall 
regimes.
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3.3 Antecedent conditions and agricultural 
impacts

Variables expressing antecedent conditions, or what we  call 
precursors of drought impact—e.g. soil moisture or VHI—similarly 
to the antecedent rainfall anomalies, do not show strong relationships 
with rainfed rice production in the main harvest seasons (Figure 3). 
The relationships with ASI are, however, stronger in the western 
region, besides during JAS.

3.4 Predicting meteorological drought

Since the retrospective seasonal forecast from PAGASA was not 
available for this project, we utilised forecasts from two systems: the 
probabilistic forecast from IRI, which is a calibrated output of an ensemble 
of dynamical models, and a 50-member ensemble forecast from the 
ECMWF SEAS5 system. The first is openly accessible but only covers the 
most recent period (March 2017 to November 2022). The second covers 
a longer period (1990–2023) but needed specific pre-processing for this 
work. The forecasts’ skills present strong similarities, with relatively high 
correlation over the year (significant below grey line) but with clear skill 
reduction observed at the onset of the Western region rainy season, i.e., 
in April, and lowest skill during the first part of that season, i.e., April–July 
(Figure 4). While the IRI forecast in general shows much lower level of 
statistical significance, which reflects the smaller size of the evaluated 
sample (6 years), it shows strong positive correlations for the month of 
May, but only negative correlations are meaningful here, as the higher 
probability of a dry tercile is inversely proportional to the SPI3 value. 

Positive correlations as those manifested for May have no physical 
justification and should not be interpreted as expression of skill of the 
forecast. The ECMWF forecast however maintains mostly significant skill 
throughout the year.

An alternative approach to forecasting drought (rainfall anomalies) 
with the dynamical models (as exemplified by the IRI MME and ECMWF 
SEAS5 forecasts) is to use a tailored statistical model utilising known 
teleconnections. An obvious choice in the Philippines is linking rainfall 
anomalies to the state of ENSO, and other global modes of climate 
variability such as IOD. Figure 5 illustrates such a model based on the 
monitored status of ENSO, while Figure 6 is based on an ENSO forecast. 
Both models are qualitatively similar and show similar seasonal patterns 
of skill to that of the dynamical climate models illustrated in Figure 4, i.e., 
they show relatively high skill at a range of lead times during off-season, 
but a collapse of skill across the onset of the Western region’s rainy season 
(April) and low skill during the first part of that rainy season. Analyses of 
correlations of SPI3 with observed IOD (not shown) reveal a much 
weaker signal than that for ENSO.

4 Discussion – implications for 
developing the trigger model for 
drought in Mindanao

4.1 The hazard vs. impact challenge

In the analyses carried out above we described available drought 
impact proxy variables, and evaluated their relationships with 
meteorological drought indices and antecedent environmental 

FIGURE 2

Evaluation of relationship between drought and agricultural impact of drought in two analysed regions for rainfed rice. Production volume by season 
(top row) calculated as average over 1987–2022. Correlations (middle row) calculated as a Pearson’s correlation between 3-month SPI in the last 
month of a quarter and that quarter’s production volume, at various lead times, over the period of 1987–2022. Filled bars indicate correlations 
statistically significant at p  =  0.05. Anomalies of production volume (bottom row) calculated as departures from 5-year rolling mean, individually for 
each season, superimposed on the years with reported agricultural impacts of drought.
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variables (impact precursors). Because these relationships are not 
conclusive, development of a trigger model in the form of a formal 
statistical model predicting impact is difficult. One compounding 
factor is that the relationship between the impact we wish to anticipate 
and drought will vary in space and time. Typically climate-marginal 
agricultural areas (a largely spatial characteristic) and/or dry condition 
growing systems (a largely seasonal characteristic) would be more 
sensitive to droughts. Decision to initiate anticipatory action in 
consequence must also consider the extent of the correlation between 
hazard and impact, an exercise largely limited by the lack of relevant 
impact data. Decision makers should not assume a consistent or 
linearly correlated impact as a result of the anticipated hazard. In some 
instances mechanistic interpretation of the current hazard-focused 
data can potentially lead to a misguided trigger model with little skill. 
As a consequence we focused our analyses on predicting the drought 
hazard (meteorological drought), the assumption being that these 
spatial and dryland considerations would be taken up either through 
the additional consideration of vulnerability indicators, or through the 
process of discussions and consultations as part of the wider 
AA protocol.

4.2 The space, seasonal and lead times 
challenge

In univariate analyses, we  illustrated relationships between a 
number of potential drought predictors and SPI3-indexed drought 
across space, seasons and lead times. These analyses provide a good 
basis for guiding development of a trigger model based on expert 

opinion, as they systematically map useful predictor variables. 
Importantly, our analyses reveal that any such model skill, where/if it 
exists, has strong connection to specific geographical and temporal 
conditions. We have seen in the Mindanao example above, the need 
to clearly differentiate between two rainfall regimes where meaningful 
indicators of drought in one region, are not necessarily of comparable 
meaning in the other region. We also have observed that a quantitative-
only trigger cannot perform consistently throughout the year, or at 
varying lead-times. In the West region for instance, drought 
predictability is relatively high in general, but critically low in the 
period during the early rainy season. This observation highlights the 
importance of (possibly quantitatively) further accounting for those 
seasonal and lead-time variations (i.e., a trigger model would need to 
be built separately for each target season and lead time), and the need 
to inform actors within the anticipatory action process of those 
discrepancies in the skill of the trigger.

Alternatively, a set of formal statistical models could 
be  constructed targeting the SPI3 drought index and involving 
optimization for (cross-validated) skill and selection of 
explanatory variables.

4.3 The data and correlation challenge

An important additional consideration in the above is a set of 
constraints imposed by data availability. One aspect of this is the 
availability of historical time series to evaluate the role of a particular 
variable as predictor of drought. In our analyses IRI forecast is 
available for 6 years only, and thus its utility is limited, both from the 

FIGURE 3

Correlations between rainfed rice production and precursors of drought impact—variables expressing soil moisture availability and vegetation 
conditions (ASI – Agricultural Stress Index and VHI—Vegetation Health Index) at various lead times. Filled bars indicate correlations statistically 
significant at p  =  0.05.

https://doi.org/10.3389/fclim.2024.1336442
https://www.frontiersin.org/climate
https://www.frontiersin.org


Wolski et al. 10.3389/fclim.2024.1336442

Frontiers in Climate 08 frontiersin.org

perspective of expert system-like and formal statistical models. 
Another is the lead time at which a variable is available. For example, 
the dynamical models forecast is available only up to 6 months lead 
time (4 months, if one considers entire seasons), which expresses the 

limits of skill of seasonal forecast, while IRI ENSO forecast is available 
with 9 months lead time.

Our analyses show strong dependence of drought predictors on a 
similar source of predictability, manifested by similar seasonal 

FIGURE 4

Skill of the calibrated multi-model ensemble IRI forecast (top row) and calibrated probabilistic ECMWF SEAS5 (bottom row) expressed as a correlation 
between forecast probability of dry tercile and SPI3 at various lead times, across all calendar months. Individual line represents forecasts issued on a 
particular month (as per legend). Nominal month is the first of the three month period over which SPI3 is calculated and for which a forecast is issued, 
e.g., point for January represents a value for Jan–Mar. Note that for the IRI forecast this figure is based on available data covering the period of March 
2017–November 2022, i.e., 6  years only. Correlations below the grey line are significant at p  =  0.05. Shaded box marks the main growing season for 
rain-fed rice in the Western region.

FIGURE 5

Relationship between current ENSO status (monitored) and SPI3 for various lead times. Individual line illustrates correlations with ENSO value observed 
on a particular month (as per legend). Nominal month is the first of the three month period over which SPI3 is calculated, e.g., point for January 
represents SPI3 value over Jan–Mar. Correlations below the grey line are significant at p  =  0.05. Shaded box marks the main growing season for rain-
fed rice in the Western region.
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patterns of correlations with the target SPI3 variable. These most likely 
express the ENSO signal which appears to be a dominating driver of 
interannual rainfall variability in the studied region. This dependence 
suggests that predictor variables (different rainfall forecasting systems, 
ENSO forecast, observed ENSO) are strongly cross-correlated, which 
is confirmed through a correlation matrix (not shown). This adds 
additional complexity to the development of an expert system-like 
trigger model. Should the cross-correlated variables be considered 
independently? or averaged into a single indicator? While cross-
correlation of predictor variables can be taken into account explicitly 
in a formal statistical model (e.g., through dimensionality reduction, 
or by explicitly modelling interactions between variables), the 
consequences within trigger models which equally weight several of 
these variables are much less clear.

4.4 Towards the explicit consideration of 
trigger model skill

Our analyses clearly show the time varying skill of the trigger 
model, an aspect which usually receives limited attention in the 
process of anticipatory action. In our univariate analyses we look at a 
number of possible predictors of drought hazard, which all express a 
similar collapse of skill in the period leading to the start and the first 
part of the Western region’s rainy season (AMJ). As this is ubiquitous 
across the considered predictors, it appears that in that critical period 
one cannot simply give more weight to a more skillful predictor to 
achieve acceptable level of forecast skill, and as a consequence—any 
trigger model that spans that period is likely to have a large uncertainty 
and low confidence in its results. In view of the above, it seems 
appropriate to consider the skill of a trigger model explicitly when 
deciding whether or not to activate the action, rather than rely purely 
on the value of the trigger emerging from that model.

Such a model could be built as an ordinary least squares (OLS) 
regression of predictor variables against the continuous SPI3 value. In 
a regular application of that model in the AA context, the target value 

(SPI3 of-1 for drought condition) would be  considered as the 
threshold, and the trigger would be  activated if the model’s 
deterministic prediction was less than that threshold. Assuming that 
the OLS model’s distribution of error is symmetrical around the best 
estimate (Wilks, 2011), such a prediction model would enable 
triggering an action when the probability of drought is larger than 
50%. But in a skill-less OLS model (i.e., one with low correlation or 
low coefficient of determination) model prediction might never reach 
an actionable threshold (OLS model with coefficient of determination 
of 0 will always yield the mean value of the predictand).

We hypothesise that expressing the skill of the trigger model 
explicitly better responds to inherent inconsistencies of the data, 
model and impacts to anticipate, and offers decision makers an 
opportunity to transparently take into account their risk acceptance 
levels while deciding on activating the trigger.

Instead of just presenting the trigger (prediction) generated by the 
model, we present the performance of a model in predicting historical 
events of a particular magnitude using a number of hits and misses, 
i.e., cases when an event was correctly predicted by the model, and 
cases when the model yielded a false alarm. There are formal skill 
measures that express models skill as a composite index (e.g., hit/miss 
ratio), but we find it more evocative to present here just a number of 
hits and misses, together with the number of events that occurred 
historically. Importantly, we map the hits and misses across a range of 
possible trigger thresholds—and this is illustrated in Figures 7, 8.

Figure 7 shows three different trigger models targeting moderate 
to severe drought (SPI3 of-1 or less) in the AMJ season and utilising 
predictors available in March. The models differ in the variables 
considered, and clearly show differences in the level of skill. The first, 
that utilises only the ECMWF SEAS5 forecast, never predicts the 
target drought with a low trigger threshold (lower than-0.7), but 
captures two out of three historical events with a higher trigger 
threshold (above-0.7, blue line). It also generates false alarms, one with 
a trigger threshold as low as-0.6, two with-0.5 and more with higher 
thresholds (black line). The model utilising only observed ENSO state 
captures all three events when threshold is above-1.0, yet it also issues 

FIGURE 6

Relationship between IRI ENSO forecast and SPI3 for various seasons and lead times. Individual line represents a forecast issued on a particular month 
(as per legend). Nominal month is the first of the three period over which SPI3 is calculated, and for which a forecast is issued, e.g., a point for January 
represents data for Jan–Mar. Forecast value used is the mean of the ensemble of statistical and dynamical ENSO forecasts. Correlations below the grey 
line are significant at p  =  0.05. Shaded box marks the main growing season for rain-fed rice in the Western region.
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false alarms, two if threshold is larger than-1.3, three with threshold 
larger than-0.8 and more with higher threshold values. A model with 
a more extensive set of predictors, including the forecast, observed 
state of ENSO and observed SPI3 anomaly, seems to have reduced 
skill, and at best is able to predict only two out of three events.

A clearer example of the above is shown in Figure  8, which 
illustrates the skill of a trigger model (with identical predictors in this 
case) across lead times.

We believe that this form of presentation of trigger model and 
model skill allows for, firstly, the selection of the predictor variables 
that provide the maximum information into the very tailored setting 
of trigger activation, i.e., more hits than false alarms (blue line above 
black) relating to odds better than chance. Secondly, once the model 
is decided, this approach provides a basis for undertaking a trigger 
activation decision that is fully-informed about the consequences of 
the model and inclusive of data deficiencies. Notably, there is no a 
priori prescribed trigger threshold, instead, the trigger, as generated at 
a particular time with a particular lead-time, with set predictor 

variables, is evaluated within the framing of risk and allows flexibility 
depending on a decision maker’s risk acceptance. For instance the 
engaged parties could agree on a “safe-at-all-cost” scenario, i.e., we are 
prepared to act on a false alarm but we do not accept to miss an event 
(all observed events were predicted, despite false alarms also issued), 
its opposite “true-hit-only” scenario: i.e. we are prepared to miss some 
events, but if we act we want it to be on an event that is certain to 
occur, or a “middle-of-the-road” scenario: odds of the hits/false 
alarms ratio is above 1. While the underpinning science is more 
complex and therefore perhaps difficult to explain to decision makers, 
interpreting the hit/false alarm rate is relatively easy and well 
documented. We  therefore believe the active involvement of 
anticipatory action actors (decision-makers) in using and engaging 
with such tools is an necessary part of the process, particularly in 
judging and setting acceptable levels of risk and hence thresholds. 
We are, however, not aware of any anticipatory action protocol where 
skill of the trigger model is considered explicitly when activating 
the trigger.

FIGURE 7

Skill of the OLS trigger model as a function of trigger threshold and a set of variables included in the model.

FIGURE 8

Skill of the OLS trigger model as a function of trigger threshold and lead time. All three models illustrated utilise the same predictor variables, and differ 
only in lead time.
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5 Conclusion

We have demonstrated that both drought during the rice 
growing season and antecedent conditions before the growing 
season are correlated with measures of agricultural production 
(volume, yields and harvested areas) in two regions of Mindanao. 
As such these variables are potentially useful in deriving 
appropriate trigger models which seek to predict potential 
agricultural impacts. Additionally, it is clear that the ability of 
ENSO forecasts to predict SPI is dependent on the time of year, 
and that the variability in this relationship affects the skill of 
seasonal forecasts of dry terciles. Furthermore, given that the skill 
of multiple sources of seasonal forecasts derive from the same 
forcing, i.e., ENSO, the use of multiple (covarying) forecasts with 
similar weights within a trigger model will overemphasise the 
importance of these forecasts, potentially at the expense of other 
sources of predictive skill.

While the multitude of precursors brings no guarantee of 
improved skill of the trigger model, the usefulness of the seasonal 
forecast depends on the time of year, lead time and target region. 
A model with low skill can be strongly misleading and ultimately 
destructive to the process of anticipatory action (false alarms and 
not triggering for destructive events can lead to abandoning of 
anticipatory action activities). Given these results it is imperative 
that trigger scores and trigger thresholds used in the process of 
activating anticipatory action are continuously evaluated and 
updated, encompassing acceptable levels of risk as discussed. 
Thus even a rudimentary assessment or illustration of skill of a 
model is better than no skill information. In Mindanao (and 
potentially in other locations), the development of a trigger 
model needs to sufficiently quantify model skill (and 
uncertainty), separately for each decision timescale (when 
humanitarian-related decisions are made) and for each forecast 
period. Understanding these attributes can then inform the 
selection of variables, determination of weights and establishing 
suitable trigger thresholds in each case.
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