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Introduction: Weather-based index insurance is a financial instrument which 
allows smallholder farmers to protect themselves against climate shocks such 
as droughts and floods. In many cases, insurance indices are based on one or 
more earth observation datasets (e.g., rainfall, soil moisture, vegetative health) 
which are partly covering periods of more than 40  years. While remote sensing 
products and their associated data have improved over this time, understanding 
the historical climate variability and trends remains an essential piece in ensuring 
the development of indexes that best represent farmers’ risks. From a practical 
perspective, shortening time series to limit the risk of understudied climate 
variability, such as the Atlantic Multidecadal Variability, sometimes seems to be a 
quick solution. However, shorter time series jeopardize the overall robustness of 
the index. Therefore, understanding the links between climate variability, index 
design, and implications for farmers is key. Weather-based index insurance 
products in Sahelian West Africa usually face a challenge in robustly quantify 
underlying climatic decadal variation in seasonal rainfall.

Methods: This study analyzes the influence of decadal shifts in rainfall patterns 
in Sahelian West Africa, in particular Senegal, on index insurance calibration and 
design, concluding with practical recommendations for the next generation of 
drought risk finance instruments in the region.

Results: Our findings indicate that decadal variability has not led to a clear decrease 
in payouts in recent years compared to earlier years, despite an overall increase in 
seasonal rainfall. Rather, we find that interannual variability has increased which may 
be a more critical factor for assessing farmers’ agricultural risk than the increase in 
total rainfall.

Discussion: Focusing on key moments of the cropping calendar in the design 
of an index shows that an increase in the total average rainfall per season does 
not result in fewer payouts.
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1 Introduction

Although there is strong evidence of decadal (10-yearly) rainfall 
variability in West Africa, in total amount of rainfall (Nicholson, 2013; 
Lebel and Ali, 2009), in interannual variability (Salack et al., 2013; 
Sanogo et al., 2015), in seasonal timing (Biasutti, 2013; Biasutti and 
Sobel, 2009; Salack et  al., 2013; Sanogo et  al., 2015), and in daily 
distribution (Giannini, 2015; Panthou et al., 2014; Salack et al., 2013), 
it is unclear how this variability impacts agricultural households. 
In-situ observations show that, compared to the 1950s and 1960s, the 
1970s and 1980s were significantly drier, with total rainfall recovering 
in the 2000s (Lebel and Ali, 2009; Nicholson, 2005). There are satellite 
observations from the 1980s onwards, which have been used for a 
variety of applications. With the understanding that the rainfall was 
scarce in the 1980s but a subsequent rebound of rainfall in the 2000s 
onwards, it makes sense to assume that this increase in seasonal 
rainfall totals is beneficial to farmers. However, given that multiple, 
simultaneous changes may be  occurring in daily variability and 
seasonality, it is important to question if the decadal shifts 
unambiguously benefit agriculture.

We know that the timing, distribution, and variability of rainfall 
within the season are as or even more important for the agricultural 
outcome than the seasonal total rainfall (FAO, 1986, 1979, 1977; 
Schwarzwald et al., 2021; Senay and Verdin, 2001; Verdin and Klaver, 
2002). These impacts of climate on agriculture are also mediated by 
non-climatic factors like soil type and planting practices. We cannot 
observe these factors directly in data poor environments, and model-
based approaches to conceptualizing them often make faulty 
assumptions. But, we  do have some indication of which weather 
features the local Market deems as important-this is reflected in the 
design of the weather index insurance. Weather index insurance, 
intended to capture agricultural risk, is an application that is intimately 
linked to climate, with payouts driven by rainfall averages, timing, and 
variability. Therefore, rainfall indexes may offer insights about the 
relative importance of different climate processes, if insurance payouts 
cover the losses that are important to agriculture. Insurance companies 
do not themselves know how to rigorously account for the effects of 
climate variability, and a passive assumption among index insurance 
experts is that the observed long-term decadal variability in West 
Africa will result in unambiguously larger payouts in the early, drier 
part of the satellite estimate records of rainfall (the 1980s), with fewer 
and smaller payouts during the more recent period (the 2000s/2010s). 
Weather index insurance offers a concise summary of the agriculturally 
relevant local weather features. Through using the rainfall indexes, 
we contribute to the knowledge gap of how to robustly account for 
climate variability that may be difficult to quantify and include in the 
insurance policy. We use indexes, often used for insurance, to address 
whether a general increase in seasonal rainfall has unambiguously lead 
to increased rainfall during key moments of the season.

An insurance index is meant to approximate agricultural drought 
by measuring rainfall deficit during the agriculturally important times 
of the season and determining which years were the driest in historical 
perspective. Those years represent the times in which rainfall was 
measurably poor enough to merit a payout, according to the insurance 
companies. Index insurance is a relatively new approach that provides 
payouts based on formulas (indexes) of rainfall or other measurements, 
as opposed to direct assessment of yield losses (Barnett and Mahul, 
2007; Chantarat et al., 2007). This innovation, intended to broaden the 

reach of agricultural insurance to smallholder farmers by reducing 
assessment costs and perverse incentives, provides a direct, 
quantitative link between climate data and farmer impacts, through 
its formula explicitly relating rainfall to the insurance payouts. In an 
active commercial insurance project, such as our case study, the details 
of the formula are hotly negotiated between farmers, insurance 
companies, scientists, international organizations, and government 
agencies through iterated participatory processes (Greatrex et  al., 
2015; Hellmuth et al., 2009; Michler et al., 2022; Osgood et al., 2018). 
For insurance, the participatory discussions, negotiations, and in some 
cases, brinkmanship must adequately reconcile concerns for sales to 
move forward, and insurance to be purchased.

Processes relevant to losses are discussed in relation to agricultural 
calendar and practices, including seasonal rainfall timing, total rainfall 
amounts, and daily rainfall variability. Although there are many 
formulations that index insurance can take, this paper will focus on 
effectively targeting two dominant seasonal vulnerabilities, through 
two windows of coverage (1) moisture deficit or delays at the 
beginning of the agricultural season, around sowing and 
establishment, and (2) moisture deficit or early cessation during the 
particularly vulnerable flowering and grain filling late part of the rainy 
season. The overall focus is to verify whether historical satellite data 
used over the years in the project insurance formula would have 
resulted in payouts during the two windows in historical years in 
which agricultural losses occurred according to multiple sources. If a 
well-known, critical historical drought year is missed, the evidence 
why it should not have paid out must be overwhelming for consensus 
that the insurance data and formulas are appropriate (Benami et al., 
2021; Enenkel et al., 2019; Osgood et al., 2018). Clearly, since this is 
not a controlled scientific process, there are biases and limitations to 
the accuracy and objectiveness of the index formula and parameters 
as a representation of the impacts of climate on agriculture. However, 
it does provide a unique and useful perspective in a form that is 
straightforward to apply in analyses. It is a formula that has survived 
the trial by fire of intense, repeated negotiations in which the 
livelihoods of farmers and insurers alike are at stake, and which may 
provide useful insights to be used to complement more models, or 
yield based research approaches to understand the agricultural 
implications of decadal processes that may be developed with limited 
data and may not adequately reflect farmer preferences and choices.

The index formula allows us to compare average payouts (often 
called historical burn cost)1 over different time periods as an imperfect 
metric of the damage inflicted by rainfall to agriculture over that time 
period. If the characteristics of rainfall during one time period lead to 
higher payouts than during another time period, it not only increases 
a higher insurance price, but it is also a signal that the rainfall patterns 
during the higher payout period are more destructive to agriculture. 
In this way, although we  are framing the question around index 
insurance, by using a rainfall index similar to the ones used in index 
insurance, we are in fact using the index as a parameter to better 
understand the structure of the rainy season itself. We discuss a range 

1 When referring to the burn cost, we are focusing uniquely on the aspect 

of the mean of the payouts. Some also refer to this as expected losses. We are 

not focusing on the loading costs, which includes administrative costs and the 

costing of uncertainty that is baked into the premiums.
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of climate processes on the decadal timescale addressing questions 
particularly relevant to insurance, performing a range of analyses as 
well as comparisons of the average payouts resulting from the 
index formula.

For the sake of clarity, we explore the simplest difference possible, 
dividing our 30-year rainfall climatology in half and comparing the 
modern 15 years (2000–2016) with the older years (1983–1999) in our 
analyses and diagnostics. If insurance payouts unambiguously 
decrease on average in the 15 modern years, that would indicate 
unambiguously reduced rainfall risk to agriculture from the insurance 
perspective. We investigate two of the most critical times of the season, 
the early sowing/establishment, and the later flowering/grain filling. 
Impacts in either are critical for agriculture, and may provide different 
insights into valuable climate processes to study.

In our simple diagnostics, we find that the hypothesis that payouts 
are unambiguously lower in the modern time period does not hold, 
with the early part of the season actually having a higher average 
payout-and higher price than during the initial, supposedly drier 
initial years. We  also find that the primary driver appears to 
be increases in interannual variability for the initial part of the season. 
Although there is more rainfall on average, an increase in variance 
may be a more important change, one that increases the farmers’ risk. 
Acknowledging that we are not performing formal tests, and that the 
average payouts may be driven by a small number of extreme events, 
we check if the unanticipated results are simply driven by decadal 
biases in the satellite estimates used for the insurance, or if they are 
driven by differences in spatial scale between climate studies and the 
insurance project region. Finding that the unanticipated higher 
average payout for the early part of the season is robust across regional 
differences, satellite estimates, and rain gauge data, we explore if they 
appear to be  driven by changes in seasonality, daily variability/
intensity, and interannual variability, the primary effects described in 
the climate literature.

2 Background

2.1 Smallholder farmers and insurance

Since there are around 570 million small farms (<2 ha) on this 
planet (Lowder et al., 2016), it is critical to understand the relationship 
between smallholder farmers and climate processes. Family farms 
operate 75% of the global agricultural land and supply around 80% of 
the food consumed in developing countries (Lowder et al., 2021; WFP, 
2019, 2020). Climate variability poses risk both in the immediate 
destruction of crops, and also in the longer-term impacts from risk 
making it unsafe for farmers (and lenders) to invest in productive 
assets, which can keep farmers trapped in low productivity systems 
(Greatrex et al., 2015).

Particularly in regions that lack a high density of quality controlled 
in-situ observations, satellite data are a crucial source of information 
for both the design of the indices and their scaling up to larger regions. 
Satellite data, particularly satellite-derived rainfall estimates, are the 
backbone of index parameterization and calibration. Validated with 
farmers and local expert information on agricultural calendar and 
historical bad years, they help to define the most sensitive periods 
during the season (windows) to be covered by the insurance, usually 
30–40 days around sowing and flowering time. We follow the example 

of an index insurance product in Senegal (WFP, 2019) with related 
indexes in Ethiopia, Malawi, Zambia, Mozambique, and other countries 
(WFP, 2020). If a historically calibrated threshold of rainfall is reached, 
the payouts start (trigger) linearly until reaching a second threshold 
(exit), at which level the payouts are 100% of the sum insured. However, 
index insurance is not only sensitive to the timing of the windows or 
the correct estimation of rainfall amounts. In the case of drought index 
insurance, daily or weekly variability is important. Daily or dekadal 
(10-daily) “caps” are used as a mechanism to address the impact of high 
intensity short-term rainfall events. Any rainfall above the cap for a day 
or dekad is discarded from the rainfall sum for a window. Without caps, 
isolated severe rainfall events during otherwise dry years could 
drastically reduce the payouts, while the crops are mostly not able to 
use the moisture surplus due to runoff or evaporation.

Figure 1 depicts the crop calendar for the main crops in Central 
East and Southeast Senegal, as reported by farmers in the insurance 
design participatory processes. Staple crops are usually planted 
between June and mid-July. The harvest takes place between 
mid-September and mid-November.

Participatory processes are used comprehensively throughout the 
index design process to engage farmers into the co-development of 
products that correspond to their needs and their context (Greatrex 
et al., 2015). Games and participatory exercises are used to improve 
farmer’s literacy on insurance, understand their agricultural practices 
and preferences to adjust the parameters and structure of the index 
formula, using the community’s seasonal vulnerability and recollection 
of historical extreme shocks (Osgood et al., 2018). Games have also 
been used to study questions such as farmer preferences for different 
insurance products and demand (Carter et al., 2008; Clarke et al., 
2012; McPeak et  al., 2010; Norton et  al., 2014; Vasilaky et  al., 
2020, 2019).

The R4 Rural Resilience Initiative that we study was launched by 
the World Food Program and Oxfam America in 2011, to develop four 
complementary risk management strategies: risk reduction, through 
asset creation and improved resource management; Risk transfer 
through weather index insurance; prudent Risk taking through 
livelihood diversification and microcredit; and Risk reserves, through 
savings. Initially targeting under 14,000 farmers in Ethiopia, R4 has 
scaled to reach over 87,000 farmers across Ethiopia, Kenya, Malawi, 
Senegal, Zambia, and Zimbabwe in 2018, among which 55% are 
women (WFP, 2019, p.  4). Under its risk transfer component, 
insurance-for-asset schemes allow farmers to cover their insurance 
premium with their labor. Insurance is intended to unlock productive 
opportunities by providing access to better credit rates and supporting 
investment in inputs and strategies that improve agricultural 
productivity and resilience. In 2017, around $6.6 million of micro-
insurance protection against extreme weather shocks was provided to 
R4 participants, and $1.5 million of insurance payouts were generated 
across R4 countries (WFP, 2019).

In Senegal, the R4 insurance project is implemented in the 
Tambacounda region, identified as the box in Figure 2. The Figure also 
depicts the Senegal and Sahelian regions utilized in later analyses.

2.2 Climate processes

The Sahel is on the semi-arid southern shore of the Sahara 
(Giannini, 2015). The climate in the Sahel is sensitive to global 
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oceanic conditions (Folland et al., 1986; Giannini et al., 2003). 
The outstanding multi-decadal variations observed over the 
course of the 20th century—the alternation of the anomalously 
wet 1950s and 1960s, persistent drought in the 1970s and 1980s, 
and the most recent epoch of partial recovery (Ali and Lebel, 
2009; Nicholson, 2005)—have been partially attributed to the 
influence of human emissions of aerosols and greenhouse gasses 
on sea surface temperatures (Giannini and Kaplan, 2019). Year-
to-year variations, e.g., drought associated with the occurrence 
of the warm phase of the El Niño-Southern Oscillation (ENSO), 
can be  exacerbated or mitigated by the background tendency 

toward wet or dry (Giannini et al., 2003; Janicot et al., 1996; Ward 
and Ward, 1998).

In this study we focus on the period from 1983 to 2016, which 
we split into two contrasted periods. The initial period, from 1983 to 
1999, starts with the two driest years in the century and climbs up to 
a partial recovery—partially because total annual rainfall does not 
attain the levels of the wet mid-century epoch. The modern period, 
from 2000 to 2016, is dominated by year-to-year variability.

The historical influence of human emissions, however, is not 
prolog to a future return to drought. Persistent drought in the 1970s 
and 1980s is understood to have resulted from the unique post-World 

FIGURE 1

Crop Calendar reported by farmers interviewed in the Tambacounda region of Senegal. The light gray box highlights the sowing period, from 
mid-June to mid-July for Millet, Sorghum, Maize, and Groundnut, and July for Niebe and Sesame. The dark gray box highlights the harvest 
period, mid-September to mid-October for Millet, Sorghum, Niebe, and Sesame, the month of October for Maize, and the month of October 
to mid-November for Groundnut.

FIGURE 2

This is a map of the regions of interest: Tambacounda (15°15’W–13°15’W; 13°30’N–14°45’N rectangle on the left), Senegal, without the arid regions in 
the northern part of the country (17°30’W–11°24’  W; 12°18’N–16°42’N), and wider Sahel (18°W–33°E; 13°N–19°N, shaded in gray).
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War II combination of aerosols cooling the North Atlantic (Booth 
et  al., 2012) and greenhouse gasses warming the global tropical 
oceans (Held et al., 2005). The reduction in aerosol pollution around 
the North Atlantic in the 1990s is consistent with the current basin-
wide warming trend, which contrasts the drying influence of the 
global tropics (Giannini et al., 2013). The more recent generation of 
IPCC scenarios more coherently associates warming with wetting 
across the Sahel (Biasutti, 2013), with the exception of the very 
westernmost longitudes encompassing Senegal. However, whether 
the total amount of rainfall increases or decreases is overpowered by 
projections of a seasonal shift, with a delay in the onset of the season 
that is made up for by more abundant rainfall later in the season 
(Biasutti, 2013; Biasutti and Sobel, 2009; Marvel et al., 2020). Based 
on probabilistic projections of production impacts from climate 
change, a decrease in yields for West African staple crops (e.g., 
groundnut, yam) is estimated (Lobell et al., 2008). In simulations of 
index insurance on climate model data, extreme cases of climate 
change can make index insurance unaffordable (Siebert, 2015). In 
addition, (Mills, 2005) states that climate change might also have 
“adverse impacts on insurance affordability and availability,” for 
instance due to increasing weather-related losses. Decadal processes 
and their impact on the accuracy of index insurance targeting yields 
in West Africa has been investigated, finding that utilizing additional 
indicators beyond rainfall (such as evaporative demand) may 
be worthwhile (Blakeley et al., 2020).

Changes expected from warming have begun to emerge. Le 
Barbé and Lebel (1997) attribute the observed difference in total 
rainfall between the wet and dry historical periods to a decline in the 
number of rainy days. In contrast, an increase in the intensity in 
daily rainfall is detectable in the most recent recovery (Giannini 
et al., 2013; Panthou et al., 2018; Chagnaud et al., 2022). Salack et al. 
(2013) find changes in the timing of the most extreme dry spells, 
occurring at the beginning and at the end of the rainy season, that 
are consistent with the timing of onset in our modern period being 
delayed, as in the dry historical period, and the timing of the demise 
also occurring later, as in the wet historical period. Sanogo et al. 
(2015) find a trend toward a delay in the demise of the rainy season 
that is more robust than any change in the onset date. The 
lengthening of the season might be attributed to the Inter-Tropical 
Convergence Zone (ITCZ) lingering longer in the poles due to 
climate change (Biasutti and Sobel, 2009). However, there is also 
significant evidence that decadal processes may also impact the 
length of the rainy season, with the positive (negative) phase of the 
AMO associated with a northward (southward) shift of the ITCZ, 
resulting in more (less) rainfall in the Sahel (García‐García and 
Ummenhofer, 2015).

Focusing on Senegal, based on a network of rainfall stations, Ali 
and Lebel (2009) and Lebel and Ali (2009) find significant trends in 
total rainfall that question the rainfall recovery over the western Sahel 
(15°W–10°W) indicating that the region, which encompasses Senegal, 
has stayed comparatively drier than the central Sahel after the 1990s. 
Consistently, Giannini et al. (2013) show that the number of rainy days 
at stations in Senegal has not increased since the drought period as 
much as daily rainfall intensity has, especially since 2000.

Given the evidence from the climate investigations for the Sahel, 
it is worthwhile to explore relationships between climate and 
agriculture relating to increased amounts of rainfall, increases in daily 
variability, and shifts in seasonal timing.

3 Materials and methods

3.1 Datasets

Since the R4 insurance project directly utilizes the Africa Rainfall 
Climatology, Version 2 (ARC2), it is a central dataset utilized in our 
analyses. Documented by Novella and Thiaw (2013) it is provided by 
the National Oceanic and Atmospheric Administration (NOAA) and 
available for the African continent from 1983 to present on a 0.1° grid. 
ARC2 is based on two input data sources: 3-hourly infrared data from 
a geostationary satellite (Meteosat) and quality-controlled in-situ 
observations from the GTS (Global Telecommunication System) 
network. The gauge observations are used as daily accumulated 
rainfall. In contrast to CHIRPS (described below), ARC2 is available 
without the monthly delay. With regard to data quality, a summer dry 
bias over West and East Africa has been detected. A validation study, 
which compared ARC2 to Tropical Rainfall Measuring Mission 
(TRMM, Version 7) and RFE2 over Western Uganda (Diem et al., 
2014) showed that ARC2 tended to overestimate rainfall at all in-situ 
stations, but underestimated boreal-summer rainfall at the station in 
Uganda’s North. In general, ARC2 performed much better with regard 
to seasonal totals than for daily, 10-daily or monthly averages.

The Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS) precipitation dataset merges satellite measurements with a 
much larger set of station observations and a long-term mean field to 
produce pentadal (5-day) estimates of precipitation (Funk et al., 2015). 
These data run from 1981-present, and extend from 50S to 50 N over 
all longitudes at a 0.05-degree spatial resolution. While a preliminary 
product is produced with short latency (3-days) utilizing only a subset 
of available station data, the production-level dataset is available in the 
middle of the following month. These data have been shown to well 
capture the observed spatial and temporal variability in rainfall, as 
captured by independent station data (Katsanos et al., 2016). CHIRPS 
is designed primarily for drought monitoring applications, but has 
also been successfully used in running crop models, land surface 
models and as an independent variable in human health studies.

The daily Global Telecommunication System (GTS) station 
precipitation and temperature data from the Climate Prediction 
Center, station 8707 (Tambacounda) provides ground-based rain 
gauge data for the station within the study area GTS (2022).

The Global Historical Climatology Network-Daily (GHCN-Daily) 
dataset integrates daily climate observations. Containing station-based 
measurements from land-based stations worldwide for precipitation 
measurement as well as other meteorological elements (NCEI, 2022). 
This study uses the GHCN Tambacounda station:

Name of the station: SG000061687.
Location: 13.7670, −13.6830, 50.0.
Region: Tambacounda, Senegal.
Network affiliation: GSN 61687.

3.2 Methods

The methods approach taken in this paper is to compare rainfall 
during the initial (1983–1999) and modern (2000–2016) time periods 
using a series of increasingly specific criteria, in order to understand 
the ways in which the climate has or has not shifted between these 
time periods, and whether any such “decadal” shifts have been 
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consequential to agricultural risk as measured in index insurance. 
We analyze the seasonal rainfall totals, the rainfall totals during the 
windows (or periods of interest, see below for more details) with and 
without caps (see below for more information) and the dry-day counts 
(or number of days with <1 mm of rainfall).

We start under the initial hypothesis that the rainfall has 
unambiguously increased from the 1980s to the present day. Framing 
our questions under this hypothesis, we first ask whether normalized 
rainfall during the agriculturally important times of the year has 
increased, as measured by comparison of index insurance’s average 
historical payouts (historical burn) over each period. This is our key 
metric of decadal change; to unpack it further, we then present similar 
comparisons of periods for the seasonal total rainfall, as well as the 
sub-seasonal (daily) and interannual variability in rainfall. Finally, to 
understand the degree to which artifacts of ARC2/CHIRPS data 
processing might be driving our findings, we compare our results to 
those derived from ground-based data sources.

All of these investigations use a time series from 1983 to 2016, 
which we split into the initial (1983–1999) and modern (2000–2016) 
years for the purposes of our “decadal” comparisons. ARC2 data is 
primarily used throughout for the comparisons, as it was the dataset 
used to calculate commercial insurance payouts in the R4 project at 
the time. CHIRPS data is also used for comparison in the seasonal 
rainfall comparisons, while GHCN daily rain gauge data was used in 
the ground data sources. The spatial scale of the ARC2 data is a time 
series of the pixel for the insurance calculations, the sub-seasonal 
(daily) variations, annual variability, and comparison to the ground-
based data. The GHCN data is from the Tambacounda rain gauge 
station. Finally, the CHIRPS data and the ARC2 datasets are evaluated 
at the R4 project region, Senegal region, and the larger Sahelian region 
in the Rainfall averages across seasons and the “Satellite data 
diagnostic” sections.

For insurance calculations, we apply the insurance formula for the 
index insurance sold in 2016 for the early (sowing/establishment) 
window and late (flowering/grain filling) window, defined as dekads 
18–21 (a dekad is a 10-day period, dekads 18–21 correspond to June 
21–July 31), and dekads 25–29 (corresponding to September 1–
October 20) respectively. The index is calculated through summing 
the dekadal (10-day) rainfall amount. One could add a daily cap, in 
this study any cap added would be 8 mm, meaning 8 mm of rainfall 
for a day would be counted, any rainfall above that amount would 
be disregarded. Then those dekadal totals are added together for the 
“window” (either early, June 21–July 31; or late, September 1–October 
20). This window total is compared against a trigger, the starting point 
for payouts, and an exit, the point at which a full payout is issued. The 
trigger and exit are analogous with frequency of payouts-more 
frequent payouts are associated with the trigger (in this case 1  in 
5 years receiving a payout), and less frequent payouts are associated 
with the exit (in this case 1 in 10 years receiving a full payout). The 
burn rate is the total average payouts that happen over a given 

observation period, typically the time series of the data used to 
calculate the index itself. The historical burn rate ideally should match 
the losses experienced by the farmer purchasing the insurance, which 
is used as a robustness test by comparing farmers’ self-reported bad 
years. Rainfall deficit during a window is calculated as a rainfall total 
sum which is less than the trigger will result in a payout; between the 
trigger and exit is a partial payout, less than the exit is a total payout. 
A daily cap of 8 mm was applied to ARC2 data in the initial “Results” 
section, the “Sub-seasonal/daily variability” section, and the “Annual 
variability” section, but was removed when comparing to other 
datasets as this cap was calibrated for ARC2 data.

For the validation against ground-based data, we compare results 
derived from GHCN rain gauge data to results derived from remote 
sensing data aggregated at various scales (the pixel of the rain gauge 
as well as the administrative levels mentioned above).

In order to determine if daily variability drives the unanticipated 
results, we remove the daily variability feature of the index (the cap) 
from the insurance formula and recalculate the prices with the ARC2 
satellite estimates used for the official insurance payouts. We perform 
t-tests of the means and a Kolmogorov–Smirnov test of the 
distributions of rainfall for the R4 region, Senegal, and Sahel 
distributions of rainfall, conduct correlations of the time series from 
the satellite data, and analyze the variance of the rain gauge and 
satellite data.

4 Results

Table 1 presents the average payouts (burn cost) for the initial and 
modern years, averaged over all of the villages in the project. The 
average over the full available climatology is also provided, for 
comparison. Payouts calculated by the index formula are in the form 
of percent of maximum possible payout for the early window, dekads 
18–21 (early in the agricultural season), and the late window, dekads 
25–29 (late in the agricultural season).

The hypothesis, as stated earlier in this paper, that payouts are 
unambiguously lower does not hold. Instead of having a lower average 
payout, the early window for the modern (2000–2016) period has a 
higher average payout than during the initial, supposedly drier 
initial years.

This suggests that for the initial sowing and establishment, the 
agricultural situation may have actually worsened, as opposed to 
improving, from the “perspective” of the insurance. For the later 
season flowering/grain filling months, the average payouts are 
dramatically lower in the modern years, consistent with a greening of 
the Sahel that is beneficial to agriculture during the latter part of the 
season. In a simple average of the prices over the two parts of the 
season, the late season decreases dominate. We also compare averages 
by payout village to the averages by pixels of the insurance project, as 
some villages are in the same pixel, therefore providing that pixel with 

TABLE 1 Average payout percentage (historical burn) comparison, calculated as the official contract was calculated with the official data source (ARC2).

Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

Early 8.19 7.29 9.1

Late 8.07 10.77 5.38
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increased weighting. Results are qualitatively similar, with the modern 
early window having higher payouts, although the magnitude of 
changes is decreased, indicating that the magnitude may be partially 
driven by the density of villages within pixels.

The results reported in this paper were a surprise to the R4 
insurance project, which performed similar analysis for insurance 
price negotiations. Project partners were concerned that because of 
decadal variation, the price in the current wetter period would 
be artificially high due to droughts in Decades past that might not 
be reflective of the current climate situation. They were negotiating 
with insurance companies to include fewer of the initial years in price 
calculations. However, in the pricing calculations for the package at 
that time, inclusion of the additional, drier years in the 1980s 
decreased the premium as opposed to increasing it, as anticipated. 
This paper was inspired by that surprise.

This simple diagnostic illustrates that we cannot assume that the 
multi-decadal variation unambiguously benefits agriculture, and that 
the multiple processes clearly have mixed effects, with net impacts on 
agriculture depending heavily on the relative vulnerability of 
agriculture over different months of the season.

4.1 Rainfall averages across seasons, 
increases in spatial domain, and datasets

To understand what drives the changes in prices, we begin by first 
investigating seasonal rainfall totals. Figure 3 presents the rainfall 
estimates for the initial and modern time periods averaged by dekad 
(10-day period) over the growing season in the R4 region of 
Tambacounda. In these figures, the early and late vulnerable periods 
of the season are highlighted.

For both satellite estimates, the sowing period has substantially 
higher rainfall in modern years for the early window for both 

satellite sources, with both satellite data estimates reflecting 
rainfall. The average rainfall increase is more clearly evident in the 
early and mid-part of the season, and less evident in the later part 
of the season which was the seasonal timing that had lower 
insurance costs in 2000–2016. Additionally, we conducted a t-test 
of the means and a Kolmogorov–Smirnov test of distributions for 
both satellite datasets across the Sahel, Senegal, and R4 regions 
between the 1983–1999 and 2000–2016 periods and found that all 
were significantly different. These results are in line with the 
literature, stating that the 1980s and 1990s had substantially less 
rainfall than the subsequent 2000–2010s. Results of this test can 
be found in the appendix.

As can be seen in Tables 2, 3, the actual rainfall totals and rainfall 
daily averages echo the figures, with higher rainfall in modern years 
in both seasonal windows, and are qualitatively consistent across the 
two satellite rainfall estimate datasets. Because rainfall is consistently 
higher on average in the years from 2000 to 2016, the higher prices do 
not appear to be driven by decreases in average rainfall.

Similarly, increases in mean rainfall are evident if we expand the 
spatial extent of the averages to across the larger Sahelian region, 
consistent with the increases in averages reflected in the climate 
literature. We  repeat the seasonal rainfall calculations across the 
increased spatial scales of the Sahel (Figure 4) and Senegal (Figure 5), 
with both satellite estimates showing similar increases in averages as 
at the insurance spatial scale.

4.2 Sub-seasonal/daily variability

One compelling possibility that could drive increases in modern 
insurance prices could be increases in sub-seasonal or daily variability. 
Daily variability in rainfall is a well-established threat to agriculture, 
due to constraints such as soil water storage (FAO, 1986, 1979, 1977; 

FIGURE 3

ARC2 (left) and CHIRPS (right) climatology from 1983 to 1999 (blue line), 2000–2016 (purple) and 1983–2016 (dotted line) for the Tambacounda 
region, R4 region (15°15’W–13°15’W, 13°30’N–14°45’N), in Central Senegal; areas shaded in grey highlight the insurance windows, the June–July 
window being the early window and the September–October window being the late window.
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FIGURE 4

ARC2 (left) and CHIRPS (right) climatology from 1983–1999 (blue line), 2000–2016 (purple) and 1983–2016 (dotted line) for the Sahel. The Sahel is 
(18°W-33°E; 13°N-19°N). The areas shaded in grey highlight the early and late insurance windows.

Senay and Verdin, 2001; Verdin and Klaver, 2002). The parameters for 
addressing daily variability are hotly debated in the insurance design 
process. We  therefore explore evidence of sub-seasonal variability 
increasing over time.

When we look at a sub-seasonal breakdown of rainfall events, 
we do see some evidence of changes in the number of dry days in the 
late window of the growing season. The dry-day count is the sum of 
days with <1 mm of estimated rainfall in a time window. Figure 6 
shows an average increase of ~5 dry days between the old and the 
modern period.

Table 4 presents the updated calculations based on removing 
the cap and recalculating the payouts. The finding of higher prices 
for the early window in the modern times is still quite evident, 
even with the daily filter removed. As an increase is observed with 

both a daily cap and no daily cap, we can infer that there are not 
isolated, high rainfall events driving the difference in prices. 
Therefore, daily rainfall is not the primary driver of the 
unanticipated results.

4.3 Annual variability

Because insurance and agricultural risk is largely driven by shocks 
and variability, we next explore the role of annual rainfall variability 
in driving increases in insurance payouts. Table  5 presents a 
comparison of the variance in rainfall, which we use as a proxy for 
annual rainfall variability, by part of the season across the different 
time periods. The year-to-year rainfall variance has increased in both 

TABLE 2 Total rainfall for early and late windows over R4 region by dataset.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2–spatial average over 

Tambacounda

Early 140.24 137.25 143.23

Late 123.39 113.15 133.64

CHIRPS–spatial average over 

Tambacounda

Early 162.68 155.91 169.45

Late 137.29 134.43 140.16

TABLE 3 Average daily rainfall for early and late windows over the R4 region by dataset.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2–spatial average over 

Tambacounda

Early 3.42 3.35 3.49

Late 2.47 2.26 2.67

CHIRPS–spatial average over 

Tambacounda

Early 3.97 3.80 4.13

Late 2.75 2.69 2.80
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windows for the modern period, particularly for the early window 
which showed higher prices.

Clearly, increases in year-to-year variance are driving the 
increased prices seen in the insurance. However, in the insurance 
we do not see both windows increasing in price, only the early one.

Interestingly, when we include the daily cap, the index feature to 
address daily variability prior to calculating the variance, we see that 
the adjusted year to year variance mimics the prices of the insurance, 
as the daily filter leads to less year-to-year variance in the late 
window in modern times as compared to the filtered late window 
from 1983 to 1999 (Table 6). Therefore, it appears that the changes 
in price, and associated risk as negotiated by farmers, is driven by 
changes in year-to-year variance that interact with changes in 
daily variability.

4.4 Evidence of changes through ground 
data sources

As the insurance payouts are calculated using satellite rainfall 
estimates with known biases that vary over decadal timescales (Diem 
et  al., 2014), and unknown potential biases in variance and daily 
variability, it is important to check if we  see unambiguous 
improvements in ground based rain gauge measurements of rainfall. 
Unanticipated results may be driven by artifacts of the remote sensing 
estimation process, and not evident on the ground.

It is necessary to note that rain gauge data, although useful for 
point information, has its own set of limitations. Rain gauge data is 
representative of a specific location, and cannot be  used to 
determine rainfall of other locations (even at a distance of only 
10 km away). This is because the nature of rainfall is mostly 
convective (Grimes et  al., 1999), resulting in highly discrete 
distributions (Grimes and Pardo-Igúzquiza, 2010). Although 
satellites are not replacements for on-the-ground measurements, 
they are able to capture information about larger spatial scales, due 
to their measurement of cloud distribution instead of 
point information.

We perform a rain gauge diagnostic on the GHCN daily rain 
gauge in the study region, which provides continuously reported data 
over our study period.

Table  7 presents the payouts if the insurance is calculated 
specifically using the Tambacounda GHCN rain gauge. Because 
the rain gauge represents a single point, it is likely that the 
insurance payouts averaged over the entire region would 
be different. For the sake of comparison, we also provide the ARC2 
based satellite estimate calculations for the single pixel that the 
rain gauge falls within. The insurance product is calibrated for the 
rain gauge and the pixel using the same techniques as used for 
the commercial insurance project in other locations. Note that the 
daily cap, which was calibrated for ARC2 based on farmer 

FIGURE 5

ARC2 (left) and CHIRPS (right) climatology from 1983–1999 (blue line), 2000–2016 (purple) and 1983–2016 (dotted line) for Senegal 
(17°30’W–11°24’W; 12°18’N–16°42’N), areas shaded in grey highlight the early and late insurance windows.

FIGURE 6

Total number of days in the early and late window (seasonality) with 
<1  mm of estimated rainfall, averaged across R4, using ARC2 Data, 
with the first half period in dark gray, the climatology in medium 
gray, and the second half period in light gray.
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TABLE 7 Average payout comparison between Rain gauge and ARC2 with an 8  mm daily cap.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

Rain gauge

Early 8.68 11.47 5.89

Late 5.94 5.53 6.35

ARC2-Tambacounda pixel

Early 8.56 0.24 16.88

Late 8.09 6.59 9.59

TABLE 8 Average payout comparison between Rain gauge, ARC2, and CHIRPS without 8  mm daily cap.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2–Tambacounda pixel

Early 181.62 202.29 160.94

Late 145.09 134.12 156.06

Rain gauge–Tambacounda

Early 310.09 316.65 303.53

Late 223.29 216.59 230.00

CHIRPS–Tambacounda pixel

Early 172.15 157.29 187.00

Late 152.47 149.00 155.94

matching with bad years, may not be  appropriate for the rain 
gauge, due to calibration issues.

The payouts are not unambiguously lower for the modern 
years. The table presents a substantial amount of variation in the 
average payouts between the periods, with the rain gauge 
reflecting higher payouts in modern years for the late window (as 
opposed to the early window from the ARC2 regional average). 
The ARC2 driven payouts for the single pixel are higher in modern 
times for both the early and late window. This highlights that one 
cannot simply assume that agriculture has unambiguously 
benefitted from increases in rainfall in modern Decades, 
evidenced in both satellite estimates as well as ground 

observations. Complexities in the multiple climate process are 
therefore important to take into account when relating climate to 
agriculture. Critically, it is important to further develop remote 
sensing products that are robust and well calibrated for not only 
mean rainfall, but year to year variance, seasonality, and 
daily variability.

This is further underscored as we explore the seasonality mean 
and variance across the rain gauge and multiple satellite estimates at 
that pixel, as depicted in Tables 8, 9. Note that because the 8 mm cap 
used in the index was manually calibrated to specific ARC2 levels, it 
is unlikely to be appropriate for other data sources. It has therefore 
been omitted from further calculations.

TABLE 4 Average payout (historical burn) comparison, payouts calculated with an index that had no daily cap for ARC2 data.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2 Early 7.55 6.61 8.49

ARC2 Late 8.72 11.00 6.44

TABLE 5 Variance of rainfall using ARC2 rainfall estimates, no daily cap.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2–spatial average over 

Tambacounda

Early 1705.73 1389.67 2109.41

Late 1955.30 1071.15 2738.74

TABLE 6 Variance of rainfall calculated after processing with daily cap of 8  mm using ARC2 rainfall estimates.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2–spatial average over 

Tambacounda

Early 369.63 266.44 487.80

Late 346.61 412.09 294.54
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Given the heterogeneity in changes across the time periods 
between the rain gauge and different remote sensing estimates, the 
robustness of satellite rainfall estimates across Decades is important 
to improve for index insurance applications.

4.4.1 Satellite data diagnostic
We more formally compare ARC2 with CHIRPS by correlating 

the two satellite estimates pixel by pixel. Table 10 demonstrates the 
correlation coefficient of standardized monthly anomalies for 
CHIRPS/ARC2 rainfall from 1983 to 1999 and 2000–2016. While the 
correlation coefficient of seasonal anomalies (not shown) does not 
result in significant differences, the monthly correlations show both 
spatial and temporal differences in the Tambacounda region (blue 
rectangle in Figure 7).

Despite a low (near zero) correlation coefficient for the 1983–1999 
period in July, we observe the largest differences for the Tambacounda 
region during the middle and the end of the season.

As shown in Table  10, the correlation coefficient is higher in 
August (R = 0.74) and October (R = 0.85) for the 1983–1999 period 
than for the 2000–2016 period (R = 0.56 and R = 0.64), but lower in 
September (R = 0.59 vs. R = 0.73).

Clearly, it is important to address issues in remote sensing 
calibration related to anomalies, seasonality, variability, and long-term 
stability, not only to understand long term climate processes, but also 
to provide more relevant and robust insurance payouts. Calibrations 
focused simply on averages are unlikely to be adequate. Although 
averages could be useful for better understanding crop yield outcomes, 
index insurance is focused on when crops fail due to weather or 
climate shocks. As a result, measures and calibrations based on the 

lowest quartile of rainfall are more appropriate for improving index 
insurance tools as opposed to averages, medians, or other measures.

5 Conclusion

We have found that when analyzing the rainfall data (regardless 
of source), there has not been a decrease in payouts corresponding 
with an increase in seasonal rainfall totals over the study period, as 
would be expected. When we include the full time series of rainfall 
for both rain gauges and satellite data, the payout rate is not radically 
greater than using only the second half of the time series. As such, 
including the 1980s in an index insurance product in Senegal does 
not arbitrarily increase the final price. Rather, in this specific case, 
the interannual variance of rainfall is more important for 
determining payouts. Although there have been many studies 
focusing solely on the rainfall variability across the Decades in West 
Africa, the implications for how this may affect applications had 
been relatively scarce. This study contributes to better understanding 
what the decadal variability means for index insurance projects in 
the region.

We use the formula for a commercially available index insurance 
product to compare average payouts over two time periods as an 
imperfect metric of the damage inflicted by rainfall to agriculture over 
that time period, with higher payouts being a signal that the rainfall 
patterns are more destructive to agriculture. Naïve assumptions can 
lead to overly conservative (expensive) insurance pricing when 
insurers do not have realistic, climate science driven information 
(Osgood et al., 2012).

TABLE 9 Comparison of variance of rainfall between Rain gauge, ARC2, and CHIRPS.

Data source Seasonality Full period First half period Second half period

1983–2016 1983–1999 2000–2016

ARC2 Tambacounda pixel

Early 4341.09 3616.72 4428.31

Late 4952.81 3861.61 6097.81

Rain gauge Tambacounda

Early 5123.42 7392.74 3082.89

Late 3168.27 1926.38 4512.63

CHIRPS Tambacounda pixel

Early 1806.98 1358.85 1899.25

Late 1722.44 2401.13 1125.81

TABLE 10 Correlation coefficients for monthly CHIRPS/ARC2 anomalies in Tambacounda.

Period Month Correlation coefficient

1983–1999 June 0.64

2000–2016 June 0.58

1983–1999 July 0.68

2000–2016 July 0.65

1983–1999 August 0.74

2000–2016 August 0.56

1983–1999 September 0.59

2000–2016 September 0.73

1983–1999 October 0.85

2000–2016 October 0.64
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Unambiguous improvements are not found when we analyze the 
specific parts of the season used for the index design. On average across 
the R4 project, using the official payout formula and data source, instead 
of having a lower average payout, the early window for the modern 
(2000–2016) period has a higher average payout than during the 
supposedly drier initial years. This suggests that for the initial sowing 
and establishment, the agricultural situation may have actually 
worsened, as opposed to improving, from the “perspective” of the 
insurance. Although we  see mean rainfall has generally increased 
during the critical times of the agricultural season across datasets for 
both the R4 region and the larger Sahel, consistent with Nicholson 
(2013) and Lebel and Ali (2009), year to year variance appears to have 
increased as well, echoing Salack et al. (2013), and Sanogo et al. (2015). 
It appears that the changes in price, and associated risk as negotiated by 
farmers, is driven primarily by changes in year-to-year variance with 
some interactions with changes in daily variability.

Similarly, insurance payouts are not unambiguously lower in 
calculations based on rain gauges, also related to increases in variance, 
suggesting that it is likely actual climate phenomena that are driving 
the process and it is not completely the artifact of remote sensing 
estimation processes, which have in some cases been demonstrated to 
have biases that shift with decadal timescales (Diem et al., 2014). 
However, which specific prices increase or decrease varies with data 
source, and location, underscoring the importance of work to more 
effectively calibrate remote sensing estimation methodologies not only 
for average rainfall, but year-to-year variance, and sub-seasonal/daily 
variation for estimates that are stable across the Decades.

Using an index during the key moments of the season to capture 
poor cropping conditions shows that the recent increase in rainfall 
observed in the R4 region and the Sahel does not result in fewer 
payouts in the second half of the data relative to the first half of the 
data. The assumption that farming in the current rainfall regime is 
subject to less agricultural risk through drought does not hold. 
Farmers currently do demand a safety net for poor rainfall during the 

onset and cessation of the season, and using an index insurance 
product that targets these key moments is a possible tool to 
compliment farmers’ risk management portfolios. While the 
interannual variability does seem to have increased, interestingly the 
payouts are not clustered around the 1980s, so a simplistic decadal bias 
correction would not address the interannual variability in the 
insurance. The onset and cessation of the rainfall season exhibit 
similar ramp ups/downs as they have in the past, indicating that the 
Atlantic Multidecadal Variability may not need to be incorporated 
into the loading costs for this part of the season. Additionally, when 
considering the construction of an index, the different datasets 
available can impact the payout structure, meaning that different 
datasets may be better suited for capturing the drought risk. In order 
to best target farmer needs, farmers should be consulted and included 
in the creation and discussion of the index.

Data availability statement

Publicly available datasets were analyzed in this study. This data can 
be found at: https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.
CPC/.FEWS/.Africa/.DAILY/.ARC2/.daily/.est_prcp/ https://iridl.ldeo.
columbia.edu/SOURCES/.UCSB/.CHIRPS/.v2p0/.dekad/.prcp/.

Author contributions

DO: Conceptualization, Supervision, Writing – original draft. SB: 
Formal analysis, Methodology, Writing – review & editing. SO: 
Formal analysis, Investigation, Methodology, Writing – original draft. 
ME: Formal analysis, Writing – review & editing. MB: Investigation, 
Writing – original draft. TL: Methodology, Supervision, Writing – 
review & editing. AG: Methodology, Supervision, Writing – review & 
editing.

FIGURE 7

Correlation of standardized CHIRPS and ARC2 anomalies from 1983 to 1999 (top row) and 2000–2016 (bottom row) by months June, July, August, 
September, and October. The blue rectangle shows the Tambacounda, or R4, region.
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