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Intense precipitation events pose a significant threat to human life. Mathematical

and computational models have been developed to simulate atmospheric

dynamics to predict and understand these climates and weather events. However,

recent advancements in artificial intelligence (AI) algorithms, particularly in

machine learning (ML) techniques, coupled with increasing computer processing

power and meteorological data availability, have enabled the development of

more cost-e�ective and robust computational models that are capable of

predicting precipitation types and aiding decision-making to mitigate damage.

In this paper, we provide a comprehensive overview of the state-of-the-art in

predicting precipitation events, addressing issues and foundations, physical origins

of rainfall, potential use of AI as a predictive tool for forecasting, and computational

challenges in this area of research. Through this review, we aim to contribute

to a deeper understanding of precipitation formation and forecasting aided by

ML algorithms.

KEYWORDS

precipitation prediction, dynamic models, precipitation formation, machine learning,
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1. Introduction

The science fields of weather and climate forecasting encompass the use of physical

and computational tools to predict the atmospheric state during time intervals (Hall and

Acharya, 2022). Precipitation forecasting is an essential mechanism augmenting the actions

of civil defense departments in preventing social and material damage during climate

anomalies, mainly focusing on flooding indicative of river basin and clogged sewer channel

responses to heavy rainstorms (Pinos and Quesada-Román, 2022).

Floods caused by extreme precipitation incur significant losses for the economy and

life, causing havoc in an urbanizing world, with the highest impacts on the poorest and

most vulnerable areas, resulting in a range of devastating impacts throughout economic,
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social, ecological, and environmental impacts (Roxy et al., 2017;

Pinos and Quesada-Román, 2022). These hydrometeorological

anomalies are responsible for considerable property and

infrastructure damage and the wide reallocation of people

(Singhal et al., 2022). Extreme precipitation within a short time

duration and with a high intensity may lead to intense flash

flooding, which can be more hazardous than longer-duration

precipitation (Fowler and Ali, 2022).

The Swiss Re Group estimated the global losses from natural

catastrophes in the first half of 2022 at US$ 35 billion, 22% above

the average for the past ten years (US$ 29 billion) (SwissRe, 2022).

According to an estimate for India, floods caused by extreme

precipitation amount to economic losses of approximately US$ 3

billion per year (Roxy et al., 2017). In addition, 46.1% of deaths

related to extreme weather events in India are caused by floods (Ray

et al., 2021). Regarding Latin America and the Caribbean region,

the International Disaster Database of the Centre for Research on

the Epidemiology of Disasters (CRED) estimated that 45% of the

recorded natural disasters since the beginning of the 21st century

have been caused by flooding (Pinos andQuesada-Román, 2022). A

study developed by Fang et al. (2015) estimated the expected annual

mortality risk of flood by countries in Latin America, where Brazil

is in the top 10% of countries, whileMexico, Guatemala, Venezuela,

Colombia, Paraguay, Ecuador, and Argentina rank among the

top 10–35%; Cuba, Nicaragua, Peru, Chile, Uruguay, and Bolivia

are among the top 35–65%; Costa Rica, Dominican Republic,

Honduras, and Haiti are in the top 65–90%; and Belize ranks in

the bottom 90 to 100% of mortality. A similar ranking related to

economic loss risk caused by flooding ranks Argentina and Brazil

as the most vulnerable countries, reaching the top 10%.

According to information from the World Meteorological

Organization (WMO, 2021) Atlas of Mortality and Economic

Losses from Weather, Climate, and Water Extremes (1970–2019),

floods rank among the climatic events most impactful to society

and cause economic and human losses. During this period, floods

caused by heavy rains caused ∼58,700 deaths worldwide, resulting

in damages of US$ 115 billion. According to countries in the United

Nations, 91% of recorded deaths caused by weather, climate, and

water extremes occurred in developing economies, while 59% of

economic losses were recorded in developed economies (WMO,

2021).

The National Weather Service, a United States of America

(USA) department, estimates that the number of deaths in the

USA directly caused by flooding from 2010 to 2022 totals ∼1,352

lives (NWS, 2023). In 2013, heavy rainfall triggered catastrophic

flooding in Canada’s southern quarter of Alberta, including the

city of Calgary. Approximately 3,000 buildings were flooded and

infrastructure was destroyed, causing damages estimated to be

US$ 6 billion (Burton, 2021). Torrential rain also led to severe

flooding and destruction in Germany, causing at least 196 deaths

in 2021 (NBC news, 2021). Heavy rainfall caused severe flooding

in Wales and southern England due to the passage of storm

Dennis in 2020, causing fatalities and material damages (Euro

News, 2020). Similarly, in 2020, storm Alex caused flooding in

a mountainous region of France and Italy, killing people and

destroying infrastructure (The Guardian, 2020). Japan faced the

same problem in 2018, when torrential rains in the western region

caused great flooding that culminated in 209 deaths (Anadolu

Agency, 2018).

Adaptation to rising flood and excessive precipitation-

caused landslide risks and climate anomalies require a diverse

range of intervention, including early warning systems (EWS),

infrastructure improvements, nature-based solutions, social

protection, and risk financing instruments (Allaire, 2018; Jongman,

2018). EWS based on artificial intelligence (AI) have demonstrated

efficacy in disaster management, using technologies such as

tracking and mapping, remote sensing techniques, robotics, drone

technology, geospatial analysis, machine learning (ML), network

services, smart city urban planning, transportation planning,

and environmental impact analysis (Abid et al., 2021). Recently,

Srivastava et al. (2020) applied machine learning algorithms to

predict precipitation and associate the results with the occurrence

of a landslide in Narendra Nagar, India. An effective EWS method

for very short-term heavy precipitation based on AI techniques

was suggested by Moon et al. (2019). This technique produces

a warning signal when it is expected to reach the criterion for a

heavy precipitation advisory. The proposed method was tested for

652 locations in South Korea from 2007 to 2012. Puttinaovarat

and Horkaew (2020) developed a prototype mobile device

internetworking system for flooding disaster mitigation by using

virtual real-time AI remotely sensed geographical data and image

validation to report flooding occurrence. Similarly, Darabi et al.

(2021) developed an AI-based algorithm called a multiboosting

neural network (MultiB-MLPNN) for urban flood susceptibility

mapping. The researchers tested the algorithm in Amol City, Iran,

and concluded that the method could establish risk-reduction

measures to protect urban areas from devastating floods (Darabi

et al., 2021).

In this review paper, we synthesize some geophysical

foundations related to precipitation formation and how dynamic

models have been employed to perform forecasting of this

meteorological phenomenon. We also approach the fundamentals

of ML algorithms, investigate the application of these techniques

in precipitation forecasting over the years, and conclude by

identifying key challenges faced by AI in this research field.

2. The physics behind the precipitation

2.1. Aspects of precipitation formation

Rainfall or the amount of precipitation is defined as all liquid

water that originates in the atmosphere and reaches the Earth’s

surface. According to measuring devices, precipitation is usually

taken as the amount of liquid water, in millimeters (1 mm/day

means that precipitation is 1 liter per meter2 per day) or inches,

that had fallen in a given area for a specified period (Michaelides

et al., 2009; AMS, 2022).

Within cloud formations, precipitation formation is associated

with the condensation of water vapor of a heated air parcel that

cools down as it rises in the atmosphere, forming water droplets.

The condensation occurs when the water droplets in a saturated

air parcel attach themselves to a solid surface of tiny particles of

dust, salt, and seed, known as atmospheric aerosols, which act as

cloud condensation nuclei. As the cloud develops, water droplets

collide and produce larger droplets through coalescence until they

become larger (∼2 mm diameter) and heavy enough to fall due to

gravity as precipitation (Michaelides et al., 2009; Selase et al., 2015;
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FIGURE 1

Earth’s meridional circulation cells and the process of cloud formation in the tropical region. The main meridional atmospheric circulation cells are

convective cells where the warm and moist air converges at the surface and cold and dry air diverges aloft. The cloud formation process starts with

water vapor from a body of water. With vapor condensation, due to rising air parcels and the existence of condensation nuclei, water drop formation

occurs. These water drops increase in number and form cloud droplets and, consequently, clouds.

Grabowski et al., 2019). The size of the rain droplets that reach the

surface depends on how long it takes to form within the cloud.

The longer the water droplet stays in the cloud, the more it can

grow through the collision-coalescence mechanism. This depends

on the strength of the vertical motion in the cloud and its thickness.

Figure 1 illustrates this phenomenon in a tropical region.

The dynamic (or microphysical) and thermodynamic processes

of clouds that drive precipitation formation at the cloud scale

impact the global energy and water cycles and, consequently,

play a fundamental role in determining Earth’s climate (Khain

et al., 2000; Vardavas et al., 2011). In the context of Earth’s

energy budget, clouds reflect a large part of the incoming solar

radiation and contribute to the cooling of the atmospheric system.

On the other hand, cloud cover reduces the outgoing infrared

radiation, warming the lower atmosphere. Additionally, latent heat

fluxes, associated with changes in water phases within clouds, are

one of the main sources of energy for atmospheric processes, as

they can modify the atmospheric circulation at different scales,

ranging from individual clouds to mesoscale systems, and link

the microphysics processes and the general dynamics of the

atmosphere (Baker, 1997; Khain et al., 2000; Grabowski et al.,

2019).

2.2. Wind-driven circulation and rainfall

At a large scale, general atmospheric and oceanic circulation are

responsible for compensating for excess solar energy absorbed in

the tropical region and then redistribute the energy poleward in

both hemispheres. Large-scale air movement in the troposphere

is related to the horizontal pressure gradient generated by the

meridional differences in surface heating, which in turn generate

convective circulation cells. Around low-pressure regions, warm

and moist winds converge near the surface, leading to an upward

vertical motion associated with increasing cloud cover. In the

upper troposphere, winds diverge toward the poles and descend

in the high-pressure regions, which are associated with the

clean sky, despite the occurrence of shallow low-level clouds

(Wang, 2004; Xie and Bradley, 2004; Beucher, 2010). Figure 1

displays the main meridional cells of large-scale circulation in

the troposphere, such as Hadley cells in the tropics, Ferrel

cells in the extratropical regions and Polar cells over the

poles.

The low-pressure region located close to the equator is

associated with high sea surface temperatures (SST). It is

characterized by a narrow belt of convective clouds encircling the
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earth, concentrating most of the global precipitation, known as

the Intertropical Convergence Zone (ITCZ) (Schneider et al., 2014;

Adam et al., 2016a,b) (Figure 2A). The deep convection in the

ITCZ releases a large amount of heat (mainly latent heat) into the

atmosphere due to the persistent formation of convective systems

(Beucher, 2010; Adam et al., 2016a). Observations and model

results indicate that the ITCZ’s position and intensity change with

the energy balance variations associated with changes in surface

heating (Broccoli et al., 2006; Kang et al., 2008; Donohoe et al., 2013;

Schneider et al., 2014).

Therefore, as the ITCZ is a large-scale signature of all processes

that control convection and convective clouds in tropical regions, it

strongly correlates with the seasonal and interannual variability in

tropical ocean SSTs. At these timescales, the ocean modulates most

of the atmospheric circulation, such as the annual precipitation

cycle over key continental regions such as the Amazon basin,

Northeast Brazil, and tropical Africa (Folland et al., 1986; Parker

and Folland, 1988; Liebmann and Marengo, 2001; Kushnir et al.,

2006; Wang et al., 2018).

2.3. Distribution of precipitation systems

Due to variations in clouds, wind dynamics, and oceanic

influences on the atmosphere, a significant characteristic of the

observed precipitation is its spatial and temporal variability.

In this way, many studies have been conducted to understand

precipitation system features and extreme event occurrences

(Hirose et al., 2009; Liu and Zipser, 2015; Zhang and Wang,

2021). Here, the term precipitation systems refer to a cloud where

most of the raindrops reach the size and weight to precipitate

in the form of rainfall. Thus, a precipitation system may present

different area sizes (e.g., from ≤ 100 m to over 100 km)

and behavior in terms of precipitation amount, frequency, and

duration (Hirose et al., 2009; Zhang and Wang, 2021). Hirose

et al. (2009) used 10 years of satellite observations from the

Tropical Precipitation Measurement Mission (TRMM) to study

the regional characteristics of precipitation systems based on

their sizes. The authors showed that small precipitation systems

presented uniform features over land and ocean, such as local

formation during the early afternoon (mainly over continents) and

no spatial propagation. However, large precipitation systems follow

the precipitation maxima in small systems with clear migration

properties—for example, diurnal propagation inland over the

Amazon River Basin.

In the same way, Liu and Zipser (2015) analyzed precipitation

system features based on depth and convective intensity by using

one year of radar echo top data provided by the Global Precipitation

Mission (GPM) and pointed out three main features: (i) the largest

precipitation systems occurred over the oceans between mid and

high latitudes; (ii) the most intense convective systems are more

frequent over land as well as over mid and high latitudes; and (iii)

the deepest systems occurred mostly over tropical continents and

Pacific warm poll regions, as well as over Argentina, the central

USA and southwestern Canada. Most recently, Zhang and Wang

(2021) used the Integrated Multisatellite Retrievals for Global

Precipitation Measurement (IMERG) product to describe the main

features of global precipitation systems as well. They highlighted

that large-scale systems occur more frequently over the ocean

and specifically over the coastal areas under the influence of the

ITCZ and at mid-latitudes. Additionally, they demonstrated that

the seasonal precipitation cycle is most apparent over mid-latitude

oceans, the southeast USA, and the Amazon Basin. Conversely, the

diurnal cycle over the ocean is weaker at mid-latitudes, and it also

presents a peak in the afternoon, corroborating the study findings

in Hirose et al. (2009).

According to the results of the aforementioned studies, a clear

difference in the spatial distribution of the precipitation systems can

be better observed considering the size and depth of the systems as

the main feature, without accounting for their intensity, duration,

and temporal variability (Liu and Zipser, 2015; Zhang and Wang,

2021) (Figure 2B).

The main aspects of the general circulation, precipitation

formation, and distribution discussed here bring to light the

fundamental role of some key variables, such as the SST, wind

components, water vapor content, and heat flux (both latent

and sensible heat), on the understanding of the atmospheric

behavior in terms of its dynamics and thermodynamics at different

spatiotemporal scales, resulting in water precipitation over the

surface. Thus, the variability of these key variables, and other

factors derived from them, are essentially driven by physical

laws, and statistics can describe their mean patterns. This has

favored advances in the predictability of precipitation through the

development of models (both dynamic and statistical models),

which can reproduce the mean state of the atmosphere adequately

and/or forecast the evolution directly or indirectly of some variables

associated with rainfall.

3. Dynamic models to atmospheric
forecast

3.1. Primitive motion equations and the
atmospheric state

In the middle of the 19th century, atmospheric physics

equations (Ynoue et al., 2017) were already known and were

used to solve hydrodynamics problems. These equations

are known as primitive equations and are defined by five

conservation equations.

Motion conservation, how horizontal (zonal and meridional

wind) air motion occurs around time:

∂ EV

∂t
+ EV . E∇ EV = −

E∇p

ρ
− 2 E� × EV + Eg + EFv (1)

Energy conservation, how the changes in air temperature affects

the changes in parcel heat or in its volume:

Cp(
∂T

∂t
+ EV . E∇T) = −

1

ρ

dp

dt
+ Q+ Fϒ (2)

Mass conservation, how the air mass inlet or outlet in a parcel

changes the internal density of the air parcel:
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FIGURE 2

Meteorological systems. (A) Representation of the precipitation band associated with the ITCZ from ERA5 total precipitation data averaged over

1959–2021. (B) Global distribution of the largest and deepest precipitation systems based on Liu and Zipser (2015) and Zhang and Wang (2021).

∂ρ

∂t
+ EV · E∇ρ = −ρ E∇ · EV (3)

Moisture conservation, describe the water transport in all its

forms and stages inside of the hydrological cycle:

∂q

∂t
+ EV · E∇q =

Sq

ρ
+ Fq (4)

State conservation, the relationship between air pressure, its

volume, its temperature and quantity of ideal gas:
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p = ρRT (5)

Until the beginning of the 20th century, there were no weather

or climate forecasting application since there is no analytical

solution to this system of equations. Vilhelm Bjerknes stated that

the weather forecast problem is an initial and boundary condition

problem (Lynch, 2008). The first person who tried calculating the

weather forecast via numeric methods was Lewis Fry Richardson

in 1922 (Holton and Hakim, 2013). He used the finite differences

method to calculate the surface pressure forecast at two grid points,

but despite all efforts, the forecast was a disaster. Richardson

speculated that the problem occurred in the initial conditions.

The complete system of hydrodynamics equations mentioned

above could be employed in weather forecasts using an

approximated numeric or graphic solution method. More

information on these equations can be found in Kalnay (2003).

3.2. Numerical weather prediction and
climate modeling

The global climate system’s main activity is transporting

energy from the equator to the poles. Due to its size, studying

this activity of climate systems with experimental methods is

impossible. Climate models were developed to answer some of

these climatological questions: how does energy circulate around

the globe, how is it distributed, and where is it occurring

(atmosphere, ocean, land surface, etc.) (Edwards, 2011).

All general circulation models (GCMs) have a “dynamical

core" that simulates fluid movement on a large scale and a

“physics model" that simulates other processes, such as radioactive

transfer, cloud formation, and convection (Edwards, 2011). The

dynamical core uses the primitive equations of motion and the

state (mentioned in the previous section). These equations need

numerical methods (finite differences) to be resolved. Cartesian

grids with finite-difference methods are used to compute the

horizontal and vertical energy and mass transfers between grid

boxes at each time step for the defined run-time (Figure 3). The size

of the grids, time step, and run-time depend on what is intended to

be modeled.

Most physics processes occur inside the model grids, i.e.,

they cannot be calculated directly. Thus, models represent these

processes through parameterizations or mathematical functions.

Some parameterization schemes are radioactive transfer, cloud

formation, convection, air quality, and ecosystems, among others

(Edwards, 2011; Schneider et al., 2017).

The initial conditions are particularly important to a good

prediction at all time scales, but are primarily used for weather.

Lewis Fry Richardson, mentioned in Section 3.1, cited in his book

that he believed that the problem in his prediction was the initial

condition (Holton andHakim, 2013). Observed data are not equally

spaced on the surface; in some places, they do not exist (for

example, in large forests, deserts, and most parts of oceans). In

1979, with the advent of satellites, the initial conditions became

a mixture of observed data with data inferred by the satellite.

During the last five decades, land cover and land use (LCLU)

changes have been monitored from satellite remotely sensed data

(Wulder et al., 2022). Currently, the effects of LCLU changes on

precipitation and its mechanisms remain unclear in many regions

(Zhong et al., 2021). However, LCLU changes have been one of the

most important human-driven impacts forcings to Earth’s climate

(Jach et al., 2020).

Many models can be used to predict variables in atmospheric

science, from simple models (energy balance models) to more

complex (Earth SystemModels—ESM). The chosenmodels depend

on the spatial and temporal scale that is to be predicted. ESMs are

based on knowledge in many areas: physics, chemistry, biology,

economics, and social science (McGuffie and Henderson-Sellers,

2001). The main objective of this type of model is to find answers

to current climate change (i.e., the fast increase in greenhouse

gases and the subsequent warming of the planet) and how Earth

will continue to be sustainable for life (McGuffie and Henderson-

Sellers, 2001). Nevertheless, the ESMs can be used to predict many

time scales (weather, subseasonal, seasonal, interannual, climate

change, among others), but it is unnecessary. This is because it is

possible to use only the Atmospheric General Circulation Model

(AGCM), a model that is simpler to execute and needs fewer

computational resources, compared to an ESM, to predict the

weather (1–10 day forecast), and consequently, their computational

runs are faster than the ESM computational runs. The seasonal

numeric models, which are normally based on the coupled general

circulation model (CGCM, coupled atmospheric and oceanic

models), still do not have a good prediction capability and tend to

be better at forecasting weather located in tropical regions and the

global SST (Harper et al., 2007).

Although ESMs are the most advanced dynamic models

available, they still have some problems. Irrgang et al. (2021)

cites four ESM problems or uncertainties: (1) the equilibrium

climate sensitivity (the equilibrium global mean temperature if

the CO2 amount is instantaneously duplicated) remains large; in

CMIP6, the range is 1.8–5.6◦; (2) the accuracy of predicting abrupt

system changes in Earth’s subsystems. This occurred because the

observed data (with less than two centuries) did not experience

abrupt changes, so it is impossible to validate these models for

these changes. (3) Currently, it is common to talk about CO2

removal techniques as a mitigation option for global warming,

but actual ESMs were not designed to evaluate the effectiveness

and environmental impact of these techniques. (4) Earth system

dynamics have some extreme weather events (heat waves, droughts,

floods, and other events), and future projections show that these

events will be more frequent and more severe. The ESMs are

good for predicting the average climate values, but the extreme

representation can be improved. After discussing these ESM

problems (Irrgang et al., 2021), these authors analyzed the use of

neural ESMs, a term used to define a system improved with the

application of neural networks. Hence, AI methods have already

been used to improve dynamic modeling skills.

Numerical weather prediction (NWP) models are based on

complex physical equations that simulate atmospheric dynamics

and require extensive computational resources to run. They have a

strong foundation in the principles of physics and meteorology and

have been widely used for weather forecasting for several decades.

The scientific community agrees that real-time NWP models were

the most crucial atmospheric science development in the 20th

century. NWP development was highly dependent on the scientific

gains of the Second World War stemming from the great quantity
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FIGURE 3

Cartesian grids with finite-di�erence methods, based on Edwards (2011).

of surface and upper-air data and the introduction of the new

electronic digital computer (Harper et al., 2007).

Although NWP models perform well in predicting several

meteorological variables, these models have limitations in their

ability to capture all of the relevant physical processes and

struggle with the high variability and uncertainty associated

with extreme precipitation events. In addition, NWP models

require significant computational resources to generate accurate

results. The computational execution of numerical methods for

meteorological process modeling is a complex task that is very

difficult without the use of a high-performance computer (Scher

and Messori, 2018; Doroshenko et al., 2020).

An important method used mainly in climate models, but also

in NWP models, is the ensemble model (Alizadeh, 2022). This

method is used in at least two ways: (1) the same model but with

different initial conditions (model-based ensemble), or (2) different

models with the same initial conditions (multi-model ensemble).

After generating all forecasts, their mean is calculated, and because

of this, only strong climate signals are kept. The ensemble method

minimizes errors due to the model’s and scenario’s uncertainties

and the internal variability (Troccoli, 2010).

Alizadeh (2022) did a review paper about advances in climate

modeling. In this review, the author shows some sources of

uncertainty in climate models (nature of events, internal variability,

parameterizations, scenario, etc.) and that these models have

significantly improvement in the last decades mainly due to the

advancement of spatial resolution of each model and the solution

of some physics process that earliest was parameterized. These

improvements were possible due to advances in high-performance

computing and the greater availability of meteorological data in

recent decades. These advances have allowed the development of

less costly predictive models based on AI techniques, which have

been studied and applied as alternatives for climate forecasting

since 1984 by the Environmental Research Laboratories (ERL) of

the National Oceanic and Atmospheric Administration (NOAA)

(Hau, 2022).

4. Artificial intelligence algorithms

4.1. ML pipeline for rainfall forecasting

The AI field of study designs algorithms for machines to learn

and act in response to what they sense based on programmed

objectives to find solutions for real-world problems based on

cognitive behavior associated with the human brain (Hessler and

Baringhaus, 2018; Qerimi and Sergi, 2022).

Machine learning (ML) is a field of AI that develops and

studies algorithms with the ability to learn patterns from data

(training) and return information from new ones (testing) (James

et al., 2013; Mahesh, 2020). Applications of ML have considerably

increased in recent decades (Berrang-ford et al., 2021; Garg and

Mago, 2021), and their algorithms have been proposed and tested

to solve different computational problems, including regression,

time series forecasting, classification, natural language processing,

optimization, and dimensionality reduction, as shown in Figure 4.

These problem classes simplify and help abstract theoretical and

practical problems to the computational field where ML techniques

can act. For example, among the algorithms available to solve

regression and classification problems, artificial neural networks

(ANNs), deep learning (DL), support vector machines (SVMs),

k-nearest neighbors (kNNs), decision trees (DTs), and random

forests (RFs) stand out (Balaji et al., 2021; Yu and Haskins, 2021;

Deman and Miralles, 2022). Clustering issues can be solved using

algorithms such as k-means, hierarchical cluster analysis (HCA),

and density-based spatial clustering of applications with noise
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(DBSCAN) (Tang et al., 2022; Manoj Stanislaus et al., 2023).

Principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), and locally linear embedding (LLE)

are examples of ML algorithms used to address dimensionality

reduction problems (Usama et al., 2019; Roohi et al., 2020).

The use of ML algorithms can also be divided according

to the level of information available for model training, such

as supervised learning, unsupervised learning, semi-supervised

learning, and reinforcement learning. Supervised learning consists

of algorithms that need target information to be trained, while

unsupervised learning corresponds to techniques that do not use

any previous information to be trained. Semi-supervised learning

relies on algorithms that blend the benefits of both supervised and

unsupervised learning, where the models are trained with both

labeled and not labeled data, taking advantage of the available

labeled samples to uncover structure in a dataset and help label

the rest (Patel, 2019). This classification is important in the

requirements engineering stage, as it can guide the researcher in

which model can be applied according to the available information.

In the application field of ML in precipitation forecasting, the use

of supervised techniques (e.g., the supervised DL model and SVM)

stands out due to the availability of data in forecasting these time

series, as will be mentioned in the next topic.

The development of ML dependable models demands certain

steps that must be followed, such as data collection, data cleaning

and preprocessing, feature engineering, model training, and testing

and validation. These are the standard steps employed in the

automation and optimization of ML model development to solve

many problems in different fields (Wirth and Hipp, 2000). All these

stages are described below and are summarized in Figure 5.

4.1.1. Data collection
This is the stage where the data related to the approached

problem are collected from one or more sources. The data

could be numbers, texts, images, or video matrices. In the

case of precipitation forecasting, data include information about

temperature, humidity, wind speed, and other environmental

factors.

4.1.2. Data cleaning and pre-processing
The stage where the collected data with errors, missing values,

or irrelevant information are treated and preprocessed, removing

the irrelevant information, handling missing values, and dealing

with any inconsistencies or outliers.

4.1.3. Feature engineering
In this stage, relevant features are selected or engineered from

the preprocessed data. For example, features such as temperature,

humidity, and wind speed can be combined to create more complex

features to improve the accuracy of the rainfall forecasting model.

4.1.4. Training the model
The next stage involves training an ML model using the

preprocessed data and the selected features. The model is trained

using a specific algorithm that aims to learn the patterns and

relationships within the data.

4.1.5. Testing and validation
Once the model is trained, it is evaluated using a testing dataset

to check its performance according to some metrics. This ensures

that the model is not overfitting or underfitting the data and can

generalize unseen data well.

4.2. Precipitation data for computational
processing

The dissemination of weather data in diverse encoding formats

among numerous meteorological institutions, coupled with the

flexibility of ML techniques to process distinct precipitation data

structures, has likewise contributed to the amplified deployment of

these algorithms in precipitation forecasting.

Precipitation data, among other meteorological variables, are

available from various online databases, which are maintained and

managed by many organizations that monitor weather phenomena

worldwide. These data are usually collected by sensors distributed

throughout several regions and monitored by these institutions.

The sensors are located in weather stations, aircraft, watercraft,

and ocean buoys, among other locations, and all of these

measurementsmade on-time. Satellite data are also used to estimate

meteorological variables in several regions worldwide (Ynoue et al.,

2017; Sun et al., 2018).

Different organizations worldwide collect and store these

data in their data centers and the World Meteorological

Organization (WMO) is the best example of this. There are

some organizations that receive and interpolate the data in a grid

and put the precipitation data in a repository; some examples

are the University of East Anglia [which produces the Climate

Research Unit—CRU dataset (Harris et al., 2014)] and the Global

Precipitation Climatology Centre (GPCC) (Becker et al., 2013)

from NOAA. Some organizations have reanalysis datasets, which

are datasets created through observed and estimated data, and

some computational models to recreate missing data (spatial or

temporal). Examples of some organizations that share these data

are the European Centre for Medium-Range Weather Forecasts

(ECMWF—Europe) (Hersbach et al., 2020), the National Center

for Environmental Prediction/National Center for Atmospheric

Research (NCEP/NCAR—USA) (Kalnay et al., 1996), and the Japan

Meteorological Agency (JMA—Japan) (Kobayashi et al., 2015),

among others.

Currently, there are several methods for encoding

meteorological data. The purpose of encoding these data is

to structure the multidimensional and historical information

about the physical and geographical variables, facilitating data

processing in computational models of numerical forecasting

or visualization. The most common file formats for encoding

meteorological data are the Network Common Data Form

(NetCDF) (Rew and Davis, 1990), Hierarchical Data Format

version 5 (HDF5) (Yang et al., 2005), GRIdded Binary (GRIB),

Binary Universal Form for Representation of meteorological
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FIGURE 4

Types of problems approached by ML algorithms. (A) Regression. (B) Classification. (C) Clustering. (D) Dimensionality reduction.

data (BUFR) (Agustin and Cruz, 2022), and Comma-Separated

Values (CSV).

4.3. Mathematical formulation for
precipitation forecasting using ML models

At a mathematical level, the most fundamental precipitation

forecasting process assisted by ML can be categorized as being

a supervised problem of univariate or multivariate time series

regression, with the main objective of precipitation prediction in

a given time horizon. For univariate prediction, the model input

values are the current precipitation, x(t), together with the lagged

values of precipitation, as shown in the vector equation EXin−uni(t),

where x ∈ ℜ+ is the precipitation variable, t ∈ Z+ represents

the time scale, i.e., hour, day, month, or year, n ∈ Z
∗
+ is the

number of lags used at the time scale. Alternatively, multivariate

prediction uses a similar structure for the input data of the model,

with the difference that the multivariate models use meteorological

covariates (temperature, wind speed, humidity, and others) that can

be used together with precipitation as the input data in the model,

as shown in the matrix equation Xin−mult(t), where v and u are

generic variables representing the covariates in the input matrix.

EXin−uni(t) =
[

x(t − 1) x(t − 2) ... x(t − n)
]

(6)

Xin−mult(t) =













x(t − 1) v(t − 1) · · · u(t − 1)

x(t − 2) v(t − 2) · · · u(t − 2)
...

...
. . .

...

x(t − n) v(t − n) · · · u(t − n)













(7)

Because this is a supervised problem, the target used in the

model training stage consists basically of the vector composed of

the current precipitation value, Ex(t). After training, the model is

able to make N future predictions, where N ∈ Z
∗
+, and EYpred

represents the set of N predicted samples by the trained model.

A portion of the prediction data can be used to evaluate the

performance of the model and select the most accurate architecture

based on the metrics of error or conformity between the predicted

and observed precipitation data (testing and validation stage shown

in Figure 5).

EYtarget(t) = Ex(t) (8)

EYpred =
{

x(t + 1) x(t + 2) ... x(t + N)
}

(9)
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FIGURE 5

Stages of ML pipeline evolving data collection, data cleaning, feature engineering, training and testing of models, and model selection.

Evaluation of the performance of ML regression models relies

on various mathematical equation-based metrics that assess the

degree of error or conformity of the predicted values with respect to

the actual observed values. These metrics are critical to ensure the

accuracy and practicality of the models. The Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE), and coefficient of determination (R2) are some of the most

widely used metrics for evaluating the errors of regression models

(Naser and Alavi, 2021).

In summary, the process of training an ML model for

precipitation prediction involves utilizing a subset of precipitation

data and other covariates, if present. These data are organized

into input and target vectors, which are employed in the model

training to enhance the model’s parameterization. Ultimately,

the trained model can be employed for making predictions of

future precipitation. Importantly, although the most common

scenario in precipitation forecasting involves time series regression

problems, the classes of algorithms used to address this problem

can be extended to classification, clustering, and dimensionality

reduction models. However, the effectiveness of these algorithms

in precipitation forecasting is inherently dependent on the type,

structure, and preprocessing of the precipitation data.

4.4. ML application in rainfall forecasting

Over the years, several works have approached the use

of ML algorithms as an auxiliary tool in the forecasting of

precipitation at several strategic points worldwide. The developed

models are becoming increasingly present in decision-making

for risk management from excessive precipitation and its

aggravating consequences. An end-to-endML workflow has gained

prominence in the field of weather forecasting, as ML models

have the advantage of condensing the canonical steps of NWP

models, which include performing data assimilation, processing,

and postprocessing in one step, saving processing time (Schultz

et al., 2021). Research conducted on the Web of Science involving

the terms precipitation forecasting, precipitation prediction,machine

learning, deep learning, and others (see the complete list in

Supplementary material) revealed that the first paper approaching

the use of ML models in precipitation forecasting was published in

1992, when ANN was used to predict precipitation (French et al.,

1992). This same research on the Web of Science portal indicated

that there are ∼649 papers published in scientific journals and

proceedings until 2022.

The increase in publications using ML models to predict

precipitation until 2022 indicates that in the last ten years, more

than 540 works on this topic were published, which encompasses

∼83.28%1 of all publications until 2022, as shown in Figure 6A.

The growing interest in the use of ML models as an auxiliary tool

to predict this meteorological variable may be associated with the

popularity of programming languages that provide friendly use of

AI models to process meteorological data, such as Python and R.

Regarding the most prevalent ML models used in precipitation

forecasting works, different ANN architectures are explored and

1 All the percentages presented in this section and related to statistics

shown in Figure 6 represent the proportion of the number of publications

found for each element divided by the total number of published papers from

1992 up to 2022.
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FIGURE 6

Number of publications related to precipitation prediction using ML algorithms until 2022, divided by di�erent classes according to Web of Science.

(A) Number of publications by ML algorithm (404 of 649 papers evaluated). (B) Number of publications by country (219 of 649 papers evaluated). (C)

Number of publications by temporal scale (649 of 649 papers evaluated). (D) Number of publications by year (total of 649 papers evaluated).

applied in precipitation prediction, i.e., 93 papers (14.32%)

addressed the use of DL, while the recurrent neural network

(RNN), long short-term memory (LSTM), and convolutional

neural network (CNN) models were employed in 117 works

(18.02%). Furthermore, our research also revealed that until 2022,

different ANN architectures were investigated in this application

field in at least 436 published works (67.18%). Tree-based ML

algorithms have also demonstrated relevance in this research field,

where DT, RF, and extreme gradient boosting (XGBoost) were

addressed in 27 (4.16%), 70 (10.78%), and 6 (0.92%) works until

2022, respectively. As one of the most commonly used ML models

to predict precipitation, SVM was employed in 80 (12.32%) works.

However, only 11 papers associated with precipitation prediction

approached the use of seasonal autoregressive integrated moving

averages (SARIMA), a model widely used in seasonal time series

forecasting. OtherMLmodels, have small individual representation

in relation to the total number of works analyzed, cover the amount

of 229 (35.28%) publications (Figure 6B). These results reveal that

ANN-based models have stood out, which may be associated with

the high predictive potential that these models have with nonlinear

data, in addition to the growth of open-source tools and packages

that encompass this type of ML.

The use of AI-based computational tools for precipitation

prediction has become popular in several regions worldwide,

especially in large countries that suffer the direct consequences

of climatic anomalies. According to our research,2 there is great

scientific community prominence in the application of these

models to predict precipitation in regions of China, India, and

the USA. The total number of published works for these three

countries is 71, 66, and 26, respectively, which correspond to

∼25.11% of the target regions for forecasts with ML. Brazil,

Indonesia, Pakistan, Thailand, and Japan together cover ∼2.77%

of published works. Other regions highlighted in the graph have 4

or fewer publications (Figure 6C). The other publications address

cases where the precipitation forecast was carried out in regions

2 Our research inWeb of Sciencewas based on keywords that would return

articles that explicitly cited the respective country, that is, articles that address

applications in specific regions of a country and do not mention the name of

the country were not accounted for in the final amount of our statistics.
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where only the name of a locality is mentioned without referring

to the country to which it belongs.

The temporal scale is one of the most important features in the

process of precipitation forecasting. This property is linked directly

to socioeconomic needs, i.e., air traffic control depends on the daily

precipitation forecast for decision-making, while some mineral

chains depend on the daily, monthly, or seasonal precipitation

forecast to establish a product flow strategy. Another important

point is that the more precise the forecast time scale becomes,

i.e., nowcasting or daily, the greater the variance data will be,

demanding increasingly complex nonlinear models to meet the

acceptable level of error. Based on our research, the most explored

time scale in papers involving the use of ML for precipitation

forecasting is the monthly prediction (25.88%), while daily and

nowcasting were addressed in 12.32 and 4.46% of published papers,

respectively. Seasonal, subseasonal, and subseasonal to seasonal

(S2S), which encompasses the grouping of some months, were the

time windows approached in 19.72, 0.92, and 0.3% of the works,

respectively. The autumn, winter, spring, and summer seasons were

also used as temporal scales in precipitation prediction, where

summer was the most cited scale (13.25%), while the other seasons

encompassed∼7.7% of the case studies (Figure 6D).

Some recently published works have applied and investigated

how different ML algorithms and meteorological variables can

contribute to precipitation forecasting in many regions worldwide,

using various time scales according to the socioeconomic

necessities of each region. Regarding the seasonal time scale,

Khastagir et al. (2022) evaluated the efficacy of predicting

precipitation over Western Australia, which is indispensable for

flood mitigation as well as water resource management for that

region. The authors used ANN and multiple linear regression

(MLR) analysis to forecast long-term seasonal spring precipitation

using lagged El Niño-Southern Oscillation and Indian Ocean

Dipole as potential climatic phenomena. The results achieved

in precipitation estimation indicate that over the seven regions

analyzed, the MLR model obtained RMSE between 2.25 and 31.13,

while ANN reached values between 3.81 and 30.15. Similarly,

Yang et al. (2022) explored the use of a multimodel ensemble

(MME) based on DT, RF, and adaptive boosting (AB) algorithms

for the prediction of summer precipitation in China. The proposed

MME obtained a mean anomaly correlation coefficient of 0.3, an

improvement of 0.09 over the weighted average MME of 0.21 for

2019–2021.

Precipitation forecasting based on four seasons (autumn,

winter, spring, and summer) was also approached in the work

of Monego et al. (2022), where XGBoost was compared with the

Brazilian Global Atmospheric Model (BAM) and DL algorithms.

This study analyzed model prediction performance using surface

pressure, air temperature at the surface, air temperature, specific

humidity, meridional wind component, zonal wind component,

and precipitation as input features. From the results, it is indicated

that XGBoost achieved lower RMSE values between 0.85 and 1.71

when compared with the DLmodel, which obtained values between

0.86 and 8.96, and with the BAM, which achieved values between

2.58 and 20.83.

Monthly precipitation forecasting using ML models was

approached by Zhou et al. (2021), who employed an autoregressive

integrated moving average (ARIMA) model and other ML

algorithms, such as ANN, RF, support vector regression (SVR),

gradient boosting regression (GBR), and dual-stage attention-based

recurrent neural network (DA-RNN), for monthly precipitation

prediction over 25 stations in the East China region. Their

results indicated that the RF algorithm outperformed the other

models with a mean RMSE of 40.8, while the others obtained

values between 41.7 and 44.9. The results also revealed that

the local meteorological variables, humidity, sunshine duration,

and 4-month lagged western North Pacific monsoon were the

most correlated features with forecasting. Similarly, Chhetri et al.

(2020) employed linear regression, multilayer perceptron (MLP),

CNN, LSTM, gated recurrent unit (GRU), and bidirectional LSTM

(BLSTM), and the proposed BLSTM-GRU models were applied

in precipitation forecasting over Simtokha, a region in the capital

of Bhutan, Thimphu. The results indicated that the BLSTM-

GRU model outperformed the LSTM model by 41.1% with a

mean square error (MSE) score of 0.0075, which achieved the

second-best performance. The work of Pérez-Alarcón et al. (2022)

also investigated the use of ML models in monthly precipitation

forecasting. The authors focused on the region of Almendares-

Vento basin, Cuba, and employed MLP, CNN, LSTM, ARIMA

models, and developed a hybrid model (ANN + ARIMA) to

perform the precipitation prediction. This study concluded that

the proposed hybrid model obtained RMSE values between 54.63

and 76.59 among the 6 points investigated in Almendares-

Vento basin, indicating that the hybrid model is dependable in

precipitation forecasting and can be used to enhance the planning

and management of water availability in watersheds for agriculture,

industry, and population.

Regarding the short-term time scale, Huang et al. (2022)

investigated how DL algorithms performed in hourly precipitation

prediction with intermittent data patterns. The authors used deep

belief networks with a simple exponential smoothing procedure

(DBNSES) and compared it with the least squares support vector

regression (LSSVR), the generalized regression neural network

(GRNN), and the backpropagation neural network (BPNN) to

predict precipitation in New Taipei City in Taiwan. The results

revealed that exponential smoothing decreases the RMSE of the

models, and DBNSES overcomes the LSSVR by 1.44% in RMSE

performance. The work of Liyew and Melese (2021) evaluated

how different meteorological features impact the forecasting of

daily precipitation in Ethiopia, and concluded that XGBoost

outperformed MLR and RF, achieving an RMSE of 7.85, which was

8.82% lower than that reached by MLR. The results also revealed

relative humidity and daily sunshine were the best-correlated

meteorological features according to the Pearson coefficient, with

values of 0.401 and 0.351, respectively. Sulaiman et al. (2022)

also approached daily precipitation forecasting based on an ML

pipeline using PCA, support vector classification (SVC), support

vector regression (SVR), ANN, and relevant vector machines

(RVMs). This pipeline indicates whether the day is dry or wet,

and according to this classification, SVR, ANN, RVM, and hybrid

models forecast the daily precipitation. The comparison between

hybridization model outcomes reveals that the hybrid of SVC and

RVM reproduces the most reasonable daily rainfall forecasting,

with RMSE values between 17.85 and 21.59, while the other hybrid
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TABLE 1 Summary of works approaching machine learning applications in precipitation forecasting.

Identification Region Time scale Data base ML models Other models

Khastagir et al. (2022) Western Australia Monthly 1965–2019 Australian Bureau

of Meteorology

ANN, MLR -

Yang et al. (2022) China Monthly 1993–2018 BCC, NCEP, JMA,

ECMWF

DT, RF, AB -

Monego et al. (2022) South America Monthly 1980–2020 GPCP XGBoost, DL BAM

Zhou et al. (2021) East China Monthly 1950–2015 China

Meteorological

Data Center

ANN, RF, SVM,

GBR, DA-RNN

ARIMA

Chhetri et al. (2020) Simtokha (Thimphu) Monthly 1997–2017 NCHM of Bhutan LR, MLP, CNN,

LSTM, GRU,

MLSTM,

BLSTM-GRU

-

Pérez-Alarcón et al. (2022) Almendares-Vento Basin

(Cuba)

Monthly 1906–2019 National Institute of

Hydraulic

Resources of Cuba

MLP, CNN, LSTM,

ANN+ARIMA

ARIMA

Huang et al. (2018) New Taipei City (Taiwan) Hourly (24 and 168

h—ahead)

Central Weather

Bureau Taiwan

LSSVR, GRNN,

BPNN, DBNSES

-

Liyew and Melese (2021) Bahir Dar City (Ethiopia) Daily 1999–2018 Meteorology Office

of Bahir Dar City

XGBoost, MLR, RF -

Sulaiman et al. (2022)

East coast of Peninsular

Malaysia

Daily 1998–2007 Department of

Irrigation and

Drainage

PCA, SVC, SVR,

ANN, RVM

-

models obtained values between 28.67 and 31.14. Table 1 shows a

summary of the main points of the cited works and the Table 2

summarizes the performance achieved by the models investigated

in these works.

In summary, the values indicated in Figure 6 and the review

presented in Tables 1, 2 encompassing ML use in precipitation

forecasting reflect the ML model advances over the years in

strategic points worldwide and how these techniques can be used

at many time scales according to the necessity of each region.

5. Challenges of precipitation
prediction

Understanding the challenges involved in predicting

precipitation goes beyond processing this single meteorological

variable because there are several other climatic factors that directly

or indirectly influence the formation of precipitation. In addition

to the context of climate variables, there are some statistical and

computational aspects that make accurate precipitation forecasting

a challenging task. Some of the main topics that guide this subject

are addressed below.

5.1. Few training samples

An important concept in the field of precipitation forecasting

is the type of data analyzed, which is a set of data precipitation

intensity arranged sequentially (time series) or an image from a

radar or satellite. In both cases, a portion of the data is intended for

training the ML model that will make the prediction, and another

portion of the data is intended for testing the trained model.

Although the amount of data generated from meteorological

equipment and NWP models is on the order of terabytes per day

globally, only a small portion of these data can be used directly

in training ML models for precipitation forecasting. This problem

becomes more complex depending on the time scale (e.g., monthly,

seasonal, or annual) treated in the model. Another problem linked

to the assimilation of environmental data, specifically in workflows

that use ML to process spatiotemporal data, is the number of

images correctly labeled. This happens mainly because of the sizes

of the datasets involved and because of the conceptual difficulty in

labeling these images (Watson-Parris, 2021). On the other hand,

the precipitation data used in typical regression problems are more

abundant, although their level of granularity is intrinsically linked

to the presence of meteorological stations, which may require an

additional step of data interpolation processing for coordinates of

interest that lack accurate precipitation information.

Themain consequence of the small number of samples available

for training ML models falls into the possibility of overfitting, that

is, the model trained on a dataset of precipitation, which has a

statistical distribution profile, can predict precipitation well within

this same pattern, but struggles to extrapolate the prediction for

precipitation beyond the trained pattern (Reichstein et al., 2019).

In this context, overfitting is a direct reflection of how ML models

trained with a finite set of data become specific in emulating

precipitation. The training of climate emulators requires strategies

that span all possible outcomes to ensure that the model does

not try and predict outside the distribution of the training dataset

(Scher and Messori, 2019) since geoscientific problems are often

unconstrained (Watson-Parris, 2021).

Another problem linked to the reduced amount of data to

model precipitation is the scarcity of information about extreme

events (Schultz et al., 2021). If, on the one hand, there is a concern
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TABLE 2 Summary of performance achieved by ML and statistical models

in the reviewed works.

Identification Model RMSE MSE

Khastagir et al. (2022) MLR 2.25–31.13

ANN 3.81–31.15

Yang et al. (2022) DT 19.5–32.5

RF 19.1–28.9

AB 25.5–29.4

MME 34.0–44.0

Monego et al. (2022) XGBoost 0.85–1.70

DL 0.86–8.96

BAM 2.58–20.83

Zhou et al. (2021) ANN 41.7

RF 40.8

SVR 43.8

GBR 42.8

DA-RNN 44.9

Chhetri et al. (2020) LR 0.217 0.047

MLP 0.170 0.029

CNN 0.147 0.022

LSTM 0.138 0.019

GRU 0.129 0.017

BLSTM 0.113 0.0128

BLSTM-GRU 0.087 0.0075

Pérez-Alarcón et al.

(2022)

MLP 22.39–119.21

CNN 5.30–107.83

LSTM 16–97.77

ARIMA4 17.42–109.48

ARIMA5 31.39–106.23

ANN+ARIMA 54.63–76.59

Huang et al. (2018) LSSVR 1.66

GRNN 2.41

BPNN 2.55

DBNSES 1.64

Liyew and Melese

(2021)

MLR 8.61

RF 8.82

XGBoost 7.82

Sulaiman et al. (2022) SVC 53.10–67.40

SVR 1.933–1.985

ANN

RVM 19.75–29.0

SVR-SVR 30.13–31.14

SVC-ANN 28.67–30.46

SVC-RVM 17.85–21.59

to train a model that does not make estimates beyond the physical

spectrum for which it was trained on to guarantee the geophysical

restrictions of precipitation. On the other hand, there is a need

to model the occurrence of precipitation anomalies that reach

values higher than the average precipitation for a given interval.

Predicting precipitation anomalies is essential for decision-making

in the social and economic sphere by public services, especially

when there is an imminent risk that could affect people’s safety. For

example, Wei et al. (2022) applied RF to predict monthly extreme

summer precipitation over the Yangtze River using only 14 years of

data, which were classified as heavy precipitation within the 69-year

interval. The German weather service trained a DLmodel with<10

extreme precipitation episodes during a full decade at any given

location (Schultz et al., 2021).

5.2. Temporal scales and correlation

The climate of a region is dynamically complex and

interdependent on various physical factors. Precipitation is strongly

influenced by other atmospheric and oceanic variables [e.g., air

temperature, radiation, velocity wind (zonal, meridional, and

vertical), humidity, SST, and pressure] and time scales. A study

published by Isidoro Orlanski in 1975 showed that meteorological

properties could behave dynamically at different spatiotemporal

scales, showing the dependence that the precipitation forecast has

on the climate at different scales (Orlanski, 1975). Recent works

have also investigated the spatiotemporal precipitation patterns and

how meteorological factors influence this phenomenon in many

regions worldwide (Huang et al., 2018; Wood et al., 2021; da Silva

et al., 2022; Kouman et al., 2022). A study investigated the effects of

SST and geopotential heights in S2S scale precipitation forecasting

of the weekly occurrence of extreme precipitation events above 99%

over the contiguous USA (Zhang et al., 2023).

The results of these works indicate that the relationship of

precipitation with other meteorological variables is not a constant

pattern at all points of the terrestrial globe. The influence of

weather features on the process of precipitation formationmay vary

according to the geography of the region and the seasonality of

some climatic phenomena. Although technology has evolved and

the availability of weather data has grown, forecasting precipitation

is still a complex task (Pathan et al., 2021), and the complete

understanding of how meteorological variables can influence

precipitation over time is challenging as well.

6. Conclusion

With the growing availability of meteorological data and

advances in computational processing power, the field of

forecasting weather and climate events, especially precipitation,

has over the last few years experienced the development of a

significant number of models capable of predicting precipitation at

several points worldwide with increasingly accurate performance

to meet some of the demands of socioeconomic consequences

arising from extreme precipitation events. In this article, we

construct a brief socioeconomic analysis of the impact caused by

extreme precipitation events, in addition to approaching the main
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points explaining the physical events associated with precipitation

formation and the use of ML algorithms in the precipitation

forecasting process.

The socioeconomic analysis reveals that, over the years, an

increasing number of floods caused by extreme precipitation has

impacted human life worldwide, mainly in tropical and subtropical

regions. The global financial losses caused by these anomalies are

estimated totaling in the billions of dollars over the last decade,

and human losses reached ∼58,700 deaths between 1970 and

2019. On the other hand, advances in technology, mainly in AI

algorithms, have contributed to mitigating these damages, mainly

when integrated into an EWS.

The aspects of the physical theory behind precipitation

formation explained in this review highlights the contribution that

the global water and energy cycle at different time scales have to this

phenomenon and how thermodynamic and dynamic parameters

such as SST, wind components, water vapor content, and heat flux

(both latent and sensible heat) are among the main parameters

directly or indirectly associated with precipitation. This review

also underlines the historical impact that NWP models have in

the field of precipitation forecasting, evidencing that advances in

modeling the physics of the atmosphere and oceans have evolved

together with, or were only even possible due to, the increase in

computational power, as well as the advent of the satellite era.

The impact and contribution that AI algorithms have provided

over the years in precipitation forecasting, mainly regarding

ML models, are also approached in this review. In recent

decades, different ML models have been used as less expensive

computational alternatives compared to statistical or numeric

models based on differential equations. It was also found that

techniques based on neural networks in different architectures

were preferentially used in comparison with other ML techniques.

Another conclusion reached in this review is that more than 25%

of the works dedicated in this field are related to precipitation

forecasting in China, India, and the USA. Regarding the time scale

used in predictions with ML, the results showed that monthly

precipitation was the most commonly used scale, which can be

associated with data availability and ease of use.

Despite great advances in the field of AI application in

precipitation forecasting, there are still some challenges to

overcome. The availability of data and the level of meteorological

information, such as the correlation that precipitation has with

other meteorological variables and how these variables influence

the level of precipitation on seasonal or larger scales, stand

out as challenges for generating high-precision ML models for

precipitation forecasting. Therefore, comprehending the main

aspects associated with precipitation formation and building robust

MLmodels capable of learning all these climate dynamics, with less

computational cost, is a large step toward the development of tools

that can help scientists, companies, and defense agents mitigate

damage from heavy precipitation.
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