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TRANSLATE: standardized climate
projections for Ireland

Enda O’Brien* and Paul Nolan

Irish Centre for High-End Computing, University of Galway, Galway, Ireland

The TRANSLATE project was established in 2021 by Met Éireann, the Irish national
meteorological service, to provide standardized future climate projections for
Ireland. This paper outlines the principles and main methods that were used to
generate the first set of such projections and presents selected results to the end
of the 21st century. Two separate ensembles of dynamically downscaled CMIP5
projections were analyzed. These produce very consistent results, increasing
confidence in both, and in the methods used. Future projected fields show plenty
of detail (depending on local geography), but the change maps relative to the
base period are much smoother, reflecting the global climate change signal.
Future forcing uncertainty is represented by 3 di�erent emission scenarios, while
model response uncertainty is represented by sub-ensembles corresponding to
di�erent climate sensitivities. The resulting matrix of distinct climate ensembles is
complemented by ensembles of temperature threshold-based projections, drawn
from the same underlying simulations.
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1. Introduction

Within government and private-sector institutions, and among the general public, there
is growing awareness of the risks of future climate change—partly due to climate model
predictions, and partly to increasingly robust observational evidence of recent and current
climate change [The Royal Society (UK), National Academy of Sciences (USA), 2020]. In
Ireland, the development of climate resilience is channeled through the National Adaptation
Frameworks (NAFs) (Department of Communications, Climate Action and Environment,
Government of Ireland, 2018). The NAF focusses on ensuring that adaptation measures are
taken at all levels of government to prepare Ireland for the impacts of climate change. As
mandated by the NAF, each of the 31 Local Authority administrations in Ireland has their
own Climate Change Adaptation Strategy.1 These documents report that the main hazards
of concern are heavy rainfall and associated flooding, heatwaves, drought, and storm events,
all of which can affect the provision of local government and other utility services. Local
Authorities and utility service providers need to understand how climate change will affect
their activities, and so there is increasing demand for reliable climate projections in order to
plan and implement suitable adaptation and mitigation measures.

Given this context, the TRANSLATE project2 was established by the Irish national
meteorological service, Met Éireann, in 2021 to produce standardized climate projections
for Ireland, as a basis for the provision of other more wide-ranging climate services,
and to support activities such as hydrological modeling. This paper describes the

1 E.g., the climate adaptation strategy for Co. Cork is available at https://www.corkcoco.ie/sites/default/

files/2021-11/cork-county-council-climate-adaptation-strategy-2019-2024-pdf.pdf.

2 https://www.met.ie/science/translate
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main principles and methods used to produce the first set of
such projections and shows a small but indicative sample of the
results obtained. Our work was guided to some extent by similar
projects undertaken by other geographically small countries, such
as UKCP18 in the UK (Lowe et al., 2018; Murphy et al., 2018),
KNMI’14 in the Netherlands (Van den Hurk et al., 2014; Lenderink
et al., 2015), and CH2018 in Switzerland (CH2018, 2018).

Many other countries or regions have also developed their own
national climate scenarios based on CMIP global simulations, and
some of these are listed in Supplementary Table S1. Ruosteenoja
et al. (2016) describe downscaling CMIP5 GCM projections for
Finland as an experimental extension of the more operationally
oriented ACCLIM project, which derived climate projections for
Finland from earlier CMIP3 simulations. These projections were
updated by Ruosteenoja and Jylhä (2021) to use the latest CMIP6
shared socioeconomic pathway (SSP) scenarios, but without any
downscaling. In Austria, the ÖKS15 project (Chimani et al., 2016)
used 13 EURO-CORDEX regional models to downscale global
simulations from two CMIP5 scenarios to the end of the 21st
century. Technical aspects of the Norwegian climate projections
are described by Hanssen-Bauer et al. (2017), while the utility
and value of such projections is demonstrated by how they are
disseminated and used to develop a “chain” of climate services,
as reported by Nilsen et al. (2022). Similar projects undertaken
by other nations are not cited in the interest of space, while
no doubt there are others that we are unaware of, especially
those that remain at the level of research projects, or where the
information generated is available only in the local languages or
simply not converted into publicly accessible products. Given the
variety of approaches even among those few countries mentioned
above, however, it is clear that the generation of standardized
national climate projections does not have a “one size fits
all” solution.

Most localized climate projections depend on a chain of
future climate simulations that starts with ensembles of relatively
coarse-resolution global climate models (GCMs). These may be
dynamically downscaled to smaller, regional domains by ensembles
of higher-resolution regional climate models (RCMs) each nested
within one or more of the GCMs. High-resolution RCMs can also
be nested within coarser ones, as done by Nolan (2015) and Nolan
et al. (2017) for domains centered on Ireland (see, e.g., Figure 1.2
and related text in Nolan, 2015). Further statistical post-processing
(e.g., detrending, bias-correction, and further downscaling), leads
to a distilled reference set of climate data and spatial maps
representing annual, seasonal, monthly, or even daily statistics for
a range of variables at different time-periods or thresholds in the
future, under different external forcing scenarios. The reference set
typically encompasses alternative climates from both the lower and
higher climate sensitivity ranges, as determined by the spread of the
underlying ensembles.

The resulting set of climate scenarios described in this
document could be viewed as spanning a small 3-dimensional
matrix, as shown in Figure 1, which is adapted from Figure 10.9
of the latest Swiss climate scenario report (CH2018, 2018). In
this view, future time-periods (specifically 2021–2050, 2041–2070,
and 2071–2100) lie along one dimension. A few external forcing
scenarios form a second dimension. For the first TRANSLATE
implementation, these are Representative Concentration Pathways

FIGURE 1

Schematic of how future climate uncertainties can be
accommodated in a limited set of possible climates, adapted from
Figure 10.9 of CH2018 (CH2018 Report, 2018). Each sub-cube
shown corresponds to an ensemble of long-term climate
simulations. Di�erent RCP emission scenarios represent forcing
uncertainty, while the climate sensitivity axis represents
response uncertainty.

(RCPs) 2.6, 4.5 and 8.5, as used for the Coupled Model
Intercomparison project Phase 5 (CMIP5; Taylor et al., 2012).
These three scenarios can be viewed as a measure of future
forcing uncertainty. The third dimension in Figure 1 spans a set
of three different “climate sensitivity” levels among the ensemble
of RCMs, where climate sensitivity is measured by the mean
surface temperature change over Ireland during 2071–2100 under
RCP4.5 and RCP8.5, as simulated by each ensemble member.
These low, medium and high-sensitivity sub-ensembles provide
a measure, however crude, of model response uncertainty. All
changes are measured relative to the reference period 1976–2005,
which was chosen to correspond with the last 30 years of the CMIP5
“historical” period.

The different climates corresponding to each of the 27 sub-
cubes in Figure 1 were supplemented by a further time-slicing
approach, which aggregated the forcing scenarios and future time
periods into three new “warming level” scenarios, centered on
the years when each underlying GCM crossed global surface
temperature change thresholds of 1.5, 2.0 and 2.5◦C, resp. A
template for constructing such threshold-based climate scenarios
is provided by Vautard et al. (2014), and Supplementary Figure S1
shows a sample case of how it was done for TRANSLATE. In
practice, in almost all RCP scenarios, global temperature crosses at
least the 1.5◦C threshold, while the 2.5◦C threshold is crossed in all
the RCP8.5 simulations and most of the RCP4.5 ones.

The rest of this paper describes how the 27 different
climates of Figure 1 (along with the 3 temperature threshold
climates) were constructed by de-trending, bias-correcting, and
further statistically downscaling the raw RCM output from two
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FIGURE 2

Ordered list of CMIP5 model ECS values, aggregated from Table 7.SM.5 of the IPCC AR6 report, Vol. 1: (https://www.ipcc.ch/report/ar6/wg1/
downloads/report/IPCC_AR6_WGI_Chapter_07_Supplementary_Material.pdf). The green bars represent models used for RCM downscaling by
Nolan and Flanagan (2020), the red bars represent models used for RCM downscaling by EURO-CORDEX, while the orange bars represent models
used by both. The blue bars represent models not used by TRANSLATE because no high-resolution RCM-downscaling of them was available over
Ireland. (*) EC-EARTH model sensitivity was estimated separately.

separate sets of simulations. Some sample results are provided for
illustrative purposes.

2. Methods

2.1. Two di�erent RCM ensembles

The first effort to produce standardized future climate
projections for Ireland begins with the separate sets of downscaled
ensemble-RCM simulations from Nolan and Flanagan (2020;
henceforth N&F), and the EURO-CORDEX project.3 Both sets
of simulations were embedded in CMIP5 GCMs (see Figure 2),
with four GCMs used in common. However, both projects used
completely different RCMs, different grid spacing, and had different
numbers of ensemble members (see Table 1 for a summary of
some key differences). Note that we used the EURO-CORDEX
simulations with ∼12 km grid spacing; those EURO-CORDEX
runs with ∼50 km grid spacing had too few points to capture
adequate detail over Ireland. In contrast, the N&F simulations were

3 https://www.euro-cordex.net/

at 4 km grid-spacing. Thus, both sets of simulations produced what
could be viewed as independent versions of the 27 sub-climates
depicted in Figure 1.

Regarding the N&F RCMs, the choice of model physics and
parameterization schemes was informed by short-term validation
experiments and the recommendations of the respective RCM
development team. For example, the N&F WRF simulations did
not include a convection parameterization scheme (convection
resolving) while the COSMO-CLM5 simulations utilized the
Mass Flux Tiedtke parameterization scheme (Tiedtke, 1989). An
overview of the N&F RCM configurations is provided by Nolan
et al. (2017) and Nolan and Flanagan (2020). The N&F RCM
configurations were validated by downscaling European Center
for Medium-Range Weather Forecasts (ECMWF) ERA-Interim
reanalyzes for multi-decadal time periods and comparing the
output with observational data. For an in-depth validation of the
RCMs, see Nolan et al. (2017), Flanagan et al. (2019), Werner
et al. (2019), Flanagan and Nolan (2020), and Nolan and Flanagan
(2020), whose results confirm that the output of the RCMs
exhibit reasonable and realistic features, as documented in the
historical data record, and consistently demonstrate improved skill
over the GCMs and low-resolution RCMs in the simulation of
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TABLE 1 Comparison of how the Nolan and Flanagan (2020) and

EURO-CORDEX downscaled ensembles of RCMs are di�erent, and

handled di�erently by TRANSLATE.

Nolan and
Flanagan (2020)

EURO-CORDEX

Native grid-spacing 4 km 12 km

Ensemble size 4–6 members per RCP
scenario

19–29 members per RCP
scenario

Interpolate to
(1.0 km)
observational grid?

Yes: interpolate to
observational grid from
start.

No: Work at native 12 km
grid spacing as much as
possible before
downscaling final fields to
observational grid.

With relatively few
ensemble members and
grid-spacing not too
different, this did not
consume excessive
compute time or data
storage.

Interpolating to fine grid at
start would require 144 x
more compute time and
data storage, which would
be both wasteful and
prohibitive.

Detrending On 1.0 km grid On native 12 km
grid—using observations
interpolated to this grid.

Bias correction QDM on 1.0 km grid QDM on 12 km grid

Downscaling to
1.0 km grid

QDM (effectively done
along with bias correction
above).

Use degraded observations
(interpolated from 1.0 to
12 km grid and back again)
subtracted from original
observational fields to
downscale 12 km fields
directly, or with 2nd pass
through quantile mapping
(Section 2.4.3).

Climate statistics On 1.0 km grid On 1.0 km grid

Reconstructed
30-yr daily
timeseries (for
computing extreme
indices, etc.)

On 1.0 km grid On 12 km grid

multiple fields (e.g., precipitation and near-surface temperature,
wind, humidity and radiation). Nolan et al. (2017) analyzed a
larger ensemble of RCMs (both COSMO-CLM and WRF) with
different grid spacings (18, 7, 6, 4, 2, and 1.5 km) and found
that the RCMs demonstrated a general stepwise increase in skill
with increased model resolution. Furthermore, it was shown
that heavy precipitation events are more accurately resolved by
the higher spatial resolution RCM data. However, it was found
that although the RCM accuracy increased with higher spatial
resolution, reducing the horizontal grid spacing below 4 km
provided relatively little added value (Nolan et al., 2017). These
results, and the requirement for a large RCM ensemble for analysis
of climate projection uncertainty, informed the N&F RCM 4km
experiment setup.

2.2. Historical observations

High-resolution (∼1.0 km grid-spacing) gridded observations
of dailymean, minimum, andmaximum surface air temperature (at
2m height) for the Republic of Ireland, and daily precipitation over

all Ireland were provided by Met Éireann spanning the reference
historical period 1976–2005. The production of these datasets is
described by Walsh (2016, 2017), while the time-period available
has expanded from 1981–2010 to span 1961–2014. The temperature
fields were supplemented by temperature observations at 5 km grid
spacing over Northern Ireland (the northeastern part of the island
and part of the UK) from theUKMet. Office’s CEDA archive (Hollis
et al., 2018). Standard bilinear interpolation was used to patch the
temperature data across the border between the Republic of Ireland
and Northern Ireland.

Those 30-year high-resolution gridded observations of daily
minimum, maximum and mean air surface temperature and daily
precipitation were used to validate the corresponding variables in
RCM output for the same historical period (1976–2005), and to
facilitate downscaling and bias-correction of all future projections,
as described below. Ensembles of reconstructed (i.e., detrended
and bias-corrected) 30-year daily timeseries of those four variables
provide the basis for each of the 27 representative climates shown
in Figure 1.

Note that while all model output included gridded values
over both land and sea, the observational temperature data were
provided over land only. The discontinuities across the coastline
introduced some difficulties when using simple interpolation, since
offshore grid-points with “missing data” could then contaminate
neighboring onshore points by treating them as “missing” too. The
interpolation algorithm was modified to work around this issue by
interpolating from available land points only.

2.3. Climate sensitivity decomposition

For any given RCP forcing scenario and for any future
time-period, the decomposition of the “climate sensitivity” axis
in Figure 1 can be done in different ways. Prior to making a
final choice, it is worth considering the “equilibrium climate
sensitivity” (ECS) of the different CMIP5 global models, as
shown in Figure 2. ECS is the equilibrium global-mean surface
temperature change that occurs in response to instantaneous
doubling of CO2 concentrations. The green, red, and orange bars
represent models that were used for high-resolution dynamical
downscaling with RCMs over Ireland by N&F, EURO-CORDEX,
or both, and so are incorporated into TRANSLATE. The
models available for use by TRANSLATE are reasonably well-
distributed among the different ECS values, although the models
with lowest ECS (e.g., the GISS and GFDL models) are not
available, since they were not downscaled over Ireland by
any RCM with adequate grid spacing. This “low-sensitivity”
gap should be remembered when analyzing the distribution of
TRANSLATE results.

For the purposes of TRANSLATE, however, the climate
sensitivity of each model over Ireland is more relevant than the
global ECS. Figure 3 shows the mean surface temperature changes
over Ireland from the RCM ensemble means from 3 different future
scenarios and time-periods, all relative to 1976–2005. Figure 3A
is for the N&F ensemble; Figure 3B is for the EURO-CORDEX
ensemble. For all 3 metrics in both ensembles, the HadGEM2-ES
model is clearly the most sensitive, while the MPI-ESM-LR model

Frontiers inClimate 04 frontiersin.org

https://doi.org/10.3389/fclim.2023.1166828
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


O’Brien and Nolan 10.3389/fclim.2023.1166828

FIGURE 3

CMIP5 global models used by TRANSLATE, ranked by the mean surface temperature change over Ireland from the RCM ensemble-mean under the
RCP8.5 scenario for the period 2071–2100 (blue bars). (A) is from the Nolan and Flanagan (2020) ensemble; (B) from the EURO-CORDEX ensemble.
The orange bars in each chart show the ensemble- and area-mean temperature change under RCP8.5 for 2041–2070, while the gray bars show the
same temperature change metric under RCP4.5 for 2071–2100. All changes are relative to 1976–2005.

is the least sensitive—even though MPI-ESL-LR is among themore
sensitive models as measured by the global ECS metric (Figure 2).
The difference in the projected mean temperature changes over
Ireland under RCP8.5 by the end of the century between the most
(HadGEM2-ES) and the least (MPI-ESM-LR) sensitive models is
almost 1.7◦C (3.63◦ vs. 1.94◦C).

The sensitivity over Ireland of the other global CMIP5 models
(those in the 4 middle rows of Figures 3A, B) is somewhere in
between, but more mixed. However, if all of these models are
combined as the “mid-range” ensemble on the climate sensitivity
axis of Figure 1, then the ordering among them doesn’t matter.
Figures 3A, B are consistent in showing HadGEM2-ES to be the
most sensitive model when downscaled over Ireland; MPI-ESM-LR
is the least sensitive, while the other 3 (N&F ensemble) or 4 (EURO-
CORDEX ensemble) or 5 (combined ensembles) are somewhere
in between.

Decomposition along the climate sensitivity axis of Figure 1 is
then relatively straightforward: all RCMs nested in the HadGEM2-
ES global model make up the “high-sensitivity” ensemble; all
RCMs nested in the MPI-ESM-LR model make up the “low-
sensitivity” ensemble, and all RCMs nested in any of the other
GCMs constitute the “medium-sensitivity” ensemble. Thus, the
low- and high-sensitivity ensembles are each based on just one
GCM simulation (as downscaled by several different RCMs). This
means that the uncertainties due to differences among GCMs
are not well-sampled in these sub-ensembles. The low and high-
sensitivity sub-ensembles are really just the tails of the full ensemble
comprising all GCM simulations.

Note that this measure of climate sensitivity is based on the
mean surface temperature over Ireland; other variables may not
display the same relative sensitivities. Note too that this leads
to ∼70% of all simulations being placed in the mid-sensitivity
ensembles of Figure 1, and about 15% in each of the low and
high-sensitivity ensembles. Thus, the three sensitivity ensembles
shown in Figure 1 should not be considered as equally likely,
but as a rudimentary histogram of model uncertainty. A more
fine-grained picture is shown in Supplementary Figure S2, which

charts model sensitivity, as measured by surface mean temperature
change over Ireland by 2071–2100 relative to 1976–2005 under
RCP8.5 for each of the 26 GCM/RCM combinations that were
available from EURO-CORDEX. The partitioning of all available
simulations among the three sensitivity ensembles is summarized
in Supplementary Table S2.

2.4. Detrending, bias-correcting, and
downscaling RCM output

2.4.1. Detrending
Each member of the 27 different ensembles represented in

Figure 1 is in principle an independent climate instance, and as
such, should represent a stable climate with no background trend.
However, the different RCP scenarios typically generate clear trends
inmany variables as the climate changes in response. Thus, a simple
detrending is performed on all RCM 30-year output timeseries (and
on observed 30-year timeseries) before any other adjustments are
made. Detrending distills the changing climate over a century or so
into just a few representative time-periods, and allows each future
projected 30-year period to be treated statistically just as recently
observed 30-year climate normals are (Gutman, 1989). With the
climate change signal removed, internal climate variability, extreme
events, and other indices can all be calculated more reliably over
30-years of a statistically stable climate than year-by-year of a
changing climate.

In the case of interval variables like temperature, detrending
can be done by subtracting the linear trend from the original
timeseries. In the case of ratio variables such as precipitation,
the linear trend is calculated, but cannot be simply subtracted
from the original timeseries since that can introduce distortions
such as negative precipitation, or turning dry days into wet ones.
Precipitation detrending must be done multiplicatively. If Porig(t)
is the original time-series, Pmean is its mean, and Plinear−trend(t) is
its linear trend value at time t (with zero mean), then a detrended
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timeseries Pdetrended(t) is:

Pdetrended (t) = Porig (t) × [1+
(Pmean − Plinear−trend (t) )

Pmean
]

This has the desired characteristics that dry days stay dry
(

Pdetrended = Porig = 0
)

, and no negative precipitation is possible

[Plinear−trend (t) ≤ 2× Pmean]. However, it does not preserve the
original mean value Pmean. That is recovered by computing the
mean of the Pdetrended series, then scaling all Pdetrended(t) values by
multiplying them by the factor Pmean

Pdetrended− mean
.

2.4.2. Bias-correction with quantile delta mapping
The RCMs nested in the GCMs provide downscaled projections

that represent the best that can be achieved using the laws of
physics, as expressed numerically in the various models. Beyond
the physics, however, there remains an opportunity for statistics to
contribute useful information by adjusting the model projections
to correct for systematic biases that can be identified during
well-observed historical periods. Without bias-correction, raw
model projections are usually shown as “change” fields between
a simulated future and a simulated past, in which the biases are
assumed to cancel out. Change fields alone may suffice for some
purposes, but most practical applications eventually need to match
projected changes with recent observations, which amounts to bias-
correction, however implicit. For example, it is not enough to tell
engineers that events with 10-year return periods currently will
have 5-year return periods in the future; they also need to know the
magnitude of such events, and bias-correction is required to more
reliably estimate that information.

TRANSLATE adopted the quantile delta mapping (QDM)
method, as described by Cannon et al. (2015), and who also
show how it is superior to the other quantile mapping variants
considered by virtue of explicitly preserving relative changes in
(e.g.,) precipitation quantiles. By now, QDM has been widely tested
and validated, e.g., by Fauzi et al. (2020) or Xavier et al. (2022). The
method is applied to each grid-point independently, and so is easy
to parallelize. However, this suggests a potential weakness of the
method, which is that dynamical consistency between fields (e.g.,
temperature and precipitation) is not enforced and so may be lost,
as explored by Rocheta et al. (2014). Indeed, consistency within a
single fieldmay also be lost (Maraun, 2013), especially insofar as the
method is applied for downscaling purposes. More fundamentally,
QDM assumes that biases remain statistically stable from the
observed historical period to the end of the future projected
period. This is usually a valid assumption, as discussed by Maraun
(2012), but still, should not be pushed too far. TRANSLATE
developed its own implementation of QDM, but third-party
software implementations are also available.4 The nature of the
changes made by QDM can be seen in Supplementary Figure S3,
which shows the modifications made to the Ireland-mean daily
precipitation timeseries for the period 2071–2100 under RCP4.5 for
each of the 6 members of the N&F ensemble.

4 E.g., https://github.com/topics/quantile-delta-mapping.

2.4.3. Downscaling (EURO-CORDEX) using
degraded observation corrections

Ultimately, we want to produce final projection fields on the
finest possible grid, which in our case is the observational grid, with
∼1.0 km grid spacing. Meanwhile, the N&F output fields are on a
native grid with∼4 km spacing, while the EURO-CORDEX output
fields are on a native grid with ∼12 km spacing. In principle, all
fields could have been interpolated to the 1.0 km grid from the
beginning. Even though interpolation from coarse to fine grids
provides no real gain of information, such interpolation allows
QDM to effectively function as a downscaling as well as a bias-
correction tool, since real information from every observational
grid-point is used to adjust the model projections. As stated in
Table 1, it was convenient and practical to do this with the N&F
RCM output, but not with the EURO-CORDEX output, since that
would have consumed over 2 orders of magnitude more computing
time and storage resources.

Instead, as also listed in Table 1, QDM on the EURO-
CORDEX RCM output was performed on the native 12 km grid
for bias-correction purposes only. However, once the ensembles
of reconstructed 30-year timeseries were condensed into annual
cycles of mean, percentile, and other statistical fields, they were then
downscaled onto the high-resolution observational grid as well.
“Downscale” is used advisedly here rather than “interpolate,” since
downscaling adds extra information to the physical fields whereas
interpolation does not.

Fields on the 12 km EURO-CORDEX grid can be interpolated
onto the 1.0 km observational grid (with some extra care needed
around coastlines, as mentioned in Section 2.2, and as shown
in Figures 4A, B), but this provides no real gain in information.
The real downscaling step involves taking the corresponding
observational field on the high-resolution grid, interpolating it to
the coarser EURO-CORDEX grid (thus losing some information),
then interpolating it back again to high-resolution (without
recovering the lost information). The difference between that
(degraded) observational field on the high-resolution grid and
the original observational field on the same grid (e.g., Figure 4C)
mimics the information that is potentially missing from the
projected field on the same grid. Downscaling is then achieved
by simply adding that information to the projected field (e.g.,
Figure 4D).

If T represents temperature or similar variable, and subscripts
OBS and PROJ represent observations and projections, resp., the
process can be described symbolically as:

TPROJ

(

CORDEX_grid
)

→ TPROJ(hires_grid)

[by low to hi− res interpolation]

TOBS_ORIG

(

hires_grid
)

→ TOBS

(

CORDEX_grid
)

[by standard interpolation]

TOBS

(

CORDEX_grid
)

→ TOBS_DEG(hires_grid)

[by low to hi− res interpolation]

TPROJ_FINAL
(

hires_grid
)

= TPROJ

(

hires_grid
)

+ TOBS_ORIG

(

hires_grid
)

− TOBS_DEG(hires_grid)
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FIGURE 4

Illustration of the downscaling of EURO-CORDEX projections post quantile mapping, in this case for the annual mean of daily mean temperature
from the mid-sensitivity ensemble under RCP4.5 for 2071–2100. The projected field on the EURO-CORDEX grid (A) is interpolated to the
high-resolution observational grid (B). The adjustments derived from interpolating the historical observed field to the EURO-CORDEX grid and back
again (C) are added to the field in (B) to give the final projected downscaled field in (D).

Here, TOBS_DEG(hires_grid) represents the degraded
observational field on the high-resolution grid. For a ratio
variable like precipitation, the process is similar, only the final
equation is multiplicative instead of additive:

PPROJ_FINAL
(

hires_grid
)

= PPROJ

(

hires_grid
)

× POBS_ORIG

(

hires_grid
)

/POBS_DEG

(

hires_grid
)

Figure 4D shows the result TPROJ_FINAL(hires_grid) of such
a process in the case of the annual mean field of daily-mean
temperature from the mid-sensitivity ensemble under RCP4.5 for
2071–2100. Overall, Figures 4A–D illustrates the process described
symbolically above. The large-scale features don’t change between
Figures 4A, D, but the process does provide extra local detail.

EURO-CORDEX fields based on histograms of occurrence
frequency are downscaled slightly differently. They are interpolated
from the EURO-CORDEX grid to the observational grid as above,
but being frequency distributions, they lend themselves naturally
to application of a second round of quantile mapping—this time
not to correct biases based on historical performance, but simply
to downscale. The role played by the historical simulations in
“normal” quantile mapping is now played by TOBS_DEG(hires_grid),

i.e., the degraded observations after interpolation to the EURO-
CORDEX grid and then back to the high-resolution grid again.
Otherwise, the quantile-mapping algorithm runs much as before.

3. Results

3.1. Integrating the EURO-CORDEX and
N&F projections

Once both the EURO-CORDEX and N&F ensembles are
detrended, bias-corrected, and downscaled to the same high-
resolution observational grid, how much relative weight should
then be given to each individual (coarse-resolution) EURO-
CORDEX simulation relative to each individual (high-resolution)
N&F simulation when combining them into a single integrated
ensemble? In practice this question is mostly moot, since the final
projections for all the fields we have compared from both sets of
ensembles are so similar as to be climatically identical. It makes
almost no difference whether 80% weight is given to one and 20%
to the other, or vice versa. For simplicity, then, the two sets of
ensembles were combined into a single final set by giving equal
weight to each individual ensemble member.
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An example is shown in Figure 5, for the 99th percentile of
daily precipitation amounts during autumn (Sept.-Nov.), from the
middle-sensitivity ensemble under RCP4.5 for the period 2071–
2100. Since autumn tends to be the wettest season in Ireland, these
charts indicate what the wettest days during the wettest season
would be like under that scenario. The top row (Figures 5A–C)
shows the fields from the N&F ensemble, the EURO-CORDEX
ensemble, and the combined ensemble, resp. The differences
between the fields in Figures 5A, B are very small and difficult to
see, so not surprisingly their combination in Figure 5C looks much
the same again. The bottom row (Figures 5D–F) shows the ratios
of the top row fields to the corresponding observed field from
1976 to 2005, and here the differences between the N&F ensemble
(Figure 5D) and the EURO-CORDEX ensemble (Figure 5E) are
more apparent, though still small. Their combination in Figure 5F
shows a relatively simple pattern of rainy autumn days becoming
wetter over most of the country by slightly more than 10% relative
to the end of the 20th century.

3.2. Some illustrative sample results

3.2.1. Climate means
The projected end-century annual mean temperature fields

under the three different emission scenarios and three different
sensitivity ensembles are shown in Figure 6. Each map shows a lot
of spatial detail, most of which corresponds to local elevations. All
the main mountain ranges in Ireland can be easily identified. In
each map, temperatures tend to be slightly cooler in the midlands
and north, and slightly warmer around the coasts and toward the
south, much as they are today. There is also a clear gradient across
the nine maps shown, with temperatures increasing from left to
right as the climate sensitivity increases, and from top to bottom
as the emission scenarios increase from RCP2.6 to RCP8.5. Note
that “absolute value” maps like this that have been bias-corrected
are much more credible than raw RCP output, whose biases can be
quite misleading.

The differences between each map in Figure 6 and the annual
mean temperature during the reference period 1976–2005 are
shown in Figure 7. Projected temperature changes relative to the
reference period are all relatively uniform and smooth, with just
a slight increasing gradient from west to east in each map. This
gradient is likely due to the moderating influence of the Gulf
Stream extension in the Atlantic acting most strongly on that part
of Ireland closest to it. The inter-map differences are larger, with
temperature changes increasing between maps from left to right
as climate sensitivity increases, and from top to bottom as the
emissions forcing increases. Of course, annual mean temperature
is precisely the field that was used to define climate sensitivity,
so the gradient from left to right in Figure 7 is pre-determined
by that choice. Even so, it is apparent in Figure 7 that projected
climates are more sensitive to the changes in RCP scenario than to
the differences between the model responses (as measured by their
climate sensitivity).

The cross-section through Figure 1 for the annual mean of
daily precipitation during the late- century 2071–2100 is shown
in Figure 8. There is very little difference between any of the

maps in Figure 8: they all show higher precipitation (up to 8mm
day−1) over the higher elevations and along the western seaboard,
with lowest values (2–3mm day−1) over the midlands and eastern
regions. However, the difference between the 9 maps in Figure 8
become more apparent when shown in Figure 9 as percentage
changes relative to observations during the reference period 1976–
2005. Figure 9 shows that any precipitation increases tend to be
largest (in percentage terms) in the midlands and east.

Even the annual mean precipitation changes shown in Figure 9
mask significantly different behavior between the summer and
winter seasons. Figure 10 shows projected precipitation changes
during the end-century period as in Figure 9, but for the
summer months June to August, while Figure 11 shows the
corresponding change maps for the winter months December to
February. Figures 9–11 all use the same contour intervals and
the same color palette. The clear message is that summers are
projected to become drier, while winters are projected to be
wetter. Those patterns are amplified as the emission scenarios
increase from RCP2.6 through RCP4.5 to RCP8.5. In contrast, the
(temperature-based) climate sensitivity dimension does not show
much variation, or any clear pattern. This is probably because there
is only a weak relationship between temperature sensitivity and
precipitation sensitivity over Ireland, where variable synoptic-scale
circulation patterns can easily overcome the more direct Clausius-
Clapeyron scaling between temperature and precipitation. See e.g.,
Houghton and O’Cinnéide (1976), Kiely (1999), or McCarthy
et al. (2015) for evidence of how the Irish climate depends
on large-scale circulation patterns in both the atmosphere and
Atlantic ocean.

Much as the annual mean precipitation projections (Figure 9)
can mask large changes of opposite sign from summer and winter
seasons (Figures 10, 11), so too can the individual ensemble-mean
maps shown in Figures 9–11 mask large variability within each
ensemble, as well as interannual variability within each ensemble
member. This is illustrated in Supplementary Figure S4, which is
analogous to Figure 9, but instead of the ensemblemeans, shows the
ensemble range in each map, i.e., ensemble-maximum percentage
change minus ensemble-minimum percentage change, for daily
precipitation on each day of the year, then averaged over the
annual cycle. The ranges are large, reflecting the fact that, e.g., if
the projected ensemble minimum on each day is 1mm day−1 less
than the observed amount while the ensemble maximum is 3mm
day−1 more, at a point where the observed mean value is 4mm
day−1, then the ensemble range of percentage change will be 100%.
The sequence of Figure 8–11 and Supplementary Figures S4 shows
how future precipitation projections can be deconstructed from a
pattern of relative uniformity to reveal ever more variability as the
projections are explored in more detail. This helps to distinguish
those projected characteristics that are relatively robust from those
that are more uncertain.

3.2.2. Projected frequency distributions
Frequency histograms were computed for each of the four main

variables (Tmean, Tmin, Tmax, and precipitation), and for each 30-
year climate instance (or ensemble member) of each projected
climate. Temperature frequencies were binned in 1◦C increments
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FIGURE 5

(A–C) Show the 99th percentile of daily precipitation amounts projected for the Sept.-Nov. season, by the mid-sensitivity ensembles under the
RCP4.5 scenario for the period 2071–2100. (A) Shows the field from the Nolan and Flanagan (2020) ensemble; (B) from the EURO-CORDEX
ensemble, while (C) is from the combination of the two, with equal weight assigned to each ensemble member. (D–F) Show the projected change
signals as ratios of the fields in a-d relative to the corresponding observed field from 1976 to 2005, i.e., the (future projected value)/(historical
observed value) at each grid-point.

from −10 to 35◦C, while precipitation frequencies were binned in
increments of 2mm day−1 up to 80 mm day−1.

Figure 12A shows annual and seasonal Tmin histograms for
2071–2100 under RCP4.5 from the mid-sensitivity ensemble (solid
curves) and for the observed reference period 1976–2005 (dashed
curves), with local (grid-point) frequencies averaged over both the
ensemble and the island of Ireland. The shading around each solid
curve spans the range from minimum to maximum within the
ensemble. The simplest interpretation of Figure 12A is that all the
frequency curves retain much the same shape over time, but are
shifted about 2◦C to the right from the reference period to the end
of the 21st century. The most dramatic changes thus occur near
the tails. E.g., winter season Tmin values of −5◦C occurred with
a frequency of about 0.02 (i.e., once every 50 winter-time days)
during the reference period, as shown by the dashed blue curve in
Figure 12A, but the frequency of similar cold nights by 2071–2100
under this scenario is projected to drop by a factor of 5 to about
0.004 (i.e., once every 250 winter days, only every 3 years or so). At
the other extreme, summer nights with Tmin values around 17◦C
are projected to occur up to 10 times more frequently than in the
past. “Tropical nights” with Tmin not falling below 20◦C did not
occur at all during the reference period but are projected to occur
with a small but finite frequency in the future under this scenario.

Precipitation is distributed differently to temperature, and
so the precipitation frequency histograms in Figure 12B have
a logarithmic y-axis. As in Figure 12A, the biggest differences
between the past and projected future precipitation distributions
are at the high-rainfall low-frequency tails. Thus, the wettest days

are projected to get wetter in all seasons as well as for the year as a
whole (all the solid curves at the tail of Figure 12B are to the right
of the corresponding dashed curves). Spring-time rainfall events of
60mm day−1 that had a nominal occurrence frequency of 0.00001
(or a return period of 100,000 days) in the past (green dashed curve)
are projected to occur about 3 times more often by the end of the
century under this scenario (green solid curve).

The low frequencies of extreme events in Figure 12B are
referred to as “nominal” above, because in reality they are relatively
high-frequency localized events whose frequency value is reduced
by the all-Ireland averaging. The curves in Figure 12 result from
computing local frequencies and ensemble averaging first, and
then doing all-Ireland averaging, instead of the other way round.
This ordering doesn’t really matter in the case of temperature
(Figure 12A), since temperature anomalies tend to span wide areas,
but in the case of precipitation (Figure 12B) it has the effect of
expanding the sample size by several orders of magnitude before
averaging it down again. Instead of ∼20 ensemble members each
with a single 30-year timeseries of daily data from which to
compute event frequency, each ensemble member has 30 years of
such data for each of about 2,000 (EURO-CORDEX) grid-points,
or 30 years for each of hundreds of effectively independent locales
where intense precipitation can occur. This sample multiplier effect
is how return periods of up to 100,000 days (∼275 years) can be
plotted in Figure 12B. Even so, it is notable that most curves in
Figure 12B have such smooth trajectories all the way down to the
lowest frequencies and could reasonably be extrapolated further if
desired. Plots like Figure 12B that are restricted to individual grid-
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FIGURE 6

Projected annual mean surface temperature fields (◦C) for the 2071–2100 period under the three di�erent forcing scenarios and for the three
di�erent sensitivity ensembles.

points or small regions of just a few points only extend smoothly
to frequencies of 0.001 (return periods of 3 years or so) before
becoming noisy and non-monotonic (i.e., reporting isolated very
wet events at the extreme tails of the distributions).

3.2.3. Temperature threshold-based projections
As mentioned in the Introduction, future climate ensembles

were constructed from timeseries of 20-year periods centered on
the year when the annual and global mean temperature from
each underlying GCM used by TRANSLATE reached a specified
threshold value above the pre-industrial mean from the same
GCM. Three threshold values were considered, namely 1.5, 2.0, and
2.5◦C. Table 2 shows the threshold- crossing dates for each RCP

scenario for each of the CMIP5 GCM runs that were downscaled
by either N&F or by EURO-CORDEX and further post-processed
by TRANSLATE. Even the higher 2.5◦C threshold was crossed
by 16 different CMIP5 GCM simulations used by TRANSLATE,
and most of those were further downscaled by multiple RCMs.
This produced large ensemble sizes (>50 members) for each
threshold climate. Each individual 20-year timeseries was then
detrended, bias-corrected and further downscaled to the high-
resolution observational grid, as was done for each of the 30-
year timeseries underlying the different climate ensembles of
Figure 1. One assumption behind assembling these large ensembles
at different global warming levels is that the “path” to each level
matters less than simply reaching and crossing that level. This
assumes that the climate can adjust relatively quickly to a particular
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FIGURE 7

Di�erences between projected annual mean temperatures from the end-century period 2071–2100 and the reference period 1976–2005, under the
forcing scenarios RCP2.6, RCP4.5, and RCP8.5, and the three di�erent sensitivity ensembles.

RCP forcing as time goes by. Experiments conducted by Ricke and
Caldeira (2014) suggest that the timescale needed to adjust to an
impulsive emission event is about 10 years, so the response time
to more gradual forcing (as in the RCP scenarios) is presumably
somewhat less than that.

While the temperature thresholds were computed relative to
the pre-industrial period 1850–1900, only relatively sparse station
observations are available from that period in Ireland. Such data as
do exist were collected from hand-written records and transcribed
to digital format by Mateus et al. (2020), and are available from
the Met Éireann web-site.5 From this collection, 9 stations were
selected for their geographical distribution around the country, and
because each has relatively long and continuous observations of

5 https://www.met.ie/climate/available-data/long-term-data-sets

Tmean, Tmin, and Tmax from the pre-industrial period.
Long-term mean values from these stations are shown in
Supplementary Table S3, along with comparable data from the
well-observed reference period 1976–2005 (The “pre-industrial”
period is extended to 1914 or 1913 for a couple of stations for the
sake of a longer continuous timeseries). For most stations, the 3
temperature variables increased from pre-industrial to modern
times, on average by 0.51, 0.43, and 0.51◦C for Tmax, Tmin, and
Tmean, resp. However, there is large variation between stations,
and even a couple of temperature decreases (shown in red font
in Supplementary Table S3). The numbers are also sensitive to
arbitrary choices, such as whether the Malin Head station data
(from the northernmost tip of Ireland) are taken from 1885 to
1914, or from 1885 to 1900. Nevertheless, it seems reasonable
to add an extra 0.5◦C to any temperature change field that is
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FIGURE 8

Projected annual mean daily precipitation fields (mm day−1) for the 2071–2100 period under the three di�erent forcing scenarios and for the three
di�erent sensitivity ensembles.

computed relative to 1976–2005, in order to obtain an estimate
of temperature change relative to 1850–1900. Moreover, this
analysis was repeated using CRU temperature data over Ireland
and obtained very similar results.

Figure 13 shows the Tmean changes (relative to 1976–2005) for
each of the three threshold climates, and for the 10th percentile,
mean, and 90th percentile of each threshold ensemble. As discussed
above, a further 0.5◦C should be added to each field in Figure 13 to
approximate the projected changes relative to 1850–1900. In that
case, the means of each ensemble (middle column in Figure 13)
show changes over Ireland very close to, but perhaps slightly
less than, the global mean change (i.e., 1.5, 2.0, and 2.5◦C). As
in the time- and scenario-dependent projections (e.g., Figure 7),

the change fields are remarkably uniform and featureless, with
relatively weak internal gradients across the country. Once again,
the global change signal is very straightforwardly manifested in the
projections over Ireland too. Of more significance, perhaps, is the
relatively large spread within each ensemble, shown by the ∼2.0◦C
differences between the 10th percentile fields (leftmost column
of Figure 13) and the 90th percentile fields (rightmost column of
Figure 13). This intra-ensemble spread reflects quite a large range
of uncertainty that can be attributed mainly to differences between
the models—both GCMs and RCMs. Analyses like this can be used
to assign confidence levels to the projections, especially given the
large ensemble sizes behind them. Thus, there is ∼80% chance
that temperature changes over Ireland (relative to 1976–2005) will
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FIGURE 9

Di�erences between projected annual mean daily precipitation from the end-century period 2071–2100 and the reference period 1976–2005, under
the forcing scenarios RCP2.6, RCP4.5, and RCP8.5, and the three di�erent sensitivity ensembles.

be somewhere between the leftmost and rightmost columns of
Figure 13 whenever any of the (global) temperature thresholds
shown are reached.

3.2.4. Climate indices
A total of 27 standard climate indices are defined by the Expert

Team on Climate Change Detection and Indices (ETCDDI).6 Most
of the indices measure different aspects of climate extremes. They
can all be easily computed from the (detrended and bias-corrected)
30-year timeseries files for each ensemblemember in each ensemble

6 ETCI indices are listed at http://etccdi.pacificclimate.org/list_27_indices.

shtml.

shown in Figure 1, or from the 20-year timeseries for each ensemble
member of each temperature threshold climate. TRANSLATE saves
each such (reconstructed) timeseries so that any ETCDDI index, or
indeed other custom indices (e.g., “growing season duration”) can
be computed on demand. Typically, an index is computed for each
year, then averaged over the duration of each timeseries; finally,
the ensemble median is computed as the representative index
value for that particular climate (e.g., each of the 27 sub-blocks
in Figure 1). For reference, a regional breakdown of several such
extreme climate indices using CMIP6 global model projections
is provided by Almazroui et al. (2021). The changes in selected
indices (TXx, TNn, R99p) relative to 1976–2005 are shown in
Supplementary Figures S5–S7, as cross-sections through Figure 1
for the end century period 2071–2100.
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FIGURE 10

Percentage change in end-century projected daily precipitation, as in Figure 9, but for the summer months June to August.

4. Discussion and conclusions

A paradox of various national standards for future climate
prections (e.g., UKCP18, CH2018, and KNMI’14 in the UK,
Switzerland and the Netherlands, resp.) is just how different
they all are from each other, each reflecting different national
circumstances. This is also true of more recent projections for
Central America by Tamayo et al. (2022). Nevertheless, it is
clear from those projects that any standard future projection for
Ireland should be based on high-resolution dynamical downscaling
of global CMIP models. They should include a range of
forcing scenarios to accommodate future emissions uncertainty,
and a range of climate sensitivity responses to accommodate
model uncertainty.

Ideally, future projections should be based on as large an
ensemble as practically possible, with each ensemble member
providing an independent climate instance of daily values of
relevant variables for periods long enough to provide stable
statistics (i.e., 20–30 years). Aggregated projections based on the
modeled temperature crossing key thresholds are also worthwhile.
The timeseries of each variable in each climate instance should
be detrended, bias-corrected, and downscaled to the best possible
grid-spacing to provide a stable climate reconstruction, which can
then be queried for a wide range of statistics and climate indices.
As shown in Section 2.4.3 and by Figure 4, statistical downscaling
can add meaningful spatial information to climate projection fields
that have coarser grids, just as dynamical downscaling by RCMs
can provide more spatial detail than the low-resolution GCMs
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FIGURE 11

Percentage change in end-century projected daily precipitation, as in Figure 9, but for the winter months December to February.

that drive them. Nevertheless, downscaling does not fundamentally
alter or feedback on the climate change signal that is passed down
from the coarser model grid.

An initial set of standardized climate projections for Ireland
was produced, based on the dynamical downscaling work already
done by N&F, and by the EURO-CORDEX project. These two sets
of downscaled ensembles are nested in the same global CMIP5
models but are very different in the RCMs they use and in
their native grid spacing. Given their different grid spacings and
ensemble sizes, their post-processing by TRANSLATE to provide
detrended, bias-corrected and fully downscaled output was done
somewhat differently (Table 1). Nevertheless, the final projected
output fields from both sets of ensembles tend to look remarkably
similar (Figure 5). The future projected fields e.g., Figure 6 tend to

include local details that reflect the main geographical features of
Ireland, but the difference fields with respect to the reference 1976–
2005 climate tend to be smooth and bland, reflecting the large-scale
pattern of the underlying climate change signal (e.g., Figure 7). The
similarity in the final future projections between the N&F fields
and the EURO-CORDEX fields tends to serve as a cross-validation
between them, increasing confidence in the validity of both.

Under the TRANSLATE project, initial standard projections
for Ireland were built along the three separate axes of the cube
shown in Figure 1, namely future forcing scenarios (as defined by
the CMIP projects), future time periods, and climate sensitivity (as
defined by the mean surface temperature response of the different
ensemble members). Three further scenarios were based on 20-
year time-periods around the 1.5, 2.0, and 2.5◦C threshold warming
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FIGURE 12

(A) Frequency distribution of projected daily minimum temperature (Tmin) under the RCP45 (mid-range) forcing scenario for the end-of-century
(2071–2100) from the mid- sensitivity ensemble, averaged over all Ireland, for each season and the annual cycle (solid curves). Shaded areas around
each projected curve span the range from minimum to maximum value within the ensemble. The corresponding observed Tmin values from the
reference period 1976–2005 are shown as dashed curves. The temperature “bins” are 1◦C wide; a frequency of 0.1 means that temperatures within
that 1◦C bin occur once every 10 days on average. (B) As in (A) except for daily precipitation, with frequency on a logarithmic scale, and for
precipitation bins 2mm day−1 wide. No shading is shown as in (A) to avoid confusing the plot, but as the frequency decreases to 0.0001 (i.e., once in
10,000 days), the range of daily precipitation spans up to 50mm day−1 from ensemble minimum to ensemble maximum.

TABLE 2 The year at which the smoothed timeseries of global and annual mean surface temperature for the di�erent CMIP5 GCM simulations listed

crossed the 1.5, 2.0, and 2.5◦C thresholds above their pre-industrial (1850–1900) mean.

CMIP5 Model 1.5◦C 2.0◦C 2.5◦C

RCP26 RCP45 RCP85 RCP26 RCP45 RCP85 RCP26 RCP45 RCP85

CNRM 2042 2037 2030 2058 2045 2085 2057

EC-EARTH r1 2023 2021 2047 2027 2077 2052

EC-EARTH r12 2027 2021 2017 2045 2035 2073 2049

IPSL-LR 2012 2036

IPSL-MR 2017 2015 2031 2031 2056 2042

MPI-ESM-LR r1 2024 2025 2014 2043 2037 2094 2050

MPI-ESM-LR r2 2017 2021 2020 2039 2034 2073 2045

HadGEM2-ES r1 2022 2030 2023 2049 2043 2035 2059 2048

NCCNorESM1-M 2038 2033 2071 2049 2062

MIROC5 r1 2051 2039 2033 2069 2051 2060

The cells with no data are either from simulations that were not available to TRANSLATE, or because a simulation did not cross a particular threshold. See Supplementary Figure S1 for an

illustrative example of how each date was determined.

levels as they are reached by simulations under different forcing
scenarios. All the raw projected timeseries were detrended (using
different methods for temperature and precipitation) and bias-
corrected using quantile delta mapping, leading to completely
reconstructed timeseries for each variable. The relatively coarse
EURO-CORDEX fields were further interpolated and downscaled
to the high-resolution observational grid by using the information
lost as the observations themselves are interpolated to the coarse
grid and back again. A second round of quantile mapping was

applied to the EURO-CORDEX frequency fields, with the degraded
observational field substituting for the historical simulation in the
quantile mapping process.

An initial set of standardized climate projections for Ireland
has already been produced by the TRANSLATE project using
the principles and specific methods described above, and
more complete results from these projections will become
publicly available by summer 2023. Ultimately, our intent is
to provide as complete and accessible quantitative information
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FIGURE 13

Projected annual daily mean temperature (Tmean) changes from the 1976–2005 reference period to a climate nominally 1.5, 2.0, and 2.5◦C warmer
than the pre-industrial period. The rows show the Tmean change fields for each threshold value, while the columns show the change fields for the
10th percentile, the mean, and the 90th percentile of each threshold ensemble.

as practically possible about likely future climates in Ireland
to meet the needs of those whose job is to plan and
manage the national infrastructure out to the end of the
21st century.
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