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Flooding, an increasing risk in Rwanda, tends to isolate and restrict the mobility of

rural communities. In this work, we developed a streamflow model to determine

whether floods and rainfall anomalies explain variations in rural trail bridge use, as

directly measured by in-situ motion-activated digital cameras. Flooding data and

river flows upon which our investigation relies are not readily available because

most of the rivers that are the focus of this study are ungauged. We developed a

streamflowmodel for these rivers by exploring the performance of process-based

and machine learning models. We then selected the best model to estimate

streamflow at each bridge site to enable an investigation of the associations

betweenweather events and pedestrian volumes collected frommotion-activated

cameras. The Gradient Boosting Machine model (GBM) had the highest skill with

a Kling-Gupta E�ciency (KGE) score of 0.79 followed by the Random Forest

model (RFM) and the Generalized Linear Model (GLM) with KGE scores of 0.73

and 0.66, respectively. The physically-based Variable Infiltration Capacity model

(VIC) had a KGE score of 0.07. At the 50% flow exceedance threshold, the GBM

model predicted 90% of flood events reported between 2013 and 2022. We found

moderate to strong positive correlations between total monthly crossings and the

total number of flood events at four of the seven bridge sites (r = 0.36–0.84), and

moderate negative correlations at the remaining bridge sites (r = -0.33– -0.53).

Correlation with monthly rainfall was generally moderate to high with one bridge

site showing no correlation and the rest having correlations ranging between

0.15–0.76. These results reveal an association between weather events and

mobility and support the scaling up of the trail bridge program to mitigate

flood risks. The paper concludes with recommendations for the improvement of

streamflow and flood prediction in Rwanda in support of community-based flood

early warning systems connected to trail bridges.
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1. Introduction

Maintaining and improving mobility for rural communities

is essential for climate adaptation. A significant proportion of

rural inhabitants in developing countries lack adequate safe

transportation infrastructure to cross rivers and flood plains.

Floods create a physical barrier that can cause isolation, with

consequences that can slow down socio-economic development

and poverty eradication (Starkey, 2002). Non-motorized transport

has been the main mode of transportation for rural inhabitants in

these countries until recently when the use of relatively affordable

motorized transport such as motorbikes became common (Starkey,

2016). A number of factors can worsen flood-induced isolation;

further compounding rural development challenges (Shirley et al.,

2021). Some of these factors include terrain, a limited network of

local roads, tracks, footpaths, bridges, and cost (Starkey, 2002).

Isolation for rural people curtails access to farms, markets, water

supplies, schools, government services, and hospitals. Lack of

access to these essential places and services undermines the ability

of people to adapt to environmental shocks.

Policy decisions that have traditionally concentrated

investments in connecting small and large urban areas are

beginning to adapt to new realities as evidence becomes available

on the association between environmental factors and rural

mobility. This evidence raises awareness of the critical role rural

infrastructure could play in facilitating movement as people find

ways to cope with an increasingly variable environment. Some

recent examples include work by McLeman (2013), Call et al.

(2017), Grace et al. (2018), and Best et al. (2022) that examine

the relationship between migration and environmental variability

including extreme weather events. Other studies have linked

rapid environmental shocks such as extreme weather events and

disasters to impacts that can lead to asset and income loss for a

household (Dercon, 2002; Gray and Bilsborrow, 2013). While these

examples do not necessarily evaluate the association between rural

infrastructure, mobility, and environmental factors or the impact

of the infrastructure on livelihoods, they address an important

aspect of the well-being of rural communities related to mobility.

As a response strategy, households may choose to find alternative

options for generating income which could include wage labor

in other villages or nearby urban centers. This response can be a

temporary measure but in some cases, it can become a permanent

strategy to diversify household income to mitigate impacts from

future environmental shocks.

In Sub-Saharan Africa (SSA), trail bridges are some of the

most common transportation infrastructures in rural communities

(Shirley et al., 2021). Although a key connectivity network, they

are temporary, unsafe, of poor design, and at risk of being swept

away by high flood waters whenever it rains. Several development

programs have introduced more resilient trail bridge designs and

constructed hundreds of these bridges in developing countries

around the world. The Bridges to Prosperity Non-governmental

Organization (B2P) is a leader in designing and building trail

bridges in developing regions. The B2P bridges are structurally

safe and reliable, unlike many river crossings in rural villages.

Early evidence from impact evaluations conducted on B2P bridges

shows a positive contribution to community livelihoods. Brooks

and Donovan (2020) reported an increase in wages by 35.8%,

increased farmer productivity by 75%, and an increase in women

entering the labor market by 60% following bridge constructions in

Nicaragua. The authors also found a significant association between

floods and labor loss. Another evaluation in Rwanda by Thomas

et al. (2021) found a 25% increase in labor market income following

the construction of four pilot bridges.

The positive outcomes from the two studies motivated a scale-

up program in western Rwanda in 2020. A mixed methods impact

evaluation of these bridges was concurrently initiated in 22 districts

starting with a baseline study and covering a total of 15,435

households. This evaluation will extend to the end of 2024 when the

planned bridge interventions will have been completed. The impact

evaluation combines experimental and non-experimental methods

to enable a comprehensive understanding of the contribution of the

bridges to household and community-level outcomes. Household

surveys were planned in three additional rounds, covering 147 sites

of which 97 were intervention and 50 were control sites (Macharia

et al., 2022b). As part of the impact evaluation, understanding how

rainfall and flooding affect rural mobility is of high importance

because the trail bridge intervention is intended to mitigate flood

risks among other outcomes. Whereas rainfall data are generally

available for this purpose, finding locally-relevant and temporally-

complete time series streamflow data is impossible at the scale of a

village in the intervention districts (MIDIMAR, 2015).

Hydrological modeling is a data-intensive application

(Solomatine and Wagener, 2011). There are four broad

classifications of hydrological models based on model structure:

empirical or data-driven models, conceptual models, physics-based

models, and hybrid models (Pechlivanidis et al., 2011). Empirical

models are primarily built on observations and characterize the

system response from the available data. These models include

machine learning models like random forests, support vector

machines, and artificial neural networks among others. Some

studies that have used these models have concluded that they have

the ability to reproduce observed streamflow quite well (Asefa et al.,

2006; Shortridge et al., 2016; Kumar et al., 2021; Xu and Liang,

2021). Conceptual models generally represent the rainfall-runoff

relationship, with the model structure specification done before the

modeling is undertaken (Nash and Sutcliffe, 1970). These models

require some conceptual model structures to be estimated through

calibration against observations. Physics-based models represent

multiple components of hydrological processes such as infiltration,

runoff, and evapotranspiration using the governing equations

of motion based on continuum mechanics. Common examples

include the Variable Capacity Infiltration (VIC) model (Liang

et al., 1994). These models are intensive and require high-capacity

computing resources to implement. Hybrid models combine two

or more elements of the models described above. Hybrid methods

that combine empirical machine learning and physics-based

models take advantage of the strengths that the two types of models

provide in understanding hydrological processes (Konapala et al.,

2020; Yang et al., 2020; Bhusal et al., 2022).

The main objective of this study, therefore, was to develop

a hydrologic model to estimate streamflow and support flood

mitigation in the Nyabarongo catchment. To accomplish this

goal, we carried out three related analyses. We first performed
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an extreme rainfall analysis to understand trends in recent wet

extremes that are associated with flooding in the catchment. We

then set up an experiment to compare the performance of a physics-

basedmodel andmachine learningmodels with the aim of selecting

the model with the best skill for further applications. Lastly, we

simulated time series streamflow using the selected model at a

bridge catchment scale and investigated the association between

flooding and pedestrian mobility as a contribution to the trail

bridge impact evaluation highlighted in previous sections. We

used data from satellite remote sensing, observed streamflow, rain

gauges, motion-activated cameras, and reported flood events to

accomplish our objectives. Our study was broadly preceded by

flood modeling studies done by Mind’je et al. (2019) and Ndekezi

(2012) in the same study area but whose focus was on short-

term peak flow modeling and evaluation of rainfall forcing data on

streamflow errors, respectively.

2. Materials and methods

2.1. Study area

The trail bridge scale-up program is situated in three regions:

Western, Southern, and Northern provinces in Rwanda as part of

the impact evaluation documented by Macharia et al. (2022b). For

the present study, we focused on eight trail bridge sites found in

the Nyabarongo catchment which cuts across the three provinces

and where cameras were installed to track bridge use Figure 1. The

focus bridges were randomized and were part of the first wave in the

stepped-wedge build design. We also focused on these sites because

of the availability of observed streamflow data which were critical in

model development. The Nyabarongo catchment drains an area of

approximately 8,500 km2 or about 33% of the total land area of the

country. The catchment has a hilly terrain with an elevation range

of 1,300–4,500 m. A tropical climate characterizes the catchment,

with a mean rainfall of 1,200 mm/year in the months of March to

May (MAM), and September to December (SOND) (Mind’je et al.,

2019).

2.2. Data

2.2.1. In-situ observations
Three types of in-situ data were collected for bridge crossings

analysis, streamflowmodeling, and flood validation. The Browning

Spec Ops Advantage (https://browningtrailcameras.com/) motion-

activated cameras enabled with infrared capability were installed

at the eight bridge sites to track and record pedestrian movement

entering or exiting a bridge. The cameras were set to record 5-

second videos and still pictures of objects passing through the

bridges. The eight sites were part of the first wave of the randomized

stepped-wedge impact evaluation design. The period of observation

for the purpose of this study started in August 2021 and ended in

July 2022, however, the cameras were intended to collect data until

the end of the impact evaluation study in 2024. An earlier set of

similar trail cameras were also used in the pilot study by Thomas

et al. (2020), providing high-quality results when validated with

data from manual counting devices.

Daily streamflow data was obtained from the Rwanda Water

Resources Board (https://waterportal.rwb.rw). Considerable efforts

have been made by RWB to improve the collection, archiving,

and dissemination of streamflow data. The Ruliba station was

instrumented with an automatic telemetry water level measuring

station in 2018, improving the consistency and accuracy of

streamflow measurements. The time series of the telemetry data

extended from March 2018 to September 2022 (Figure 2). The

telemetry stations measure the river stage which is then converted

to streamflow or discharge using a rating curve derived from

the observed stage and the associated discharge. Reported flood

events data were provided by the Ministry in Charge of Emergency

Management (MINEMA) covering the period between September

2013 and August 2022. These reports include the date of the

flood event, and the reported impact including deaths, damages

to infrastructure like bridges, schools, roads, etc., and losses

experienced in farms among others.

2.2.2. Remote sensing observations
Gridded satellite rainfall data were retrieved from publicly

available sources. For time series streamflow simulation and flood

frequency analysis, we required gridded rainfall data covering the

period 01/01/2001–31/12/2022. Three general types of satellite

rainfall retrieval models are available for this type of research;

data from gauge-corrected geostationary infrared sensors (Geo-IR)

and passive-microwave sensors (PMW). The third model integrates

PMW, Geo-IR, radar measurements, and gauge corrections. We

used the daily Integrated Multi-Satellite Retrievals for the Global

Precipitation Measurement (GPM) mission (IMERG-v06) late-

run product available at a grid spacing of approximately 10 km

(Huffman et al., 2020). The IMERG products are based on the

third rainfall retrieval model. The choice of IMERG was informed

by findings from an earlier study by our team highlighting the

strengths of the integrated PMW-GeoIR-Radar-Gauge rainfall

models in high-altitude areas (Macharia et al., 2022a). Specifically,

that study revealed a better daily rainfall occurrence detection and

intensity representation from the integrated models compared to

Geo-IR models, characteristics that are non-trivial in hydrological

modeling. The IMERG final product meets these characteristics but

was only available up to 30/09/2021 at the time of data analysis for

this study. We used the IMERG late-run data as a result which

were downloaded from the SERVIR ClimateSERV data portal;

https://climateserv.servirglobal.net/ (accessed January 2, 2023).

Daily gridded temperature data from the Climate Prediction

Center (CPC) global temperature data provided by the US

National Oceanic and Atmospheric Administration (NOAA)

were downloaded from the International Research Institute

for Climate and Society (IRI) Climate Data Library at

http://iridl.ldeo.columbia.edu/SOURCES/ (accessed January

2, 2023). The data are the minimum and maximum temperature

estimates available globally at 50 km spatial resolution. They

contain gridded interpolated gauge measurements (Xie et al.,

2010).

Soil moisture is an important variable in water balance models.

It has been used to initialize model conditions, assimilated to

improve model predictions, or generated as an output variable
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FIGURE 1

A map showing the Nyabarongo catchment and the trail bridge locations (black circles). The inset map at the bottom shows the approximate

watershed of each of the bridge sites. The blue square symbol is the river gauge station at the Ruliba monitoring site along the Nyabarongo river

which drains the entire catchment.

FIGURE 2

A hydrograph of the observed daily streamflow (Q) for the period 01/03/2018–30/09/2022.
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(Brocca et al., 2017). Daily volumetric soil moisture data were

retrieved from the European Space Agency Climate Change

Initiative (ESA-CCI) and the Copernicus Climate Change Service

(C3S). The data have a spatial resolution of 25 km and are

derived from radiometer (passive) and scatterometer (active)

measurements (Dorigo et al., 2017; Gruber et al., 2019). We

downloaded the combined product of the two measurements. The

CCI product is available from 1978–2021 whereas the C3S product

is available from 1978 to the present. The C3S product is derived

from the CCI algorithm. We used the CCI product up to the end of

2021 and extended the time series with the C3S to cover the period

from January–October 2022. This choice was made to minimize

the area or the number of pixels with null values in the C3S product

over the study area. By comparison, the CCI product is gap-filled,

providing spatially complete estimates of soil moisture relative to

the C3S product over the study area. The CCI and C3S data were

retrieved from https://www.esa-soilmoisture-cci.org/node/145 and

https://cds.climate.copernicus.eu/portfolio/dataset/satellite-soil-m

oisture, respectively (accessed January 2, 2023).

Monthly leaf area index (LAI) and normalized difference

vegetation index (NDVI) from the Moderate Resolution Imaging

Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua

satellites were downloaded using the Google Earth Engine. Both

vegetation indices are important variables for understanding the

biological and physical processes associated with vegetated land

surfaces and are key inputs in hydrological models (Wang et al.,

2004). The LAI represents the green leaf area per unit ground

area, an important property for understanding evapotranspiration

processes in different vegetation types. The NDVI provides an

estimate of vegetation photosynthetic activity and is known to

account for the effects of soil and land cover changes on the rainfall-

runoff response (Nourani et al., 2017). Both indices are available at

various spatial resolutions but for the present study, we used the

500 m resolution product.

Soil data were downloaded from the Harmonized World

Soil Database (Nachtergaele et al., 2008), containing fifteen soil

properties for topsoil (0–30 cm) and subsoil (30–100 cm) at a grid

resolution of 30 arc-sec (1 km). Landcover data was obtained from

the Moderate-resolution Imaging Spectroradiometer (MODIS)

global product at a 500-m grid resolution (Friedl et al.,

2010). Elevation variables were obtained from the Shuttle Radar

Topography Mission (SRTM) global Digital Elevation Model

(DEM) at a grid resolution of 30 m.Wind speed data were obtained

from the National Centers for Environmental Prediction (NCEP)

reanalysis data at 2 m height and 250 km grid resolution. The input

data is derived by combining eastward and northward wind vectors,

represented by the variables “U” and “V” respectively.

2.3. Methods

Our methods included extreme rainfall analysis, streamflow

modeling using a process-based and three machine learning

models, flood frequency analysis, and correlation analysis to

determine the associations between weather events and bridge use

trends. These methods are summarized in the flowchart shown in

Figure 3.

2.3.1. Extreme rainfall indices
We constructed two extreme weather variables—number of

very heavy precipitation days (R20mm) and Maximum daily

rainfall amount (RX1day)—using the standardized approach

recommended by the Expert Team on Climate Change Detection

Indices (ETCCDI) (Donat et al., 2013). These indices were

established by the World Meteorological Organization (WMO)

and the World Climate Research Program (WCRP) to promote

research on extreme climate events globally, eventually resulting in

many studies of extreme events (e.g., Alexander et al., 2006; Ojara

et al., 2021), including those focused on demographic behavior

(e.g., Carrico et al., 2020). We also included rainfall anomalies to

track changes in total annual rainfall over the past 20 years in the

Nyabarongo catchment. This analysis was done using the Climate

Data Operators (CDO) tool which is a collection of command

line operators for analyzing and manipulating gridded climate data

(Kaspar et al., 2010). Most ETCCDI studies use gauge station data

where sufficient records are available, however, CDO provides the

tools to carry out similar analyses using gridded time series satellite

or climate model data. This is especially important for regions

that have poor station data availability which is the case in the

study area.

2.3.2. Streamflow modeling
Streamflow modeling is commonly done using approaches

that rely on lumped, semi-, or fully distributed models. More

recent approaches combine different types of models which are

revolutionalizing hydrologic modeling (Xu and Liang, 2021), like

in the case of hybrid process-based and machine learning models

(Konapala et al., 2020; Yang et al., 2020; Huang et al., 2022).

The machine learning (ML) models can be broadly classified

as lumped models because they use input variables that are

spatially aggregated at a basin or catchment scale. Distributed

models estimate fluxes at a grid cell and then these fluxes, usually

representing baseflow and runoff, are routed to a river channel

connected to a pour point or basin outlet.

We followed a number of steps to estimate streamflow at

the bridge sites. We set up our experiment in the Nyabarongo

catchment where the bridges are located, and where we had

observed daily streamflow data considered adequate for model

training and validation. We then trained, validated, and compared

the performance of the process-based semi-distributed Variable

Infiltration Capacity (VIC) model (Liang et al., 1994) and

three machine learning models: a Gradient Boosting Machine

model (GBM) (Friedman, 2001), a Random Forest Model

(RFM) (Breiman, 2001), and a Generalized Linear Model (GLM)

(McCulloch, 2000). The VIC model solves water and energy fluxes

over a gridded domain and a scheme that models how vegetation

and soils control the fluxes. It has been used widely for flood

and drought monitoring in small and large basins in sub-Saharan

Africa, either as a standalone model (Sheffield et al., 2014; Shukla

et al., 2014) or coupled with other models (Andreadis et al.,

2017).

The VIC model was warmed up for a period of 2 years

(01/01/2016–28/02/2018) to stabilize or reach an “optimal"

state which is deemed important Kim et al. (2018). The
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FIGURE 3

The general flowchart that we followed to carry out rainfall, streamflow, and bridge-use analysis. The acronyms VIC, GLM, RF, and GBM represent the

Variable Infiltration Capacity model, Generalized Linear Model, Random Forest model, and Gradient Boosting Machine model, respectively.

observed streamflow was split into a calibration or training

set (01/03/2018–28/02/2022) and a validation or testing set

(01/03/2022–30/09/2022). There are contrasting arguments in the

literature on the best approach for data splitting. Traditional

approaches tend to take a proportional splitting whereas somemore

recent research advocates for the use of all available data in model

calibration (Shen et al., 2022). Both approaches are influenced by

the length of observed data and some discretion is required to

determine the relevant approach to suit the modeling objectives.

Our splitting approach above was intended to have as much data

as possible during model calibration to capture recent very heavy

rainfall events that resulted in extreme flooding between 2018 and

2022.

Gridded forcing data are required by the VIC model to solve

the energy balance, generating baseflow and runoff amongst several

other water, and land-atmosphere fluxes. The minimum inputs

are rainfall, minimum and maximum temperature, wind speed,

soil, land cover, LAI, and a digital elevation model (DEM) from

which river network, slope, elevation, and flow direction layers are

generated. The model further uses vegetation parameters and soil

parameters generated from a combination of the vegetation and

soil variables. The model was run at 2.5 km spatial resolution to

simulate and calibrate streamflow output over 5000 iterations using

the Shuffled Complex Evolution- University of Arizona (SCE-UA)

algorithm (Duan et al., 1993, 1994). The VIC calibration was aimed

at optimizing soil parameters which have been found to have the

most significant impact on baseflow and runoff. The Lohmann

routing algorithm (Lohmann et al., 1996, 1998) was coupled with

the VIC model to route runoff and baseflow to get streamflow at

the catchment outlet (Ruliba station).

The next step was to set up the ML models. All the VIC

inputs except wind speed were used as input variables in the

ML models in addition to soil moisture, NDVI, and LAI. The

NDVI was used as a proxy for land cover and soils whereas the

LAI was used to account for variability in evapotranspiration in

the catchment. We also included lagged variables (1–3 days) of

the soil moisture, rainfall, and temperature in the ML models

to account for concentration times and the lagged response of

streamflow to the climate variables (Shortridge et al., 2016; Xu and

Liang, 2021). Unlike the VIC model, the ML models use spatially

aggregated variables (Shortridge et al., 2016). The input variables

were aggregated over the Nyabarongo catchment boundary using

the mean statistic and maintaining the original spatial resolution of

the input data before aggregation.

The ML models were implemented using the H2O package

in R statistical tool (Team, 2013). The training and testing set

were generated using random sampling i.e., we did not use the

date split approach as for the VIC model, so a date in the

observed time series streamflow was randomly allocated into either

the training or testing set. Ten-fold cross-validation was used to

develop and estimate the performance of the ML models using

75% of the observed streamflow data as the training sample. K-

fold cross-validation is an important step in model development

as it improves generalization by minimizing model error (Fushiki,

2011). The cross-validated models were then used to predict and

validate the performance of the models with the remaining 25%

of the data. Prior to model development, parameter optimization

was done using the training set to select the best model parameters

resulting in the lowest MAE and RMSE. This was only done

for the RFM and GBM models, with the goal of optimizing the

mtry, learning rate, and n-trees parameters. A standard model

specification was adopted as given by Equation 1.

Qb,t =f
(

Pb,t , Pb,t−1, Pb,t−2, Pb,t−3,Tnb,t ,Tnb,t−1,Tnb,t−2,

Tnb,t−3,Txb,t ,Txb,t−1, Txb,t−2,Txb,t−3, SMb,t , SMb,t−1,

SMb,t−2, SMb,t−3, LAIb,t ,NDVIb,t
)

+ εb,t ,

(1)
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where Qb,t is the daily streamflow in river b at time period

t; Pb,t , Tnb,t , Txb,t , SMb,t are the daily precipitation, minimum and

maximum temperature, and soil moisture in river basin b at time

period t; LAIb,t and NDVIb,t are the monthly average LAI and

NDVI in basin b at time t; and εb,t is the model error. Lagged

measurements represented by subscripts t− 1, t− 2, and t− 3 were

included to account roughly for concentration and storage times

longer than 1 day that could impact streamflow in the river.

Whereas the main goal of streamflow modeling was to develop

a model at the catchment scale, we explored methods to make

a “best guess" of time series streamflow at the bridge sites;

a major challenge due to the lack of observed river flows at

the sites. Predicting streamflow in ungauged basins remains an

area of great attention in hydrology, and many attempts have

been made suggesting various approaches (Mohamoud, 2008;

Atieh et al., 2017; Tegegne and Kim, 2018; Yilmaz and Onoz,

2020). Recognizing these challenges, we considered two general

approaches. The first approach was to couple the watershed area

ratio method Gianfagna et al. (2015), Ergen and Kentel (2016),

Yilmaz and Onoz (2020) with the ML models, and the second

approach was to couple the VIC model with the Lohmann flow

routing scheme (Lohmann et al., 1996). Both approaches have been

applied in hydrology where discharge observations are unavailable,

inadequate, or of poor quality. These approaches share a similarity

in that the discharge of a larger basin is a function of discharge at

the smaller nested basins upstream of the larger basin outlet, and

the flows are proportional to their watershed area. The watershed

area ratio is calculated using Equation 2;

WR =
Qb

Ab
=

Qn

An
, (2)

where the ratioWR of dischargeQ and the areaA of basin b is equal

to the ratio for nested basin n if both basins share a river network

and have similarities in physiographic characteristics.

We used the Nash-Sutcliffe Efficiency (NSE) and the Kling-

Gupta Efficiency (KGE) scores (Nash and Sutcliffe, 1970; Gupta

et al., 2009) to evaluate the skill of the models in reproducing

the observed flow hydrograph. We also included the Correlation

Coefficient (r), Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE), and Percent Bias (PBIAS) as additional loss

functions. The optimal values for these metrics are 1 for NSE and

KGE, and 0 for MAE, RMSE, and PBIAS. These loss functions are

used widely in hydrology to evaluate model performance (Moriasi

et al., 2007).

2.3.3. Flood frequency analysis
Flood frequency analysis is useful for characterizing the

streamflow regime of a catchment. This type of analysis is typical

for applications in water resources planning such as irrigation, dam,

and bridge constructions among others. One of the components of

flood frequency analysis is the flood duration curve (FDC) which

has relevance in calibrating hydrologic models (e.g., Westerberg

et al., 2011) and validating hydrological extremes (Onyutha, 2012).

The FDC shows the relationship between the frequency and

duration of flood events for a specific location. By comparing both

sets of data, the validity of the flood event can be determined. For

example, if the observed flood event falls within the range of the

predicted flood event data, as represented by the FDC, then the

flood event can be considered valid. However, if the observed flood

event falls outside of the expected range, then further investigation

may be needed to determine the validity of the flood event. We

adopted the FDC approach to identify flow thresholds upon which

floods occur in the basin using the predicted streamflow time series

from the methods described in Section 2.3.2 and the flood event

data. Because of the similarities in physiographic characteristics

across the catchment, we interpolated the flow thresholds to

individual bridge sites and classified the streamflow values as either

flood or non-flood events.

2.3.4. Bridge use
Pedestrian volumes were obtained by analyzing daily bridge

crossings from the motion-activated cameras using a computer

vision algorithm. This algorithm uses the open-source framework

called Darknet that implements a pre-trained YOLO (You Only

Look Once) (Redmon et al., 2016) deep neural network that has

been trained to detect various objects, including people. This

algorithm was trained and validated previously with traffic data

from four bridges in Rwanda (Thomas et al., 2020). Results

indicated a strong agreement between manual counting and

computer-vision counting (R2 range from 0.82–0.99, percent bias

= 2.63%). Bridge crossings were aggregated at daily and monthly

time scales for subsequent analysis. We only included days that

had complete records i.e., 24 h of continuous tracking starting at

12:00 midnight.

3. Results and discussion

3.1. Extreme rainfall trends

Heavy rainfall has occurred in recent years leading to

anomalously wet conditions that have had adverse consequences

on lives, livelihoods, and transportation infrastructure. Figure 4

shows recent anomalous rainfall events across the country. There

were widespread floods in the 2022 MAM season which caused

losses and damages across the country. The season was one of

the wettest in recent history, following similar events in 2018

and 2020 (Wainwright et al., 2020). The Nyabarongo catchment

received an average of 116% [range from 92–146] of the normal

annual rainfall whereas 2018 and 2020 events recorded 114% [range

from 91–141%] and 104% [range from 84–133%] of the normal

rainfall, respectively.

Focusing on extreme rainfall indices that cause flooding, our

analysis revealed that the MAM season in 2018, 2020, and 2022,

and the SOND season in 2019 had more very heavy rainfall days

(R20mm) than the average of the season across many locations in

the catchment (Figure 5). The maximum 1-day (Rx1day) rainfall

amount in these seasons was not the highest in the last 20 years,

however, the combination of high rainfall and more rainy days

than normal resulted in the observed floods. This would seem to

be the case for these seasons because flooding can occur when there

is excessive rainfall over a short period of time, or when there is

prolonged rain over several days. The streamflow hydrograph in
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FIGURE 4

Annual rainfall anomalies across Rwanda expressed as a percentage of long-term mean annual rainfall. The blue polygon is the Nyabarongo

catchment.

Figure 2 is further evidence that the extreme rainfall events resulted

in flood-generating flows. It also shows that the streamflow regime

in this catchment is significantly influenced by rainfall.

Deaths and losses from these extreme events were reported

across Western, Northern, and Southern Provinces. Data from the

Ministry in charge of EmergencyManagement (MINEMA) showed

that 13 people were killed and 25 bridges were damaged by the

floods in 2018. Approximately 1,000 hectares of cropland were

also destroyed in the three provinces. The impact on cropland

doubled in the 2019 and 2020 floods while the number of deaths

more than tripled relative to 2018. The 2022 flood events led to

39 deaths, and 24 bridges were also damaged (Figure 6). These

flood events were preceded by droughts in 2015, 2016, and 2017,

with the latter recording 83% of the annual normal rainfall. For

the inhabitants of these provinces, recurrent floods and droughts

compromise adaptation to climate variability.

The main livelihood activity for communities in the three

provinces is subsistence farming which is almost entirely reliant on

rainfall. The terrain is hilly, and most farming is either on steep

slopes (slope greater than 30%) or flood plains. Farming on this

kind of terrain coupled with heavy rainfall exposes crops and the

topsoil to erosion which can lead to loss of agricultural productivity.

A recent study by Karamage et al. (2016) found that cropland was

responsible for 95.8% of the total annual soil loss in the Nyabarongo

catchment, with a mean erosion rate of 618 t/ha/yr. Soil erosion

in Rwanda has also been associated with the siltation of streams

and rivers downstream causing the reduction of river channel

depth, and in turn, reducing the water holding capacity of the river

channels (RWB and IUCN, 2022). Other compounding impacts of

flooding in this catchment include contamination of drinking water

through the transport of contaminants from point and non-point

sources (Umwali et al., 2021). Market price hikes resulting from

the disruption of supply chains due to damaged roads and reduced

agricultural productivity (Kotz et al., 2022) can make it difficult for

poor people exposed to flood and drought extremes to afford and

sustain their needs.

3.2. Model evaluation

Results obtained from model validation are shown in Table 1.

The Gradient Boosting Machine model had the best scores for all

metrics, followed by the Random ForestModel and the Generalized

Linear Model. These models outperformed the VIC simulations

in all the metrics, however, it is important to note that the

VIC errors are based on a validation set that did not present

an exact corollary to the cross-validation set in the ML models.

Nevertheless, the significantly large errors associated with the VIC

model demonstrate the difficulty associated with the use of this

model in the study area, particularly when relying on remote

sensing datasets that may be unreliable at the resolution and

accuracy required for process-based modeling in a catchment

dominated by hilly terrain. Process-based models developed in the

past over this catchment for daily peak flows and volumes have

reported model errors comparable to our results. For example, an

NSE value of 0.8 reported by Mind’je et al. (2019) compares well

with NSE values ranging from 0.73–0.76 for the RFM and GBM

models developed here. This is an impressive performance given

that our focus was on both low and high flows which differs from

the authors’ focus on specific high-flow events. Predicting low flows

remains a challenging area (Cenobio-Cruz et al., 2023), especially

in mountainous regions like the Nyabarongo catchment where

groundwater discharge dominates dry season streamflows (Somers

and McKenzie, 2020).

Soil moisture and vegetation variables had a higher importance

across all the ML models compared to the rainfall and temperature

variables as shown in Figure 7. This is an important finding for

a number of reasons. Soil moisture is an important factor that

affects streamflow prediction because it is a key component of the

hydrologic cycle. Incorporating soil moisture data into a hydrologic

model allows the model to take into account the current state of

the soil and how much water is available for runoff. Prediction

uncertainties may arise due to factors like errors in forcing data,

the model’s internal structure, and initial conditions. By taking
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FIGURE 5

Extreme rainfall indices for the MAM and SOND rainy seasons for selected years. Maps (A) show the number of very heavy rainfall (R20mm) days

above or below the long-term mean, whereas graph (B) shows the maximum 1-day rainfall (Rx1day) anomalies relative to the long-term mean

maximum daily rainfall between 2001–2022.

FIGURE 6

Flood impacts reported by the Rwanda Ministry in charge of Emergency Management (MINEMA) between 24/09/2013 and 17/08/2022 in Western,

Northern, and Southern Provinces.

soil moisture into account, the model can make more accurate

predictions about how much runoff to expect given a certain

amount of precipitation (Ding et al., 2022). Incorporating soil

moisture data into hydrologic models can also help to mitigate the

impact of errors in precipitation data on streamflow predictions

(Kumar et al., 2021), and can minimize the uncertainties through

better model initialization (Visweshwaran et al., 2022).

It is however worth noting that soil moisture data itself can

also be subject to measurement errors or uncertainties. Therefore,

it is important to consider the quality and reliability of the

soil moisture data when using it in hydrological models for

streamflow prediction.

We achieved an improvement of the RMSE by 12% and

the MAE by 16% when we included soil moisture in the GBM

model which supports arguments in the literature that adding soil

moisture in hydrological models improves streamflow and flood

predictions (Brocca et al., 2010, 2017). The soil moisture data

used in our study was evaluated by McNally et al. (2016) in East

Africa for hydrological applications and found to be an acceptable

alternative to remotely-sensed rainfall and NDVI commonly used

for drought monitoring in moderately vegetated regions. We also

found a high correlation between the soil moisture data and

observed streamflow (r > 0.6), indicating the critical role that this

variable plays in runoff-generating processes in the Nyabarongo
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TABLE 1 Calibration and validation errors are shown for each model.

Calibration Validation

Metric/Model GLM RFM GBM VIC GLM RFM GBM VIC

r 0.75 0.99 0.99 0.57 0.73 0.86 0.88 0.39

NSE 0.55 0.96 0.99 –2.03 0.53 0.73 0.76 –4.3

KGE 0.63 0.89 0.99 0.17 0.66 0.73 0.79 0.07

PBIAS 0 0.1 0 –40.4 0.4 1.3 0.1 –54.1

MAE 19.35 5.23 0.88 59.76 20.45 14.61 13.24 76.54

RMSE 25.21 7.3 1.21 68.79 26.8 20.42 18.91 83.56

The VIC model errors are included for comparison. An important note is that the training and testing samples varied between the ML models and VIC as explained in Section 2.3.2.

FIGURE 7

Variable importance for GBM (A), GLM (B), and RFM (C)models. The Y-axis represents the top ten variables ordered by the level of importance for that

particular model. The acronyms are soil moisture (“sm"), leaf area index (lai), normalized di�erence vegetation index (“ndvi"), rainfall (“rf"), minimum

temperature (“tmin”), and maximum temperature (“tmax"). Lag 1d, 2d, and 3d represent the lagged measurements of the associated variables.

catchment. This observation agrees with results from Kumar et al.

(2021) who found the integration of the Advanced Scatterometer

(ASCAT) soil moisture to have a remarkable improvement on

streamflow predictions for poorly gauged catchments in India.

Another interesting finding is the combined dominant

influence of soil moisture, LAI, and NDVI in the ML predictions.

By excluding the three variables from the GBM model, the RMSE

and MAE scores worsened by 102 and 108%, respectively whereas

the KGE score worsened by 52% relative to the GBM model

trained with the three variables present. We can conclude that the

combined impact of soil moisture, land use, and land cover and

their associated temporal variability on streamflow is substantial in

the Nyabarongo catchment. It is also highly likely that the increase

in errors when the three variables were excluded from the model

was because the remaining variables; rainfall and temperature

could not explain the variance in the observed streamflow because

of the errors and the low correlations between the two, and

observed streamflow. The Nyabarongo catchment has experienced

substantial land use changes in the past two decades that could

have significantly altered the land surface with an effect on surface

runoff. Findings that the LAI and NDVI could be contributing

substantially to the variance in the predicted streamflow are

consistent with the conclusions made in past studies about the

influence of the two variables on streamflow (Tesemma et al.,

2015a,b; Ma et al., 2019; Mugo et al., 2020; Ding et al., 2022).

Figure 8 shows the simulated streamflow from the cross-

validated models during the validation period. Note here that

we do not include the VIC model hydrograph because of the

aforementioned reason. We observed that the RFM (Figure 8B)

and GBM (Figure 8C) models had larger errors for flow volumes

greater than 150 m3/s whereas the errors were more pronounced

for flow volumes less than 150 m3/s in the GLMmodel (Figure 8A).

The likely explanation for these observations is that high flow

volumes are more linearly influenced by rainfall and soil moisture

conditions in the Nyabrongo catchment whereas low flows are

influenced by groundwater discharge which nullifies the linear

relationship between rainfall and streamflow. The GLM model

is more sensitive to outliers than the GBM and RF models and

as the results showed, it works well by predicting high flows in

the catchment better than the two decision tree-based models.

The GLM model underestimated the low flows as shown in the

time series plot (Figure 8D) whereas all the models generally

underestimated peak flow volumes. Nevertheless, these models

reproduced the shape of the hydrograph well as shown by the high

correlation coefficients and the KGE scores in Table 1.

Further exploration of the VIC model errors was done by

subjecting the GBM model to the same data samples for training

and validation as those used by the VIC model. This was done in

order to evaluate the performance of theMLmodels given the same

time series as the VIC model. We found that the GBM model still

outperformed the VIC model in all metrics. The KGE, MAE, and

r scores for the GBM model were better than the VIC scores by a

factor of 8, 2.7, and 1.6, respectively. The VIC RMSE score was 2.7

times worse than the GBM RMSE score. A promising finding from

the VIC flow hydrograph was that it generally tracked low and high

peaks quite well, despite the large volumetric errors that the model

depicted. This observation is important for future improvements

on the model and the shape of the hydrograph in Figure 9 seems

to indicate a likely problem with the model’s calibration of the

soil depth parameters, probably due to errors in the soil rooting
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FIGURE 8

Scatterplots of observed and cross-validated streamflow (Q) predicted by the three machine learning models: GLM (A), RFM (B), and GBM (C). The

time series plot (D) shows comparisons between the predictions and the observed streamflow (obs) for the validation set.

depth generated from the FAO Harmonized World Soils Database

(HWSD). These parameters have an influence on the variable

infiltration curve parameter which subsequently impacts runoff

generation by the VIC model. Because the VIC model infiltration

curve parameter calibration is sensitive to the accuracy of the soil

layers, it is imperative to investigate and improve the accuracy of

the HWSD data following recent findings by Ippolito et al. (2021)

that found these data to have considerable discrepancies in the

topsoil texture when compared with field data. Topsoil texture and

composition are important factors in soil water holding capacity,

and would directly impact the infiltration capacity and therefore

runoff generation.

3.3. Flood frequency

Turning to the flood frequency analysis, we found that the

annual maximum daily discharge in the Nyabarongo catchment

has been on an upward trend in the last two decades (Figure 10B).

This trend could be due to the following factors: (i) agricultural

land expansion has been on the rise since the early 2000s with

the highest land conversions occurring from forested, open, and

wooded grasslands into croplands (Mugo et al., 2020; Bullock et al.,

2021) and (ii), coupled with the frequency and severity of extreme

rainfall, these conversions could have contributed to a reduction

in the water holding or storage capacity of the soils which in turn

increased surface runoff to rivers and other waterways. We noted a

doubling of the annual runoff-to-rainfall ratio in the 20 years. We

caution that this analysis was done using streamflowwhich includes

baseflow; the ratio therefore may be more or less pronounced when

the streamflow is partitioned into runoff and baseflow for a more

realistic rainfall-runoff response relationship. We also note that the

inference on landcover changes as a contributor to increasing peak

annual runoff is supported by a recent study by Uwacu et al. (2021)

indicating that soil erosion protection measures like terracing are

not commonly practiced in the catchment which compromises

surface runoff attenuation.

The observed increasing trend in the annual runoff is also

consistent with findings by Karamage et al. (2017) which found that

Rwanda experienced a mean runoff depth increase of 2.33 mm/year

between 1990 and 2016 with above-the-mean runoff depth

increases experienced in districts in the Nyabarongo catchment

including Ngororero and Gakenke. The authors attributed this

increase to severe deforestation ranging between 62–85%, and

cropland expansion ranging between 123–293%. Future extreme

rainfall events will compound inappropriate land use practices

that will further increase soil erosion and lower the stormwater

retention capacity in the Nyabarongo catchment.

The Log-Pearson Type III (LP3) and Gumbel distributions

indicate a similar pattern with the predicted discharge and flood

occurrence return periods for the annual maximum discharge

series (Figures 10C, D). Flood recurrence periods generated from

the annual maximum daily discharge are appropriate for the design

of extreme flood mitigation structures such as dikes, dams, and

bridges. These are floods that occur very occasionally at the local

level and the annual maximumdischarge series would not be able to

capture less extreme floods that cumulatively impact people more

frequently. For this reason, we turn to Figures 10E, F which show

the distribution and recurrence periods from a partial duration

series generated by thresholding the entire time series of the

predicted streamflow. The cutoff value was the 50% exceedance
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FIGURE 9

A plot showing the predicted time series for VIC and the GBM model compared with the observed streamflow for the validation period. The GBM

model was configured to the same validation and testing sample as the VIC model for comparisons.

threshold (Figure 10A) which was 98.33 m3/s; the value indicating

flows that have a likelihood of 1 in 2 years of being exceeded. The

partial duration series is more appropriate for developing flood

early warning systems due to its ability to capture low return period

flows more accurately (Shortridge et al., 2016). This type of analysis

would be relevant to a flood warning service that targets rural

pedestrian movement and the development of anticipatory actions

focused on mitigating lower magnitude but more frequent impacts.

For the design of flood early warning systems, and taking into

account uncertainties related to the statistical model parameters,

input data, and the rating curve model used to convert stage to

streamflow, adopting the LP3 distribution function that generates

higher flow values would be more appropriate for designing impact

models associated with both low and high flow flood volumes.

From the flow duration curve and the flood recurrence plots

in Figure 10 and Table 2, 90% of flood events reported between

2013 and 2022 were within the 50% exceedance threshold or

2-yr return period. This finding is consistent with observations

made by Mind’je et al. (2019) and Mind’je et al. (2021) that

high and moderate flows are the main factors associated with

flooding incidences in the Nyabarongo catchment. More than a

quarter of the reported floods (26%) were very extreme events

in the 5% exceedance threshold (1 in 20 years return period)

and most of them occurred between 14th November and 12th

December 2019, and 12th March and 16th May 2020. According

to a flood response report by One UN (CERF_Report) (accessed

January 18, 2023), nearly 21,000 people were affected by these

flood events, which also triggered landslides in affected places.

There was widespread destruction of houses and livelihoods

which resulted in humanitarian, health, and socio-economic

vulnerabilities exacerbated by the COVID-19 pandemic. Most

people who were rendered homeless were relocated to temporary

shelters, mostly in schools.

As it has been observed since the early 2000s (MIDIMAR,

2015), the increasing impacts of floods and flood-related hazards

will continue in the future making it extremely important to

prioritize flood mitigation measures to save lives and livelihoods

in these provinces. Projected rainfall from the Coupled Model

Inter-comparison Project, Phase 5 (CIMP5) climate model

ensembles indicate a likely increase in the intensity of heavy rainfall

from 3 to 17%, and the frequency of these events is also expected

to increase from 9 to 60% by the end of the century (World Bank

Group, 2021). These increases are expected in most parts of the

western, northern, and southern provinces.

3.4. Bridge use and weather events

The computer vision counted bridge crossings ranged from

1–1175 people per day with mean range crossings of 129–421

people per day (Table 3). The duration of observations ranged from

136–230 days. Comparisons between daily rainfall, streamflow,

and daily bridge crossings did not indicate strong correlations

but the correlations increased with temporal aggregation. Rugeshi,

Nyarusange, and Mutiwingoma sites showed high but statistically

insignificant (P > 0.05) correlations between total monthly

crossings and total monthly rainfall (r= 0.58, 0.75, and 0.76,

respectively) whereas Muhembe and Ntaruka had moderate

correlations (r= 0.25 and 0.47, respectively). The rest of the

bridges did not indicate any correlations. In terms of correlations

between total monthly crossings and the total number of days

in a month where streamflow exceeded the site flood threshold,

Mutiwingoma, Muhembe, Rugeshi, and Uwumugeti had moderate

to strong positive correlations (range from 0.36–0.84) whereas the

rest of the bridges indicated moderate negative correlations (range

from -0.33– -0.53).

These results indicate varying behavioral patterns across the

bridge sites. The design intent of the trail bridges was to

provide year-round transportation infrastructure for villages that

are isolated during extreme rainfall events and periods of high

river flows. Positive correlations between total rainfall and bridge

crossings are indicative of the bridges providing the intended

service. Negative correlations between the number of crossings

and the total number of days with high river flows in some of

the sites may be indicative of behavioral responses that point

to people avoiding or minimizing travel during high rainfall
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FIGURE 10

A series of graphs summarizing the flood frequency analysis. The graphs were generated using the time series streamflow predicted by the GBM

model for 2003–2022. The partial duration series is generated by thresholding the entire time series of the predicted streamflow. The cuto� value

was the 50% exceedance threshold of 98.33 m3/s; the value indicating flows that have a likelihood of 1 in 2 years of being exceeded. (A–F) Represent

the Flow Duration Curve, Maximum Daily Discharge, Annual Maximum Discharge Cumulative Distribution Frequency, Annual Maximum Discharge

Flood Recurrence, Partial Duration Series Cumulative Distribution Frequency, and Partial Duration Series Flood Recurrence, respectively.

months. It may also indicate that while the B2P bridges have

the potential to contribute positively to the lives of the people

in these sites, it may take some time before it influences the

movement behavior of the people in these sites. The months

with the highest bridge crossings across the sites were April,

May, September, November, and December. The Famine Early

Warning Systems Network (FEWSNET) crop calendar for Rwanda

(https://fews.net/east-africa/rwanda; accessed January 22, 2023)

identifies these months as the peak labor demand and migration

periods for weeding (April, May, November, and December), and

land preparation (September).

Baseline results from household surveys conducted in the

impact evaluation study provide a strong case for the B2P bridge

program in Rwanda. From the baseline study findings (Macharia

et al., 2022b), 57% of the households across the three provinces

had to cross rivers to reach hospitals and markets, and 25% to

reach farmlands. Out of all the households, 42% worked outside

their community, with the majority of these (63%) working in
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agriculture. By improving access for the dwellers of target villages,

the trail bridges are expected to improve a number of outcomes

including increasing agricultural productivity by eliminating flood

risks, reducing travel time to markets and the cost of farm inputs as

well as increasing wage earnings. This evidence is already available

as demonstrated by the pilot study by Thomas et al. (2021) in

the same locations and by similar outcomes in the Nicaragua trail

bridge impact evaluation by Brooks and Donovan (2020). We plan

to do a comprehensive analysis as more data from the cameras

becomes available toward the end of the Rwanda impact evaluation

study in 2024. This analysis will include linking the bridge use

trends with household and site-level outcomes being measured via

annual household surveys.

3.5. Limitations and future work

We relied on flow duration curves generated and validated

at the catchment scale to interpolate flood thresholds to the

individual bridge sites. For this reason, we caution readers that

the lack of validation data at the bridge sites could be a source

of errors. We also note that the model training and validation

data covered a relatively wet period. While we believe that

the dry period in part of 2019 and 2021 provided a counter-

balance, it is important to continue to retrain and re-evaluate the

models as more observed streamflow data become available. These

limitations notwithstanding, the findings presented in this paper

TABLE 2 This table shows the exceedance threshold, the associated

streamflow value, and the percentage of flood events predicted by the

GBMmodel.

Exceedance
threshold (%)

Q (m3/s) Cumulative
proportion % (N=54)

5 142.86 26

10 130.5 41

20 118.03 65

30 110.43 80

40 104.16 85

50 98.33 90

that associations between bridge use and weather events do exist

in rural Rwanda present insights that can drive future research in

this area. Findings that the machine learning models produce good

skill in reproducing observed streamflow hydrograph reinforces

published literature showing that empirical models have resulted

in improved streamflow modeling, especially in places where

process-based models do not perform well partly due to data

constraints. However, we also find valid reasons for continuing

VIC development by improving the quality of the meteorological

forcing data, taking advantage of an increasing amount of remote

sensing data that can be used to complement and bias correct the

VIC inputs. We propose to adopt methods cited in the literature to

make these improvements including but not limited to assimilating

soil moisture data in the VIC model and using soil moisture data to

correct rainfall data, among others.

Finally, we propose further work to improve VIC predictions

by coupling the empirical models and VIC. Empirical studies

have shown that the two types of models can be adapted to

complement each other. One way is to use the ML models to

predict residuals from the process-based, then use the predicted

residuals to bias-correct the process-based predictions. That way,

process understanding from the process-based is preserved while

taking advantage of the strengths of the ML models in pattern

learning to improve the predictions. Another approach is to

partition streamflow into baseflow and runoff. Calibrating the

VIC model for runoff could improve the simulations. There is

sufficient evidence in the literature showing that partitioning the

streamflow hydrograph and calibrating process-based models for

runoff can improve predictive accuracy in regions where baseflows

are a dominant component of the flow hydrograph. This is the case

for western Rwanda where a significant amount of water flowing

into the rivers comes from groundwater aquifers. Baseflows are

high in the Nyabarongo catchment throughout the year but the

VIC model’s prediction of this streamflow component was poor,

resulting in low values in most of the training, and validation

periods. In a newly funded project, we will work with local

government agencies and communities in the study area to advance

the methods and lessons learned here to improve the models.

This improvement is envisioned to contribute to the establishment

of a flood early warning service connected to the B2P bridge

infrastructure as a long-term flood risk mitigation measure.

TABLE 3 Summary statistics of daily bridge crossings frommotion-activated video clips at eight sites counted by a computer vision algorithm, and the

physical characteristics of the sites.

Site /Parameter Gasasa Rugeshi Nyarusange Kwiterambere Ntaruka Muhembe Mutiwingoma Uwumugeti

Mean 290 421 276 290 184 129 166 197

Standard deviation 201 99 130 115 53 61 106 133

Minimum 1 105 15 1 27 1 36 41

Maximum 966 960 1175 832 450 370 722 872

N (days) 147 184 136 142 230 198 193 221

Annual rainfall (mm) 1,349 1,349 1,261 1,355 1,353 1,326 1,396 1,403

Annual discharge (m3/s) 1.5 1.5 1.2 4 0.8 2.1 6 0.4

Elevation (m) 2,205 2,205 1,630 1,784 1,777 1,826 1,806 2,058

Slope (%) 35 35 28 33 33 35 31 31

Area (km2) 120 120 100 325 62 171 492 30
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4. Conclusions

In this study, we developed and compared the performance

of two hydrologic models—three machine learning models

(Generalized Linear Model, Random Forest Model, and Gradient

Boosting Model) and one process-based (Variable Infiltration

Capacity Model)— using remote sensing and in-situ streamflow

data. We also validated model predictions of floods using observed

flood event data in the Nyabarongo catchment. We then compared

rainfall, flood events, and temporal bridge use in eight sites to

investigate associations between weather events and bridge use

traffic collected by motion-activated cameras.

The recent 2018, 2019, 2020, and 2022 wet extremes

experienced in the Nyabarongo were associated with higher flood

impacts relative to other rainfall events between 2013–2022. We

found the machine learning models to perform relatively well

compared to the process-based resulting in lower daily mean errors

and a good replication of the observed streamflow hydrograph. The

ML models had a KGE score range of 0.66–0.79 whereas the VIC

model had a KGE score of 0.07. The model with the best skill was

the Gradient Boosting Machine followed by the Random Forest

model. From the GBM-simulated 20-year streamflow time series,

the maximum annual daily streamflow associated with flooding

depicted a steeply increasing trend with the probable explanation

being a combination of both extreme rainfall and land use change.

We found that soil moisture and temporally varying vegetation

variables improved the prediction of streamflow by the MLmodels.

The overall model improvement in the KGE score was 52% when

these variables were included in the GBMmodel.We found support

for an existing association between weather and bridge use trends,

with the highest bridge use being experienced during peak labor

demand and migration months, which also coincided with the

highest rainfall months. This trend may be indicative of mobility

that is motivated by job opportunities available outside the source

village. It may also indicate that mobility via the trail bridges to

other places like markets and schools is highest during months

with high total rainfall. We did not find clear associations between

flood events and daily bridge use, however, we believe that these

associations may be evident in the future when more bridge use

data is available.

Data availability statement

The datasets used in this study can be found in the links

provided in this article. Flood data was obtained from the Ministry

in charge of Emergency Management and is not redistributable.

The streamflow data was obtained from the Rwanda Water

Resources Board portal (https://waterportal.rwb.rw/). The camera

data is available from the authors upon request.

Ethics statement

This study was approved by the Rwanda National Ethics

Committee (128/RNEC/2021) and the University of Colorado

Boulder Institutional Review Board (20–0087). Written informed

consent from the participants’ legal guardian/next of kin was not

required to participate in this study in accordance with the national

legislation and the institutional requirements.

Author contributions

DM, LMa, and ET contributed to the conception and design

of the study. LMu and AN participated in data collection. FK

contributed to setting up the VIC model and reviewed data inputs

and model outputs. DM and ET performed the statistical analysis.

DM wrote the first draft of the manuscript. All authors contributed

to the manuscript editing and approved the submitted version.

Funding

This study was funded by the United States Agency for

International Development - Development Innovation Ventures

under the terms of award No. 7200AA20FA00021, the Autodesk

Foundation, and the Wellspring Foundation.

Acknowledgments

We acknowledge the contributions of Amazi Yego field staff

for collecting camera data used in our analysis; colleagues at

the Regional Centre for Mapping of Resources for Development

(RCMRD) who provided expert advice on the hydrologic

modeling plan, and the Rwanda Meteorology Agency (Meteo

Rwanda), Rwanda Water Resources Board (RWB), and Ministry

in charge of Emergency Management (MINEMA) for providing

in-situ hydrometeorological data and flood statistics for model

development. We also acknowledge Synaptiq for analyzing the

camera data.

Conflict of interest

AN is a staff of the non-profit organization, Bridges to

Prosperity, and is in charge of overseeing the construction of

bridges in Rwanda. LMu is employed by Amazi Yego Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inClimate 15 frontiersin.org

https://doi.org/10.3389/fclim.2023.1158186
https://waterportal.rwb.rw/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Macharia et al. 10.3389/fclim.2023.1158186

References

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A.
M., et al. (2006). Global observed changes in daily climate extremes of temperature and
precipitation. J. Geophys. Res. Atmosphere. 111, 6290. doi: 10.1029/2005JD006290

Andreadis, K. M., Das, N., Stampoulis, D., Ines, A., Fisher, J. B., Granger,
S., et al. (2017). The regional hydrologic extremes assessment system: A software
framework for hydrologic modeling and data assimilation. PLoS ONE 12, e176406.
doi: 10.1371/journal.pone.0176506

Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. (2006). Multi-time scale
stream flow predictions: The support vector machines approach. J. Hydrol. 318, 7–16.
doi: 10.1016/j.jhydrol.2005.06.001

Atieh, M., Taylor, G., M. A., Sattar, A., and Gharabaghi, B. (2017).
Prediction of flow duration curves for ungauged basins. J. Hydrol. 545, 383–394.
doi: 10.1016/j.jhydrol.2016.12.048

Best, K., Gilligan, J., Baroud, H., Carrico, A., Donato, K., and Mallick, B.
(2022). Applying machine learning to social datasets: a study of migration in
southwestern Bangladesh using random forests. Reg. Environ. Change 22, 52.
doi: 10.1007/s10113-022-01915-1

Bhusal, A., Parajuli, U., Regmi, S., and Kalra, A. (2022). Application of Machine
Learning and Process-Based Models for Rainfall-Runoff Simulation in DuPage River
Basin, Illinois. Hydrology 9, 117. doi: 10.3390/hydrology9070117

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Brocca, L., Ciabatta, L., Massari, C., Camici, S., and Tarpanelli, A. (2017). Soil
moisture for hydrological applications: Open questions and new opportunities. Water
9, 140. doi: 10.3390/w9020140

Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis,
Z., et al. (2010). Improving runoff prediction through the assimilation of
the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 14, 1881–1893.
doi: 10.5194/hess-14-1881-2010

Brooks, W., and Donovan, K. (2020). Eliminating uncertainty in market access:
The impact of new bridges in rural nicaragua. Econometrica 88, 1965–1997.
doi: 10.3982/ECTA15828

Bullock, E. L., Healey, S. P., Yang, Z., Oduor, P., Gorelick, N., Omondi, S.,
et al. (2021). Three decades of land cover change in East Africa. Land 10, 1–15.
doi: 10.3390/land10020150

Call, M. A., Gray, C., Yunus, M., and Emch, M. (2017). Disruption, not
displacement: Environmental variability and temporary migration in Bangladesh.
Global Environ. Change 46, 157–165. doi: 10.1016/j.gloenvcha.2017.08.008

Carrico, A. R., Donato, K. M., Best, K. B., and Gilligan, J. (2020). Extreme weather
and marriage among girls and women in Bangladesh. Global Environ. Change 65,
102160. doi: 10.1016/j.gloenvcha.2020.102160

Cenobio-Cruz, O., Quintana-Seguí, P., Barella-Ortiz, A., Zabaleta, A., Garrote, L.,
Clavera-Gispert, R., et al. (2023). Improvement of low flows simulation in the SASER
hydrological modeling chain. J. Hydrol. 18, 100147. doi: 10.1016/j.hydroa.2022.100147

Dercon, S. (2002). Income Risk, Coping Strategies, and Safety Nets. Technical Report
2, The World Bank. doi: 10.1093/wbro/17.2.141

Ding, Z., Lü, H., Ahmed, N., Zhu, Y., Gou, Q., Wang, X., et al. (2022). Soil moisture
data assimilation in MISDc for improved hydrological simulation in upper Huai River
Basin, China.Water 14, 3476. doi: 10.3390/w14213476

Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., and Caesar, J. (2013).
Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc.
94, 997–1006. doi: 10.1175/BAMS-D-12-00109.1

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
et al. (2017). ESA CCI Soil Moisture for improved Earth system understanding:
State-of-the art and future directions. Remote Sens. Environ. 203, 185–215.
doi: 10.1016/j.rse.2017.07.001

Duan, Q., Sorooshian, S., and Gupta, V. K. (1994). Optimal use of the SCE-UA
global optimization method for calibrating watershed models. J. Hydrol. 158, 265–284.
doi: 10.1016/0022-1694(94)90057-4

Duan, Q. Y., Gupta, V. K., and Sorooshian, S. (1993). Shuffled complex evolution
approach for effective and efficient global minimization. J. Optimiz. Theory Applic. 76,
501–521. doi: 10.1007/BF00939380

Ergen, K., and Kentel, E. (2016). An integrated map correlation method and
multiple-source sites drainage-area ratio method for estimating streamflows
at ungauged catchments: A case study of the Western Black Sea Region,
Turkey. J. Environ. Manage. 166, 309–320. doi: 10.1016/j.jenvman.2015.
10.036

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., et al. (2010). MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182.
doi: 10.1016/j.rse.2009.08.016

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statist. 29, 1189–1232. doi: 10.1214/aos/1013203451

Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation.
Stat. Comput. 21, 137–146. doi: 10.1007/s11222-009-9153-8

Gianfagna, C. C., Johnson, C. E., Chandler, D. G., and Hofmann, C. (2015).
Watershed area ratio accurately predicts daily streamflow in nested catchments in the
Catskills, New York. J. Hydrol. 4, 583–594. doi: 10.1016/j.ejrh.2015.09.002

Grace, K., Hertrich, V., Singare, D., and Husak, G. (2018). Examining rural Sahelian
out-migration in the context of climate change: An analysis of the linkages between
rainfall and out-migration in two Malian villages from 1981 to 2009. World Develop.
109, 187–196. doi: 10.1016/j.worlddev.2018.04.009

Gray, C., and Bilsborrow, R. (2013). Environmental influences on humanmigration
in rural ecuador. Demography 50, 1217–1241. doi: 10.1007/s13524-012-0192-y

Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W., and Dorigo, W.
(2019). Evolution of the ESA CCI Soil Moisture climate data records and
their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739.
doi: 10.5194/essd-11-717-2019

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F. (2009). Decomposition
of the mean squared error and NSE performance criteria: Implications for improving
hydrological modelling. J. Hydrol. 377, 80–91. doi: 10.1016/j.jhydrol.2009.08.003

Huang, S., Xia, J., Wang, Y., Wang, W., Zeng, S., She, D., et al. (2022). Coupling
machine learning into hydrodynamic models to improve river modeling with complex
boundary conditions.Water Resour. Res. 58, 32183. doi: 10.1029/2022WR032183

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., et al.
(2020). “Integrated multi-satellite retrievals for the global precipitation measurement
(GPM) mission (IMERG),” in Satellite Precipitation Measurement (Springer) 343–353.
doi: 10.1007/978-3-030-24568-9_19

Ippolito, T. A., Herrick, J. E., Dossa, E. L., Garba, M., Ouattara, M., Singh, U., et
al. (2021). A comparison of approaches to regional land-use capability analysis for
agricultural land-planning. Land 10, 458. doi: 10.3390/land10050458

Karamage, F., Zhang, C., Fang, X., Liu, T., Ndayisaba, F., Nahayo, L., et al. (2017).
Modeling rainfall-runoffresponse to land use and land cover change in Rwanda
(1990-2016).Water 9, 147. doi: 10.3390/w9020147

Karamage, F., Zhang, C., Kayiranga, A., Shao, H., Fang, X., Ndayisaba,
F., et al. (2016). USLE-based assessment of soil erosion by water in the
nyabarongo river catchment, Rwanda. Int. J. Environ. Res. Public Health 13, 835.
doi: 10.3390/ijerph13080835

Kaspar, F., Schulzweida, U., andMüller, R. (2010). “Climate data operators’ as a user-
friendly processing tool for CM SAF’s satellite-derived climate monitoring products,”
in Conference: EUMETSAT Meteorological Satellite Conference 20–24.

Kim, K. B., Kwon, H.-H., and Han, D. (2018). Exploration of warm-
up period in conceptual hydrological modelling. J. Hydrol. 556, 194–210.
doi: 10.1016/j.jhydrol.2017.11.015

Konapala, G., Kao, S. C., Painter, S. L., and Lu, D. (2020). Machine learning assisted
hybrid models can improve streamflow simulation in diverse catchments across the
conterminous US. Environ. Res. Lett. 15, 104022. doi: 10.1088/1748-9326/aba927

Kotz, M., Levermann, A., and Wenz, L. (2022). The effect of rainfall changes on
economic production. Nature 601, 223–227. doi: 10.1038/s41586-021-04283-8

Kumar, A., Ramsankaran, R. A., Brocca, L., and Mu noz-Arriola, F. (2021). A
simple machine learning approach to model real-time streamflow using satellite
inputs: Demonstration in a data scarce catchment. J. Hydrol. 595, e126046.
doi: 10.1016/j.jhydrol.2021.126046

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). A simple
hydrologically based model of land surface water and energy fluxes for general
circulation models. J. Geophys. Res. 99, 14415–14428. doi: 10.1029/94JD00483

Lohmann, D., Raschke, E., and Lettenmaier, D. P. (1998). Regional scale hydrology:
I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J. 43,
131–141. doi: 10.1080/02626669809492107

Lohmann, D. A. G., Nolte-Holube, R., and Raschke, E. (1996). A large-scale
horizontal routingmodel to be coupled to land surface parametrization schemes. Tellus
A 48, 708–721. doi: 10.3402/tellusa.v48i5.12200

Ma, T., Duan, Z., Li, R., and Song, X. (2019). Enhancing SWATwith remotely sensed
LAI for improved modelling of ecohydrological process in subtropics. J. Hydrol. 570,
802–815. doi: 10.1016/j.jhydrol.2019.01.024

Macharia, D., Fankhauser, K., Selker, J. S., Neff, J. C., and Thomas, E. A.
(2022a). Validation and intercomparison of satellite-based rainfall products over
Africa with TAHMO in-situ rainfall observations. J. Hydrometeorol. 23, 1131–1154.
doi: 10.1175/JHM-D-21-0161.1

Macharia, D., MacDonald, L., Mugabo, L., Donovan, K., Brooks, W., Gudissa, S.,
et al. (2022b). Mixed methods study design, pre-analysis plan, process evaluation

Frontiers inClimate 16 frontiersin.org

https://doi.org/10.3389/fclim.2023.1158186
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1371/journal.pone.0176506
https://doi.org/10.1016/j.jhydrol.2005.06.001
https://doi.org/10.1016/j.jhydrol.2016.12.048
https://doi.org/10.1007/s10113-022-01915-1
https://doi.org/10.3390/hydrology9070117
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/w9020140
https://doi.org/10.5194/hess-14-1881-2010
https://doi.org/10.3982/ECTA15828
https://doi.org/10.3390/land10020150
https://doi.org/10.1016/j.gloenvcha.2017.08.008
https://doi.org/10.1016/j.gloenvcha.2020.102160
https://doi.org/10.1016/j.hydroa.2022.100147
https://doi.org/10.1093/wbro/17.2.141
https://doi.org/10.3390/w14213476
https://doi.org/10.1175/BAMS-D-12-00109.1
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1007/BF00939380
https://doi.org/10.1016/j.jenvman.2015.10.036
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1016/j.ejrh.2015.09.002
https://doi.org/10.1016/j.worlddev.2018.04.009
https://doi.org/10.1007/s13524-012-0192-y
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1029/2022WR032183
https://doi.org/10.1007/978-3-030-24568-9_19
https://doi.org/10.3390/land10050458
https://doi.org/10.3390/w9020147
https://doi.org/10.3390/ijerph13080835
https://doi.org/10.1016/j.jhydrol.2017.11.015
https://doi.org/10.1088/1748-9326/aba927
https://doi.org/10.1038/s41586-021-04283-8
https://doi.org/10.1016/j.jhydrol.2021.126046
https://doi.org/10.1029/94JD00483
https://doi.org/10.1080/02626669809492107
https://doi.org/10.3402/tellusa.v48i5.12200
https://doi.org/10.1016/j.jhydrol.2019.01.024
https://doi.org/10.1175/JHM-D-21-0161.1
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Macharia et al. 10.3389/fclim.2023.1158186

and baseline results of trailbridges in rural Rwanda. Sci. Total Environ. 838, 156546.
doi: 10.1016/j.scitotenv.2022.156546

McCulloch, C. E. (2000). Generalized linear models. J. Am. Statist. Assoc. 95,
1320–1324. doi: 10.1080/01621459.2000.10474340

McLeman, R. (2013). Developments in modelling of climate change-related
migration. Clim. Change 117, 599–611. doi: 10.1007/s10584-012-0578-2

McNally, A., Shukla, S., Arsenault, K. R., Wang, S., Peters-Lidard, C. D., and Verdin,
J. P. (2016). Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Observ.
Geoinform. 48, 96–109. doi: 10.1016/j.jag.2016.01.001

MIDIMAR (2015). The National Risk Atlas of Rwanda. Technical report, Ministry
of Disaster Management and Refugee Affairs, Kigali, Rwanda.

Mind’je, R., Li, L., Amanambu, A. C., Nahayo, L., Nsengiyumva, J. B., Gasirabo, A.,
et al. (2019). Flood susceptibility modeling and hazard perception in Rwanda. Int. J.
Disaster Risk Reduct. 38, 101211. doi: 10.1016/j.ijdrr.2019.101211

Mind’je, R., Li, L., Kayumba, P. M., Mindje, M., Ali, S., and Umugwaneza, A. (2021).
Article integrated geospatial analysis and hydrological modeling for peak flow and
volume simulation in rwanda.Water 13, 2926. doi: 10.3390/w13202926

Mohamoud, Y. M. (2008). Prediction of daily flow duration curves and streamflow
for ungauged catchments using regional flow duration curves. Hydrol. Sci. J. 53,
706–724. doi: 10.1623/hysj.53.4.706

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel,
R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900.
doi: 10.13031/2013.23153

Mugo, R., Waswa, R., Nyaga, J. W., Ndubi, A., Adams, E. C., and Flores-Anderson,
A. I. (2020). Quantifying land use land cover changes in the lake victoria basin using
satellite remote sensing: The trends and drivers between 1985 and 2014. Remote Sens.
12, 1–17. doi: 10.3390/rs12172829

Nachtergaele, F. O., van Velthuizen, H., Verelst, L., Batjes, N. H., Dijkshoorn, J. A.,
van Engelen, V. W. P., et al. (2008). Harmonized World Soil Database (version 1.0).
Rome: Food and Agric Organization of the UN (FAO); International Inst. for Applied
SystemsAnalysis (IIASA); ISRIC -World Soil Information; Inst of Soil Science-Chinese
Acad of Sciences (ISS-CAS); EC-Joint Research Centre (JRC).

Nash, J. E., and Sutcliffe, J. V. (1970). River Flow Forecasting Through
Conceptual Models Part I-A Discussion of Principles*. J. Hydrol. 10, 282–290.
doi: 10.1016/0022-1694(70)90255-6

Ndekezi, F.-X. (2012).Hydrological Modeling of Nyabarongo River Basin in Rwanda:
Using Combination of Precipitation Input from Meteorological Models, Remote Sensing,
and Ground Station Measurement. Technical report, LAP LAMBERT Academic
Publishing.

Nourani, V., Fard, A. F., Gupta, H. V., Goodrich, D. C., and Niazi, F. (2017).
Hydrological model parameterization using NDVI values to account for the effects
of land cover change on the rainfall-runoff response. Hydrol. Res. 48, 1455–1473.
doi: 10.2166/nh.2017.249

Ojara, M. A., Yunsheng, L., Babaousmail, H., and Wasswa, P. (2021). Trends and
zonal variability of extreme rainfall events over East Africa during 1960–2017. Natural
Hazards 109, 33–61. doi: 10.1007/s11069-021-04824-4

Onyutha, C. (2012). Statistical modelling of FDC and return periods to characterise
QDF and design threshold of hydrological extremes. J. Urban Environ. Eng. 6, 132–148.
doi: 10.4090/juee.2012.v6n2.132148

Pechlivanidis, I. G., Jackson, B. M., Mcintyre, N. R., and Wheater, H. S.
(2011). Catchment scale hydrological modelling: a review of model types, calibration
approaches and uncertainty analysis methods in the context of recent developments in
technology and applications. Global NEST J. 13, 193–214. doi: 10.30955/gnj.000778

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2016.91

RWB and IUCN (2022). The State of Soil Erosion Control in Rwanda. Technical
report, Rwanda Water Board, Kigali.

Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X., et al. (2014). A
droughtmonitoring and forecasting system for sub-Sahara African water resources and
food security. Bull. Am. Meteorol. Soc. 95, 861–882. doi: 10.1175/BAMS-D-12-00124.1

Shen, H., Tolson, B. A., and Mai, J. (2022). Time to update the split-sample
approach in hydrological model calibration. Water Resour. Res. 58, e2021WR031523.
doi: 10.1029/2021WR031523

Shirley, K., Noriega, A., Levin, D., and Barstow, C. (2021). Identifying water
crossings in rural liberia and rwanda using remote and field-based methods.
Sustainability 13, 527. doi: 10.3390/su13020527

Shortridge, J. E., Guikema, S. D., and Zaitchik, B. F. (2016). Machine learning
methods for empirical streamflow simulation: A comparison of model accuracy,

interpretability, and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci. 20,
2611–2628. doi: 10.5194/hess-20-2611-2016

Shukla, S., McNally, A., Husak, G., and Funk, C. (2014). A seasonal agricultural
drought forecast system for food-insecure regions of East Africa. Hydrol. Earth Syst.
Sci. 18, 3907–3921. doi: 10.5194/hess-18-3907-2014

Solomatine, D. P., and Wagener, T. (2011). “2.16 - Hydrological Modeling,”
in Treatise on Water Science, eds. P., Wilderer (Oxford: Elsevier) 435–457.
doi: 10.1016/B978-0-444-53199-5.00044-0

Somers, L. D., and McKenzie, J. M. (2020). A review of groundwater in
high mountain environments. Wiley Interdisc. Rev. 7, e1475. doi: 10.1002/wat2.
1475

Starkey, P. (2002). Improving rural mobility: options for developing motorized
and nonmotorized transport in rural areas. Technical report, World Bank.
doi: 10.1596/0-8213-5185-0

Starkey, P. (2016). The benefits and challenges of increasing motorcycle use for rural
access. Technical report, World Bank.

Team, R. C. (2013). R: A language and environment for statistical computing.

Tegegne, G., and Kim, Y. O. (2018). Modelling ungauged catchments
using the catchment runoff response similarity. J. Hydrol. 564, 452–466.
doi: 10.1016/j.jhydrol.2018.07.042

Tesemma, Z. K., Wei, Y., Peel, M. C., and Western, A. W. (2015a). Including the
dynamic relationship between climatic variables and leaf area index in a hydrological
model to improve streamflow prediction under a changing climate. Hydrol. Earth Syst.
Sci. 19, 2821–2836. doi: 10.5194/hess-19-2821-2015

Tesemma, Z. K., Wei, Y., Peel, M. C., and Western, A. W. (2015b). The
effect of year-to-year variability of leaf area index on Variable Infiltration Capacity
model performance and simulation of runoff. Adv. Water Resour. 83, 310–322.
doi: 10.1016/j.advwatres.2015.07.002

Thomas, E., Bradshaw, A., Mugabo, L., MacDonald, L., Brooks, W., Dickinson, K.,
et al. (2021). Engineering environmental resilience: A matched cohort study of the
community benefits of trailbridges in rural Rwanda. Sci. Total Environ. 771, 145275.
doi: 10.1016/j.scitotenv.2021.145275

Thomas, E., Gerster, S., Mugabo, L., Jean, H., and Oates, T. (2020).
Computer vision supported pedestrian tracking: A demonstration on trail
bridges in rural Rwanda. PLoS ONE 15, e0241379. doi: 10.1371/journal.pone.
0241379

Umwali, E. D., Kurban, A., Isabwe, A., Mind’je, R., Azadi, H., Guo, Z., et al. (2021).
Spatio-seasonal variation of water quality influenced by land use and land cover in Lake
Muhazi. Sci. Rep. 11, 17376. doi: 10.1038/s41598-021-96633-9

Uwacu, R. A., Habanabakize, E., Adamowski, J., and Schwinghamer, T. D.
(2021). Using radical terraces for erosion control and water quality improvement
in Rwanda: A case study in Sebeya catchment. Environ. Develop. 39, 649.
doi: 10.1016/j.envdev.2021.100649

Visweshwaran, R., Ramsankaran, R. A., Eldho, T. I., and Lakshmivarahan, S.
(2022). Sensitivity-based soil moisture assimilation for improved streamflow forecast
using a novel forward sensitivity method (FSM) approach. Water Resour. Res. 58, 92.
doi: 10.1029/2021WR031092

Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E., and Marsham, J. H. (2020).
Extreme rainfall in East Africa, October 2019–January 2020 and context under future
climate change.Weather 76, 26–31. doi: 10.1002/wea.3824

Wang, Y., Woodcock, C. E., Buermann, W., Stenberg, P., Voipio, P., Smolander,
H., et al. (2004). Evaluation of the MODIS LAI algorithm at a coniferous forest site in
Finland. Remote Sens. Environ. 91, 114–127. doi: 10.1016/j.rse.2004.02.007

Westerberg, I. K., Guerrero, J. L., Younger, P. M., Beven, K. J., Seibert, J., Halldin,
S., et al. (2011). Calibration of hydrological models using flow-duration curves.Hydrol.
Earth Syst. Sci. 15, 2205–2227. doi: 10.5194/hess-15-2205-2011

World Bank Group (2021). Rwanda Climate Risk Country Profile. Technical report,
World Bank, Washington, DC.

Xie, P., Chen, M., and Shi, W. (2010). “CPC unified gauge-based analysis of global
daily precipitation,” in 24th Conference onHydrology, Atlanta, GA, Amer.Meteor. Social
2.

Xu, T., and Liang, F. (2021). Machine learning for hydrologic sciences: An
introductory overview.Wiley Interdisc. Rev. 8, e1533. doi: 10.1002/wat2.1533

Yang, S., Yang, D., Chen, J., Santisirisomboon, J., Lu, W., and Zhao, B. (2020).
A physical process and machine learning combined hydrological model for daily
streamflow simulations of large watersheds with limited observation data. J. Hydrol.
590, 125206. doi: 10.1016/j.jhydrol.2020.125206

Yilmaz, M. U., and Onoz, B. (2020). A comparative study of statistical methods
for daily streamflow estimation at ungauged basins in Turkey. Water 12, 459.
doi: 10.3390/w12020459

Frontiers inClimate 17 frontiersin.org

https://doi.org/10.3389/fclim.2023.1158186
https://doi.org/10.1016/j.scitotenv.2022.156546
https://doi.org/10.1080/01621459.2000.10474340
https://doi.org/10.1007/s10584-012-0578-2
https://doi.org/10.1016/j.jag.2016.01.001
https://doi.org/10.1016/j.ijdrr.2019.101211
https://doi.org/10.3390/w13202926
https://doi.org/10.1623/hysj.53.4.706
https://doi.org/10.13031/2013.23153
https://doi.org/10.3390/rs12172829
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.2166/nh.2017.249
https://doi.org/10.1007/s11069-021-04824-4
https://doi.org/10.4090/juee.2012.v6n2.132148
https://doi.org/10.30955/gnj.000778
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1175/BAMS-D-12-00124.1
https://doi.org/10.1029/2021WR031523
https://doi.org/10.3390/su13020527
https://doi.org/10.5194/hess-20-2611-2016
https://doi.org/10.5194/hess-18-3907-2014
https://doi.org/10.1016/B978-0-444-53199-5.00044-0
https://doi.org/10.1002/wat2.1475
https://doi.org/10.1596/0-8213-5185-0
https://doi.org/10.1016/j.jhydrol.2018.07.042
https://doi.org/10.5194/hess-19-2821-2015
https://doi.org/10.1016/j.advwatres.2015.07.002
https://doi.org/10.1016/j.scitotenv.2021.145275
https://doi.org/10.1371/journal.pone.0241379
https://doi.org/10.1038/s41598-021-96633-9
https://doi.org/10.1016/j.envdev.2021.100649
https://doi.org/10.1029/2021WR031092
https://doi.org/10.1002/wea.3824
https://doi.org/10.1016/j.rse.2004.02.007
https://doi.org/10.5194/hess-15-2205-2011
https://doi.org/10.1002/wat2.1533
https://doi.org/10.1016/j.jhydrol.2020.125206
https://doi.org/10.3390/w12020459
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

	Streamflow and flood prediction in Rwanda using machine learning and remote sensing in support of rural first-mile transport connectivity
	1. Introduction
	2. Materials and methods
	2.1. Study area
	2.2. Data
	2.2.1. In-situ observations
	2.2.2. Remote sensing observations

	2.3. Methods
	2.3.1. Extreme rainfall indices
	2.3.2. Streamflow modeling
	2.3.3. Flood frequency analysis
	2.3.4. Bridge use


	3. Results and discussion
	3.1. Extreme rainfall trends
	3.2. Model evaluation
	3.3. Flood frequency
	3.4. Bridge use and weather events
	3.5. Limitations and future work

	4. Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


