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GR2L: A robust dual-layer green
roof water balance model to
assess multifunctionality aspects
under climate variability

Jan Knappe1,2†, Manfred van A�erden1 and Jan Friesen1*†

1Centre for Environmental Biotechnology (UBZ), Helmholtz Centre for Environmental Research – UFZ,

Leipzig, Germany, 2Considerate Group, London, United Kingdom

Urban blue-green infrastructures (BGIs) fulfill a variety of functions that enable

cities to cope with climate change and additional urban anthropogenic pressures

such as increasing population density, heat island e�ects, biodiversity loss, and

progressive sealing of permeable surfaces. In the urban water cycle, BGIs can

play an important role when it comes to both managing and mitigating the direct

e�ects of ever-increasing periods of extended drought as well as the temporary

excess of stormwater during and after heavy rainfall events. Although BGIs are

multifunctional in principle, the individual infrastructure has to be designed and

operated toward achieving a set of specific objectives, e.g., stormwater retention,

infiltration, or storage for increased overall water resilience. In this study, we focus

on green roofs as a key BGI for water resilient urban spaces. Green roofs have the

advantage of unlocking underutilized roof space for urbanwatermanagement and

additional co-functions, avoiding additional urban land use conflicts at ground

level. Green roofs are available in a multitude of design types based on the

selection of vegetation, the make and thickness of the substrate layer, and the

absence or presence of additional retention space. With GR2L, we present a robust

dual-layer green roof water balance model that is able to cope with a variety of

design aspects and was validated and calibrated using a data set of four green

roof types with varying technical specifications and di�erent vegetation cover. We

used the calibratedmodels to assess how di�erent green roof types operate under

variable climatic conditions using meteo ensembles that consist of dry and wet

years as well as a suite of randomly selected years. Calibration results indicate that

a green roof factor (based on the classic crop factor) largely depending on the

retention capacity of green roofs, makes the results widely applicable in planning.

The results provide information on how green roof designs can be optimized for

fulfilling a given set of water balance-driven multifunctionality objectives under

varying climatic conditions and enabling an assessment of the performance of

existing green roof designs against these conditions.
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GRAPHICAL ABSTRACT

Introduction

Urban blue-green infrastructure (BGI) fulfills multiple

functions that enable cities to cope with climate change as well

as further anthropogenic changes such as increasing urban

population and increasing impervious surface areas. In turn,

ecosystem services and resources, such as water, become scarce

and the pressure on urban infrastructure, such as water networks,

increases. Properly planned and managed BGI can (i) provide

multiple functions in regard to ecosystem services, and (ii) be

used to cope with the limited space available in urban settings.

The multifunctionality of BGI often encompasses increased

green spaces through which biodiversity, the mitigation of

urban heat effects, air quality, as well as quality of life or

attractiveness of urban spaces can benefit (Liao et al., 2017;

Krauze and Wagner, 2019; O’Donnell et al., 2020). In view of

urban water management, BGI can be used to mitigate both

droughts and stormwater. In combination with hydrological

processes such as evapotranspiration for cooling, water storage

and retention for flow control and peak discharge attenuation,

infiltration for groundwater recharge and water treatment

functions (Voskamp and Van de Ven, 2015). Prominent

examples for BGI range from water sensitive parks, gardens,

and waterbodies to more technical solutions such as bioswales,

green walls, tree swales, and green roofs (Almaaitah et al.,

2021).

In particular, green roofs are becoming increasingly common

for strengthening the water resilience of urban spaces. Green roofs

have the advantage of providing under-utilized roof spaces with

additional functions, such as retention of stormwater and water

storage. In terms of design, a multitude of green roof types are

commercially available. Individual design considerations include

the selection of plants, the soil layer—ranging from grow mats to

soil substrate—and water storage such as specific retention layers

with controlled outlets at specified heights (Pérez and Coma, 2018;

Gößner et al., 2021; Wang et al., 2021).

Although—in principle—green roofs are multifunctional, the

individual infrastructures have to be designed and operated

toward site-specific functions for single buildings as well as

at city level. In order to assess the effect of green roofs for

stormwater mitigation or drought resilience their hydrological

performance needs to be monitored and modeled. Existing

studies provide monitoring-based analyses of evapotranspiration

and storage capabilities (Gößner et al., 2021; Wang et al.,

2021). In addition, models have been developed based on

lysimeter data including smoothing approaches that are often

required to cope with high-resolution lysimeter data and the

associated temperature or wind-induced noise (Schrader et al.,

2013). Other studies focused on short-term responses to rainfall

events using water balance approaches (Liu et al., 2021) or the

HYDRUS model that physically models porous media water fluxes

(Wang et al., 2022). As a plethora of green roof types and

configurations exist, models are needed that allow predicting the

performance of different green roof types under different local

weather conditions.

In this study we developed a two-layer water balance model

to represent green roofs with and without retention or storage

layers using data from an existing monitoring setup. Next to the

meteorological conditions during the monitoring periods we also

utilized meteo ensembles in order to assess the effects of climatic

variability. Meteo ensembles are based on meteorological input

data from the German Weather Service (DWD) network and

consist of dry and wet years as well as a suite of randomly selected

years. By forcing the green roof model with meteo ensembles (i)

observed data are used and (ii) different meteorological conditions

are simulated. Although this does not include forecasting, the use

of meteo ensembles including dry and wet conditions can be used

to assess climate change effects.

To highlight the variability within green roofs, four green

roof types were modeled that vary in technical setup and

vegetation layer. Within this study we provide (i) a robust data

preprocessing pipeline of lysimeter data including gap filling

(ii) a hydrological model, GR2L, specifically aimed at estimating

green roof performance, as well as (iii) analysis of green roof

response to climate variability utilizing meteo ensembles based on

weather station data. Based on a robust Rolling Forward Forecast

(RFF) the model is calibrated via a green roof factor, similar

to the often used crop factor, that includes not only vegetation

differences but also considers technological green roof parameters

and operational settings.
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FIGURE 1

Schematic of dual-layer green roof and GR2L model

parameterization overview. P, ETp, and I correspond to precipitation,

potential evapotranspiration, and interception.

Materials and methods

The GR2L model

Model description
The Green Roof 2 Layer (GR2L) model implements an

interactive dual-layer water balance bucket model for green roofs

with a substrate layer and an optional retention layer underneath

on daily time steps. Key compartments and parameters are depicted

in Figure 1. Both layers are hydraulically connected. In practice,

this is often achieved by using high capillary distribution fleeces

for horizontal water distribution at the base of the substrate layer

in combination with glass wool or fabric wicks that penetrate into

the retention layer for vertical upward movement of water from

the retention layer to the substrate layer. Vertically downward

movements of excess water from the substrate layer into the

retention layer is achieved through direct seepage. The substrate

layer is exposed to environmental conditions and experiences

rainfall (water input) and evapotranspiration (water loss). Potential

irrigation (water input) during operation can be applied both

directly to the substrate layer or indirectly via the retention layer

as rainfall.

The substrate layer can exchange water with the top

atmospheric boundary and the retention layer beneath. Water

exchange between the layers is assumed to be instantaneous in

modeling terms, i.e., local equilibria are reached within <1 day.

Thus, given available retention water the substrate is assumed to

be at a homogenous water holding capacity that allows the planted

vegetation to thrive (see also Gößner et al., 2021).

If the substrate is parameterized sufficiently, e.g., known van

Genuchten (1980) parameters, the water storage could also be

expressed as soil moisture or volumetric water content. However,

due to the relatively coarse and thin substrate layer in green roofs

(order of cm to dm, with considerable fractions of gravel), the

presence of a shallow water reservoir directly beneath it (retention

layer), and a general lack of experimentally-derived soil-moisture

release curves for green roof substrates, GR2L does not consider

vertical soil moisture gradients in the substrate, but expresses the

water content in the substrate layer simply in terms of water head,

i.e., water stored, at any given time.

Surplus rainfall or irrigation onto the substrate layer above a

maximum water storage capacity will seep into the retention layer

while a temporary water deficit in the substrate layer, caused by

evapotranspiration will initiate upward movement of water from

the retention layer to the substrate layer, if available (Figure 1).

Excess water in the retention layer beyond its storage capacity

which is usually determined by the position of an outlet or overflow

pipe (with or without throttle orifice) is considered as overflow.

GR2L does not consider conditions where parts of the water in the

system are immobile, e.g., freezing conditions or snow cover.

Model assumptions and parameters
Both the substrate and retention layer have upper and lower

boundaries for water storage. In the substrate layer minimum

substrate layer storage capacity Ssub;min and maximum substrate

layer storage capacity Ssub;max correspond to the substrate’s

saturated and residual water content, respectively, and are generally

estimated experimentally from weighing lysimeter data. In the

retention layer, these water storage parameters would be a direct

result of the retention space design. In most practical cases, the

minimum retention layer storage capacity Sret;min would be zero.

When the maximum retention layer storage capacity Sret;max is set

to zero, the model acts as a single-layer bucket model, representing

a green roof without a retention layer (Equation 1).

Hence, the total water storage Stot in the system is given as the

sum of water stored in the substrate layer (Ssub) and water stored in

the retention layer (Sret):

Stot = Ssub + Sret (1)

with

Ssub;min ≤ Ssub ≤ Ssub;max (2)

and

Sret;min ≤ Sret ≤ Sret;max (3)

Expressed as a sequential model, storage in the substrate layer

on day i depends on the previous day’s storage plus incoming

water from precipitation P and/or upward pull Qup minus

evapotranspiration and/or downward seepage Qdown. Similarly, the

retention layer storage on day i depends on the previous day’s

storage plus downward seepage from the substrate layer minus

potential upward transport and/or loss of excess water through

the outlet.

Precipitation (i.e., rainfall and/or surface irrigation) and

potential evapotranspiration ETp data can be obtained from on-

site measurements or publicly available weather time series data

for a given location. For this study precipitation and potential

evapotranspiration (Penman Monteith, FAO formula) were taken

from the German Weather Service (DWD Climate Data Center—

CDC, 2019, 2021). Themodel implements an interception loss term

I that reduces the effective precipitation that infiltrates into the

substrate layer during each time step. Interception is assumed to

remain constant on the scale of one vegetation period, but could

be derived from experimental data (if available), e.g., leaf area
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index (LAI) and a canopy storage function (Liu et al., 2021). The

capability of vegetated green roofs to evaporate initial precipitation

without transfer into the substrate layer is mainly dependent of

vegetation type and overall exposed surface area (Nagase and

Dunnett, 2012). A constant value of 1mm per day was chosen in

line with urban roof runoff models (such as Gash et al., 2008).

Evapotranspirative loss is either measured directly in lysimeter set-

ups or calculated dynamically from ETp data using a moisture

extraction function for determining actual evapotranspiration ETa.

The moisture extraction function is the ratio of the actual water

storage Ssub and the maximum effective water storage Ssub;max

in the substrate layer, scaled by a green roof factor kg which is

conceptually not dissimilar to a crop factor kc (Allen et al., 1998).

Classically, the crop factor is used to convert reference evaporation

into actual evapotranspiration for different crop types. By using kg
as calibration parameter we do not only consider vegetation type

but also aggregate green roof design and operational conditions

into kg :

ETa = kg · Ssub / Ssub;max · ETp (4)

A variety of different moisture extraction function shapes

were tested following the parametrizations by Zhao et al.

(2013). While the group of non-quadratic functions provided

comparable and generally good results, quadratic functions

did not perform better in preliminary model evaluations

(results not shown). Thus the function of least complexity

was chosen (Equation 4). Alternative, step-wise approaches

to calculate evapotranspiration on daily time steps can be

used, based on available data; similar to Liu et al. (2021)

who used a Hargreaves evapotranspiration approach with

linear moisture extraction function and a Dalton-type transfer

between reservoirs.

The full model parameterization can, hence, be expressed

within the two layers as

Ssub;i = Ssub;i−1 + Pi − I + Qup;i − ETa;i (5)

and

Sret;i = Sret;i−1 + Qdown;i − OUTi (6)

with all parameters as defined above and the respective time step

index i or i − 1 in the subscript. OUTi is the overflow from

the retention layer that occurs when Sret,max (Figure 1; Table 1) is

reached. Fluxes such as P, Eta, Etp, Qup, Qdown, I, and OUT are in

[mm day−1], the states Ssub, Sret , and Stot are in [mm] and kg is [–].

Model calibration data

Green roof types
Data for calibrating the GR2L model were courteously

provided by Optigrün International AG (Krauchenwies-

Göggingen, Germany). The dataset consists of time series

data spanning 187 days from April 1 to October 4, 2021, gathered

TABLE 1 Green roof parameters (modified after Gößner et al., 2021).

Economy
roof

Garden
roof

Nature
roof

Retention
roof

Vegetation Sedum Lawn Mixed Mixed

Surface area

(m2)

0.5 0.5 0.5 0.5

Substrate

height (cm)

6 15 10 10

Minimum

substrate

storage

capacity

Ssub;min (mm)

5.4 12.0 7.0 4.0

Maximum

substrate

storage

capacity

Ssub;max (mm)

25.4 48.0 34.1 29.8

Minimum

retention

storage

capacity

Sret;min (mm)

0.0 0.0 0.0 0.0

Maximum

retention

storage

capacity

Sret;max (mm)

5.0 23.0 8.7 28.5

Maximum

total storage

Stot;max (mm)

30.4 71.0 42.8 58.3

Retention

storage

overflow

Set to Sret;max

from four experimental plots of pilot-scale dual-layer green roof

types: an Economy Roof, a Garden Roof, a Nature Roof, and

a Retention Roof (Gößner et al., 2021). Each green roof type

consists of an upper substrate layer and a lower retention layer

separated by a distribution fleece, but differs when it comes

to layer thickness, substrate specifications, vegetation, overall

water storage capacity, and drainage type. Each roof type was

constructed as a weighting-scale lysimeter with additional green

roof area surrounding it to limit edge effects. Details about

the experimental design including information on location

and weather, irrigation schedule, design parameters, sensor

specifications, and data acquisition system have previously

been presented in Gößner et al. (2021). Key operational and

design parameters relevant for this study are summarized in

Table 1.

The lysimeters were located at the Optigrün premises in

Göggingen (Germany) and instrumented to record weight and

outflow at 5-min intervals from April 1 to October 5, 2021.

Precipitation and temperature data were collected on site. The

exact study set-up, data collection, and a comparative study

of evapotranspiration rates are explained in Gößner et al.

(2021).
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Data pre-processing
The data provided by Optigrün included recorded weight and

outflow data on 5-min intervals as well as weather data. The data

had to be pre-processed before being suitable for GR2L model

calibration. Hereby, we followed four consecutive steps of data

pre-processing. First, the raw data (weight, outflow, precipitation)

were screened for outliers and physically insensible data. Then,

the data were scaled to a common reference area, i.e., 1 m2,

and converted into units of water head (mm) to allow for a

meaningful analysis of the water balance. Third, missing data

(predominantly due to temporary sensor failure) was gap-filled

using (i) linear regression for temperature data (0.1% of data);

(ii) a bias-corrected replacement from publicly available data

for precipitation data (DWD Climate Data Center—CDC, 2021,

Station Pfullendorf, ID 3927) (60.1% of data); and (iii) a bias-

corrected replacement of lysimeter weight and outflow data across

green roof types based on correlation during respective non-zero

outflow or non-zero weight change day (7.0% of data). Finally,

data were aggregated to daily values, i.e., sums for outflow and

precipitation, and differences between midnight observations for

lysimeter weight changes.

Parametrization of green roof types
Geometry and time series data provided by Gößner et al.

(2021) were used to parametrize four green roof types (Table 1).

Water storage capacity in the retention layer is given by

green roof design and geometry. While the retention layer

minimum water storage capacity for all green roof types is

zero, representing an empty retention layer, the retention layer

maximum water storage capacity is related to the position of

the outlet.

Substrate layer minimum and maximum water storage

capacity depend on substrate type and composition, as well

as green roof specific parameters such as vegetation type,

root depth, and density. These parameters were extracted

empirically from the lysimeter and soil moisture time series

data. Assuming an empty retention layer, the minimum effective

water storage in the substrate layer Ssub;min was approximated

by the residual water content θres in the substrate, i.e., at

the time of minimum recorded soil moisture. The minimum

effective substrate water storage capacity can, then, be derived

by scaling θres with the substrate layer thickness dsub. Assuming

a filled retention layer, the maximum effective water storage

in the substrate layer Ssub;max was approximated by using

the median lysimeter weight at times of soil moisture near

(i.e., >95% percentile) an apparent saturated water content

θsat and subtracting the weight of a filled retention layer.

Cleaned and gap-filled substrate water content time series

data with derived, corresponding minimum and maximum

water storage capacities for all four roof types are shown in

Supplementary Figure S1.

Initial substrate and retention layer storage must be supplied

to the model as initial conditions. An allocation of available water

in the system at t = 0 between substrate and retention layer

storage was done based on lysimeter weight and the conception

that water accumulates in the substrate layer first, before seeping

into the retention layer.

Model parameter optimization

Model parameters are initially optimized using an iterative

Rolling Forward Forecast (RFF) approach on the observed data as

a time series cross validation method (Korstanje, 2021). Compared

to traditional bootstrapping methods, cross validation approaches

preserve sequential time series data, and RFF offers a dynamic

parameter estimation as it progresses through the available data set,

capturing short-term (e.g., rainfall, weather) and long-term (e.g.,

ground cover changes, vegetation growth and succession, substrate

compaction) changes in the green roof system. During the RFF,

the data are split into adjacent, moving training and test data set

windows of constant size, resulting in balanced folds for error

estimation across the entire model parametrization process. Each

RFF iteration window are split into an initial n days of training

data and a subsequent set of m < n subsequent days of test data

for model validation. The Kling-Gupta efficiency (KGE) (Gupta

et al., 2009) is used as a general measure for model performance. A

KGE > 1–
√
2=−0.41 usually indicates that the model predictions

perform better than using the mean of observations; a KGE = 1

implies perfect agreement (Knoben et al., 2019).

In each RFF training step, n consecutive time series steps

are selected and a series of GR2L models is run using a discrete

distribution of physically sensible kg values (i.e., kg ∈ [0.0, 3.0])

and starting conditions extracted from the first time series period.

The initial kg range was chosen based on kc ranges, from 0.3 to

1.2 (Allen et al., 1998, Chapter 6). We extended the range to 3 as

kg is related to but not equal to kc, including technical green roof

specifications that are being calibrated into this factor. Then, all

models are evaluated against the next m values of observed data

using the KGE criterion and the best-fit parameter set is selected.

The resulting kg value is, then, used in the RFF test step to predict

the subsequent m time series periods which are, in turn, evaluated

against the observed test set data, resulting in a iteration specific

KGE value for the optimized kg model parameter.

After an optimized kg value with corresponding KGE criterion

is derived, both the training set and the test set windows are

advanced bym time steps and the process is repeated, thus resulting

in a final set of

j = ⌊(k− n)/m⌋ (7)

values of kg , with k being the total number of available time

points. The resulting set of j values for kg is, then, used to derive

the weighted mean optimized kg value and corresponding 95%

confidence intervals (CIs) across the entire observed time series.

Model implementation and statistical
analysis

Data analysis was performed using R, version 4.2.1 (R Core

Team, 2022). Statistical significance of groupwise time series data
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BA

FIGURE 2

Development of (A) optimized green roof factors kg and (B) corresponding Kling-Gupta E�ciency (KGE) criteria for each iteration of the Rolling

Forward Forecast (RFF) for the four green roof types using experimental input data. Gray shaded areas represent KGE values >-0.41, i.e., where the

GR2L predicted values on the test data set perform better than a mean-value forecast.

comparisons was determined using Wilcoxon signed-rank tests

(Rey and Neuhäuser, 2011) and is reported using adjusted padj
values with Bonferroni correction (Haynes, 2013). Significance level

α = 0.05 was used for all hypothesis testing. Bias-corrected and

accelerated bootstrap 95% confidence intervals were computed

around the estimates using 5,000 resampling draws (Carpenter and

Bithell, 2000; Banjanovic and Osborne, 2016). Confidence intervals

are reported in brackets next to the point estimate.

Results and discussion

Model calibration and validation

The GR2L model was calibrated using lysimeter-derived time

series data on daily intervals from four green roof types (Economy

Roof, Garden Roof, Nature Roof, Retention Roof) spanning k

= 187 days from April 1st to October 4th, 2021. An RFF time

series cross validation approach was employed using a time span

of n = 28 and m = 7 days for the rolling training and testing

window, respectively, over a total of 22 iterations. The resulting

set of 22 green roof factors kg was evaluated for consistency and

quality over time (Figure 2). While for the first 14 iteration, the

green roof factors remained fairly constant for all green roof types,

the influence of a heavy rainfall event in July and concurrent

increased water availability led the model to respond with

increased predicted evapotranspiration, thus higher temporary

green roof factors for iterations 15–21 (Figure 2A). The available

observatory data, unfortunately, only covers one summer period,

thus leading to limited insights on green roof behavior during

colder winter months at this stage. Corresponding prediction

KGE criteria for the test data window remained consistently

above −0.41, except for the Garden Roof and Retention Roof,

where the KGE fell below the mean-forecast threshold twice and
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TABLE 2 Summary statistics of optimized green roof factors kg across all

Rolling Forward Forecast (RFF) iterations for the four green roof types.

Green roof type kg Ssub;max (mm)

Economy roof 0.35 [0.24; 0.46] 5.0

Garden roof 0.61 [0.41; 0.81] 23.0

Nature roof 0.43 [0.29; 0.57] 8.7

Retention roof 0.77 [0.56; 0.98] 28.5

Values are reported as weighted mean with 95% confidence intervals.

once, respectively, during considerable dry conditions (Figure 2B;

Supplementary Figure S1).

The resulting green roof factors from GR2L calibrated on

experimental data during summer months are 0.35 [0.24; 0.46],

0.61 [0.41; 0.81], 0.43 [0.29; 0.57], and 0.77 [0.56; 0.98] for

the Economy Roof, Garden Roof, Nature Roof, and Retention

Roof, respectively (Table 2). While the factor for the Retention

Roof is the only one that is significantly different from others

(namely the Economy Roof and Nature Roof), all other pairwise

green roof type comparisons have overlapping 95% confidence

intervals (Supplementary Table S1). It becomes clear, though, that

the two green roof types with minimal retention storage capacity

(Economy Roof and Nature Roof) have considerably lower green

roof factors as compared to the green roof types with improved

retention capacity. As the green roof factor is conceptually similar

to crop factors in actual evapotranspiration calculations, this

division is comprehensible, owing to the fact that improved water

availability in the substrate layer as a direct result of increased

water storage capacity in the subjacent retention layer, allows for

prolonged and increased evapotranspiration through the planted

vegetation. In this case, we observed a mean 2.2-fold increase in

evapotranspirative potential when comparing the green roof types

with the lowest (Economy Roof) to the green roof type with the

highest (Retention Roof) green roof factor, leading to considerable

improvements when it comes to operational multifunctionality, i.e.,

expected improved water- (retention capacity) and climate-resilient

(cooling effects) design.

The calibrated kg values correspond very well (R2: 0.97, padj =
0.013) to the retention storage capacity Sret;max, whereas no obvious

relationship to substrate storage capacity (R2: 0.08, padj = 0.70) or

vegetation type could be identified.

Simulating observed green roof data

To validate overall model performance, the calibrated GR2L

model was initially run for all four green roof types using

publicly available weather data (DWD Climate Data Center—

CDC, 2019, 2021, Station Pfullendorf, ID 3927) as input over

the exact same time period where experimental observations for

green roof performance were available. The model results were,

then, assessed against experimental observations derived from

the lysimeter data using the KGE criterion. Figure 3 shows the

results for all four green roof types, including predicted storage

and outflow. Overall KGE results of prediction against observed

values ranged between 0.61 and 0.78, i.e., show generally good

agreement. Observed values fall within 78, 74, 72, and 71% of

the predicted model confidence intervals for the Economy Roof,

Garden Roof, Nature Roof, and Retention Roof, respectively. The

model is robust against changing conditions in the long-term,

i.e., over periods of weeks to months, however, tends to capture

periods of (relatively constant) maximum storage more accurately

than periods of rapidly changing water storage conditions which

occur on an order of days (e.g., in April or August 2021), both

for rapid drying and wetting events. This could indicate that some

model assumptions do not represent the exact physical or time-

variable conditions within the substrate layer encountered in the

experimental plots.

Green roof performance under climate
variability

Water balance prediction
A key indicator of the progressing climate crisis is the higher

frequency and intensity of precipitation extremes (wet and dry

periods) globally (Thackeray et al., 2022). Using the calibrated

models for each green roof type, we tested their respective

performance on historical meteo ensembles. Publicly available

rainfall and ETp data from 1991 to 2021 for the weather station

located closest to the experimental plot (DWD station 3927 in

Pfullendorf) (DWD Climate Data Center—CDC, 2019, 2021) were

used to assess the influence of green roof design on overall water

balance for three reference years: a dry extreme, a wet extreme, and

an average year. The year 2018 was selected as the extreme dry

reference year based on having the lowest overall total recorded

precipitation (603mm). 2001 was selected as the extreme wet

reference year based on having the highest overall total recorded

precipitation (1,041mm). In addition, an ensemble of 10 randomly

selected years within the period 1991 to 2021 was selected to

represent climate variability; these were 1993, 1998, 2000, 2005,

2006, 2007, 2009, 2012, 2013, and 2017.

The model water balance prediction for all four green roof

types over the course of an entire calendar year is shown for

both the extreme dry and extreme wet reference year in Figure 4.

All green roof types express similar patterns when it comes to

predicted storage and outflow over time, albeit with varying degrees

of severity when it comes to gradual filling and emptying. In the

extreme dry reference year, the Retention Roof was predicted to

have run dry (i.e., reached <10% of storage capacity) on 76 days

throughout the year, despite having the overall largest retention

layer capacity. Increased evapotranspirative loss during periods

of extended drought through the relatively thinner substrate

layer, led to sharper decreases in overall storage as compared to

the Garden Roof, which was predicted to risk running dry on

29 days throughout the year. Conversely, the green roofs were

predicted to be filled > 90% of their storage capacity on 204,

190, 201, and 140 days for the Economy Roof, Garden Roof,

Nature Roof, and Retention Roof, respectively. The Retention

Roof, thus, makes most effective use of its retention storage and

provides the overall largest scope for evaporative cooling and

for retaining heavy rainfall events without outflow in summer

months. Both the Garden Roof and Retention Roof provided no
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FIGURE 3

Results of the GR2L simulation using optimized parameters. GR2L results are presented as point estimates with 95% confidence interval (yellow lines

with shaded area) for the total storage time series and point estimates (gray columns) for predicted outflow from the four green roof types,

respectively. Observed storage over time as derived from lysimeter data is indicated as black points. Dashed lines represent the model limits for

minimum and maximum total storage within each green roof type. Corresponding simulation Kling-Gupta e�ciency (KGE) values are given in the

boxes in the upper right corner of each plot.
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FIGURE 4

Time series of GR2L water balance predictions for the extreme wet (2001) and extreme dry (2018) reference year. The upper set of panels depicts

recorded precipitation from DWD station Pfullendorf. GR2L was run with calibrated parameters for each green roof type. The lower set of panels

shows the model prediction over the entire year with predicted storage (yellow line with 95% confidence interval shading) and predicted outflow as

gray columns.

considerable outflow between March and November. During the

extreme wet year, the Retention Roof again proves to be the roof

design that provides the largest scope for additional temporary

water retention, because of its relatively high evapotranspirative

water loss as the green roofs were predicted to be filled >90%

of their storage capacity on 307, 310, 314, and 285 days for

the Economy Roof, Garden Roof, Nature Roof, and Retention

Roof, respectively. Both the Garden Roof and Retention Roof

provided considerable retention of two heavy summer rainfall

events in July and August as compared to the Economy Roof and

Nature Roof.

When examining the overall water balance over the course

of the extreme dry, average, and extreme wet reference years,

the Retention Roof and Garden Roof tend to lose the majority

of their incoming water through evapotranspiration, while the

Economy Roof and Nature Roof lose the majority of their

incoming water through direct outflow (Figure 5). While in

average years, evapotranspiration losses account for 27, 43, 33,

and 46% of the total water balance for the Economy Roof,

Garden Roof, Nature Roof, and Retention Roof, respectively, the

losses to outflow make up 54, 36, 47, and 34%, respectively.

The remainder is attributed to the interception term, which is

assumed constant across all green roof types due to lack of

reliable experimental data. Thus, the Garden Roof and Retention

Roof types tend to have the ability to be more favorable design

options when evaporative cooling is preferred over the potential

for water reuse through irrigation or groundwater recharge through

targeted infiltration.

Comparison of retention and substrate layer
The distribution of the overall predicted relative storage

capacity for each of the two green roof layers—i.e., the available

water stored in the retention and substrate layer normalized to
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FIGURE 5

Overall water balance for predicted extreme dry, extreme wet, and average (ensemble) reference years based on 31 years of precipitation and

reference evapotranspiration data for DWD station Pfullendorf (1991–2021). GR2L was run with calibrated parameters for each green roof type.

Actual evapotranspiration, interception, and outflow are expressed as a fraction of total annual precipitation (input).

the respective layer’s total water storage capacity, respectively—

for all four green roof types across the reference dry, average, and

wet years is shown in Figure 6. All four roof types express similar

patterns regarding storage behavior between the three reference

years, with dry years having the highest spread and lowest overall

median relative storage, average years having the smallest spread

and wet years having the highest overall relative storage and similar

spread to wet years over the year.

For the retention layer, the median water storage over the

course of the reference dry, average, and wet year was 48, 64,

and 90% for the Economy Roof, 48, 74, and 94% for the Garden

Roof, 51, 70, and 91% for the Nature Roof, and 35, 71, and 92%

for the Retention Roof, respectively. Retention layers are used to

temporally retain stormwater or to irrigate the vegetation and

buffer dry periods. It is thus expected that the water level inside the

retention layer fluctuates considerably during the course of a year.

In dry years, the retention layer of all four roof types runs empty

at least once (Figure 6), resulting in a total of 173, 181, 166, and

181 days where the retention layer may run empty in the Economy

Roof, Garden Roof, Nature Roof, and Retention Roof, respectively,

thus not being able to perform the desired function of providing

water during extended dry conditions to the substrate layer. These

periods fall predominantly into the summer months of June, July,

and August for all four roof types. During these periods, however,

the retention layer has its largest capacity to store excess rainfall,

such as from localized heavy summer rain events.

Even during the reference wet year, the retention layer falls

dry for all green roof types at least once, albeit with two distinct

patterns emerging; while the green roof types with considerable

retention capacity only show extremely short periods of zero-water

storage in the retention layer (5 and 7 days in July for the Garden

Roof and the Retention Roof, respectively), the green roof types

with lower retention storage capacity dry out more frequently and

over longer periods of time (41 and 73 days predominantly in May

and July for the Nature Roof and Economy Roof, respectively).

During the reference wet year, two major rainfall events in August

and September, accounting for a combined approximate 12% of

annual rainfall, replenished the retention layer completely after

several weeks of extended dry conditions (Figure 4). This is in

contrast to the reference average year, where the retention layer

never completely emptied in any of the four green roof types.

This is a function of both more regular rainfall patterns and lower

evapotranspirative pull from the superjacent substrate layer. The

Nature Roof and Economy Roof, however, occasionally fell to

<25% storage capacity in the retention layer during average years,

thus emphasizing their limited capacity to serve as multifunctional

BGI within a larger BGI cascade.

Most pairwise comparisons of the predicted retention

layer relative storage capacity time series during the

reference years showed no statistically significant differences

(Supplementary Table S2). Exceptions are the comparisons

between (i) Retention Roof and Economy Roof, and (ii)
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FIGURE 6

Boxplots of distribution of predicted relative storage capacity for all four green roof types for the extreme dry, average, and extreme wet reference

years for the retention and substrate layer, respectively. GR2L was run with calibrated parameters for each green roof type.

Garden Roof and Nature Roof during average years which

again exemplifies the influence of the presence/absence of a

meaningful retention layer across the tested roof types on green

roof performance.

The substrate layer in the current model parameterization

tries to remain at full water storage capacity. This is clearly

reflected in Figure 6, where the median relative water storage

for all four green roof types and all three reference years

reaches 100%, indicating that the substrate layer is sufficiently

served with water throughput a majority of days during the

year. Similar to the patterns observed in the retention layer,

the Retention Roof made best use of the full range of water

storage available throughout the reference dry year and falling

only occasionally to relative storage capacities of <50% following

the relatively high evapotranspirative upward water movement

in summer months. The Nature Roof and Economy Roof, on

the other hand, tend to have the lowest overall median relative

storage capacities, which is especially pronounced in the dry

year, thus indicating that these green roof types are more

susceptible to changing climatic patterns and do not provide

sufficient buffering capacity for even their low-transpiration

sedum vegetation and mixed vegetation during extended extreme

dry conditions. It has to be noted that none of the roofs,

however, experienced severe water stress for the substrate layer

vegetation over prolonged periods of time (as all tested green

roof types have at least some type of retention layer). Due to

their generally high relative elevation, wind and solar exposure,

and thin and coarse substrate layer, green roofs are extreme

environments when compared to natural ecosystems. Adding even

small water retention capacity to green roofs appears to reduce

water stress considerably.

Unlike the retention layer data, most pairwise comparisons of

the predicted substrate layer relative storage capacity time series

during the dry, average, and wet reference years showed statistically

significant differences (Supplementary Table S2). This is likely to be

a result of the fact that the substrate used in the experimental plots

was of similar composition across all roof types (lawn substrate for

the Garden Roof and extensive multi-layer substrate for all other

roof types), resulting in similar total water retention capacities and

behavior in their experimental design. Improved parameterization

and extended test data time series might improve substrate layer

processes modeling, however.

Conclusions

Blue-green infrastructures such as green roofs receive

increasing interest as technologies for climate change mitigation

in urban settings. We have provided a conceptual water balance

model (GR2L) as well as a data preprocessing workflow specifically

for green roofs where for example complex soil processes are not

necessary. To calibrate the models, we utilized green roof lysimeter

data by optimizing the kg value. The kg value is in principle the

classic crop factor (kc) but by using only this factor for calibration

both vegetation differences and technological green roof settings

influence the optimal kg value. First results of the four green roof

Frontiers inClimate 11 frontiersin.org

https://doi.org/10.3389/fclim.2023.1115595
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Knappe et al. 10.3389/fclim.2023.1115595

types indicate that kg is mostly dependent on the retention storage

capacity. Further studies should, however, be applied to confirm

this for different vegetation types and substrate heights including

often applied grow mats with substrate heights even below 1 cm.

Although plant type does not seem to play a major role, further

investigation into phenological periods for different growth stages

should be conducted in the future. At the same time, the strong

dependance on retention storage capacity makes it possible to

use GR2L to adapt green roofs toward specific functionalities

(stormwater, local infiltration, etc.) and local climates.

There is no doubt that GR2L as a robust, simplified model

is based on highly idealized systems. As a result, a multitude of

processes occurring in real systems, such as water transport in

granular media, hysteresis, and changes in hydraulic properties and

vegetation cover over time are neglected. Thus, GR2L serves as

a benchmark to examine the possibilities and limits of parameter

identification under optimal conditions, while still providing

insight into green roof design considerations for increasing climate

variability. The limitations inherent in estimating key model

parameters can be exacerbated in real systems by considering

neglected biophysical and operational processes, at the expense of

increased model complexity.

Following the assessment of four different green roof types

we also assessed climate change effects for the green roofs by

analyzing historical meteo ensembles including dry, wet, and

random years. The Garden Roof and Retention Roof types

tend to have the ability to be more favorable design options

when evaporative cooling is preferred. Green roofs (Economy

and Nature) with smaller retention offer the potential for

water reuse through irrigation or groundwater recharge through

targeted infiltration.

Following calibration, GR2L is only forced with rainfall and

reference ET data making it widely applicable, i.e., as an integration

into BGI cascades at block and city level. In addition, in view

of BGI multifunctionality, GR2L can provide water use estimates

for different management options—such as for weather forecast

coupling. The model as well as the results of our study can be

used to select optimal green roof types and designs for different

climates and different use cases. This potentially enables green

roof functions to be predictively integrated into BGI-level sensor

and control systems, an essential precondition to design and scale

adaptable nature-based solutions (NBS) (GómezMartín et al., 2021;

Mondejar et al., 2021). Climate scenario modeling approaches

including temporal projections are crucial to understand the

challenges and limitations of NBS in the context of environmental

change (Gómez Martín et al., 2021).
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