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Future projections of seasonal
temperature and precipitation for
India

Popat Salunke, Narayan Prasad Keshri, Saroj Kanta Mishra* and

S. K. Dash

Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

Ninety climate models, from four consortiums—CMIP5, CMIP6, NEX-GDDP, and

CORDEX—are evaluated for the simulation of seasonal temperature and precipitation

over India, and subsequently, using the best ones, their future projections are made

for the country. NEX-GDDP is found to be the best performer for the simulation of

surface air temperature for all the four seasons. For the simulation of precipitation,

CMIP6 performs the best in DJF and MAM seasons, while NEX-GDDP performs the

best in JJAS and ON seasons. The selected models suggest that temperature will

increase over the entire Indian landmass, relatively more over the north-western

part of the country. Furthermore, the rate of warming will be more in winter than in

summer. The models also suggest that precipitation will increase over central eastern

and north-eastern India in the monsoon season, and over peninsular India during

post-monsoon months.
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Introduction

Climate change is the greatest threat facing humanity. The unabated and unchecked rise in

global temperature, mainly due to human influence, will render severe and lethal extremes in the

form of blazing heatwaves, frequent and pervasive droughts, record floodings, intense storms,

and among others (Hirabayashi et al., 2013; Lee and Marotzke, 2021; IPCC, 2022). India, where

the indication of an impending climate change is already apparent and is expected to get even

worse in an ever-warming world, is among the most vulnerable regions where a large population

depends on climate sensitive sectors like agriculture, fisheries, animal husbandry, human health,

tourism etc (Krishnan et al., 2020). Given the grave vulnerability of the region to climate change’s

consequences, it is highly imperative to have credible records of future changes to aid effective

adaptation and mitigation efforts.

Global climate models (GCMs) are essential for understanding various climatic behaviors

and providing future climate predictions. Since the inception of climate modeling, several

improvements have been incorporated progressively, which have enhanced our understanding

of the existing climate over time and providedmore reliable future predictions. However, despite

huge advances, GCMs are often faced with difficulties when it comes to simulating the local and

regional climatic features and as a result hinders the regional impact assessments (Mishra et al.,

2018a; Rana et al., 2020) imperative for formulating informed adaptation and mitigation efforts.

Several studies showed an unsatisfactory performance of global models over India (Mishra

et al., 2018a; Jain et al., 2019a), especially for the precipitation, and reported the presence of

large biases in their simulations. These biases in global models are often attributed to poorly

resolved physical processes, coarser resolutions, oversimplified parameterization of complex

climate-relevant processes (Wei and Qiao, 2017; Mishra et al., 2018a), among others.
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To overcome this difficulty and to make impact assessments at

local and regional scales more promising, one of the approaches is

the downscaling of output from global models to generate a higher

resolution picture. There are two downscaling methods such as

statistical and dynamical downscaling. Dynamical downscaling uses

regional models often driven by global model output to generate

region-specific climate information (Giorgi et al., 2009), whereas

statistical downscaling uses statistical techniques to produce high

resolution climate information. One of the international efforts

to obtain dynamically downscaled products is the Coordinated

Regional Climate Downscaling Experiment (CORDEX, Giorgi et al.,

2009), which provides finer-scale regional projections. The CORDEX

datasets showed promising improvement in simulating several

climatic features for many countries (Endris et al., 2013), but

for India, no significant improvements are exhibited, although

efforts have been made by several authors (Mishra et al., 2018b;

Jain et al., 2019a). Previous regional climate modeling studies

showed useful results at the levels of homogenous zones and

cities (Dash et al., 2013, 2015). Based on some previous studies,

one can infer that some of the dynamically downscaled climate

products are useful, even at the city level (Dash et al., 2013,

2015; Pattnayak et al., 2013). However, there are questions about

the robustness of those results. Keeping this in view, the single

model studies or multi-model mean (MMM) from a single set

of experiments such as CIMP5 and CMIP6 (Menon et al., 2013;

Sharmila et al., 2015; Moon and Ha, 2020) are not adequate to

be used to provide reliable future projections, particularly at the

regional scales. Therefore, taking the MMM based on models from

different consortiums, such as CMIP5, CMIP6, CORDEX, and NEX-

GDDP, is one solution, which not only facilitates intercomparison

but also facilitates quantification of uncertainties in a way to

produce reliable projections. Considering the heterogeneity of the

Indian climate, it is very essential to examine the state-of-the-art

downscaled climate products for their societal use at the regional and

local levels. Similarly, several statistical downscaling methods have

been used to generate high-resolution features. One such product

includes the National Aeronautics and Space Administration (NASA)

Earth Exchange Global Daily Downscaled Projections (NEX-GDDP,

Thrasher et al., 2012). The dataset has been featured in several studies

and reported to have alleviated major biases in temperature and

precipitation simulations, including over India (Jain et al., 2019b;

Sahany et al., 2019). More details of these datasets are given in the

Data and Methodology section.

Overall, each dataset has its own advantages and disadvantages;

hence, while generating future projections, it is imperative to assess

the capacity of different datasets to reproduce the observed features.

This study is one such work in that direction. The objectives

of this study are (i) to evaluate the performance of CMIP6,

CMIP5, NEX-GDDP, and CORDEX in simulating the seasonal

surface air temperature and precipitation over India with respect

to observations during four different seasons, namely, December

to February (DJF), March to May (MAM), June to September

(JJAS), and October and November (ON), and to select the most

suitable product that shows better performance, among others, in

simulating surface air temperature and precipitation during each

of the seasons, and (ii) to generate future projections for each of

the seasons from the selected models under the most aggressive

emission scenarios.

Data and methodology

The India Meteorological Department (IMD) provides gridded

high-resolution daily temperature and precipitation data for regional

climate applications. In this study, daily observations of surface

air temperature (at 1.0◦ × 1.0◦ resolution) and precipitation (at

0.25◦ × 0.25◦ resolution) from the IMD are used for the period

1975–2005 (Srivastava et al., 2009; Pai et al., 2014). This study

analyzes the daily and monthly mean surface air temperatures and

precipitation outputs from 10 CORDEX South Asia models from

1975 to 2005 (http://cccr.tropmet.res.in/cordex/files/downloads.jsp).

Monthly data on surface air temperature and precipitation from

historical simulations of 21 selected Coupled Model Intercomparison

Project, Phase 5 (CMIP5)models are analyzed for 1975–2005. CMIP5

(Taylor et al., 2012) datasets are available from the ESGF (https://esgf-

index1.ceda.ac.uk/search/cmip5-ceda). Similarly, the monthly data

from historical simulations of selected 38 CMIP6 models (Eyring

et al., 2016) are used for 1975–2005. The new future societal

development pathways, known as shared socioeconomic pathways

(SSPs), the high-forcing scenario SSP5-8.5 (2015–2099), are used in

this study (O’Neill et al., 2016). The CMIP6 datasets are available

from the ESGF (https://esgf-node.llnl.gov/search/cmip6).

The National Aeronautics and Space Administration (NASA)

Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)

constitute a set of global, high-resolution, bias-corrected data that

has been statistically downscaled from the CMIP5 model outputs.

The bias correction is done by utilizing the global climate data from

the Global Meteorological Forcing Dataset (GMFD) provided by

the Terrestrial Hydrology Research Group at Princeton University

(Sheffield et al., 2006) using the bias-corrected spatial disaggregation

(BCSD) method (Wood et al., 2002, 2004; Thrasher et al., 2012).

The CMIP5 model data are first compared with the GMFD data for

the period 1950–2005 using quantile mapping, and the corrections

obtained are used to adjust the future projections. The NEX-GDDP

daily data from the same 21 CMIP5 models are used for 1975–

2005 (historical) and 2015–2099 (RCP8.5 scenario; Thrasher et al.,

2012). We also used (Tables 1, 2) the CORDEX (10 models), CMIP5

(21 models, the same models as NEX-GDDP), CMIP6 (38 models),

and NEX-GDDP (21 models) to compute the Multi-model ensemble

means (MMMs). The surface air temperatures from IMD, CORDEX,

CMIP5, and CMIP6 are re-gridded to NEX-GDDP (at 0.25◦ × 0.25◦)

resolution for comparison. The statistical significance of Pearson’s

correlation is determined by a two-tailed Student’s t-test that is

used to test the null hypothesis. The trends in temperature and

precipitation are calculated using the Theil–Sen estimator (Theil,

1950; Sen, 1968), and the significance is estimated using the Mann–

Kendall test (Mann, 1945; Kendall, 1975).

Results

The performance of models in simulating area-averaged surface

air temperature (hereafter temperature) and precipitation over the

four seasons, their root mean square error (RMSE) and pattern

correlation coefficient (PCC) values, is calculated with respect to

observations from 1975 to 2005 (Figure 1).

For temperature (Figures 1A–D), CORDEX MMM shows higher

RMSE values, whereas NEX-GDDP MMM shows lower values
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TABLE 1 List of CMIP5 (red color), NEX-GDDP (blue asterisk and blue color),

and CORDEX (green color) models used in this study.

Model name Country/source Resolution
(lat × lon)

ACCESS1.0∗ Australia 1.25× 1.875

BCC-CSM1.1∗ China 2.8× 2.8

CanESM2∗ Canada 2.8× 2.8

CCSM4∗ United States 0.94× 1.25

CNRM-CM5∗ France 1.4× 1.4

CSIRO-Mk3.6.0∗ Australia 1.8× 1.8

GFDL-CM3∗ United States 2.0× 2.5

GFDL-ESM2G∗ United States 2.0× 2.5

GFDL-ESM2M∗ United States 2.0× 2.5

INM-CM4∗ Russia 1.5× 2.0

IPSL-CM5A-LR∗ France 1.8× 3.75

IPSL-CM5A-MR∗ France 1.25× 2.5

MIROC-ESM-CHEM∗ Japan 2.8× 2.8

MIROC-ESM∗ Japan 2.8× 2.8

MIROC5∗ Japan 1.4× 1.4

MPI-ESM-LR∗ Germany 1.9× 1.9

MRI-CGCM3∗ Japan 1.1× 1.1

NorESM1-M∗ Norway 1.9× 2.5

BNU-ESM∗ China 2.8× 2.8

CESM1-BGC∗ United States 0.9× 1.25

MPI-ESM-MR∗ Germany 1.9× 1.9

CCAM _ACCESS1.0 CSIRO Australia 0.5× 0.5

CCAM _CCSM4 CSIRO Australia 0.5× 0.5

CCAM _CNRM-CM5 CSIRO Australia 0.5× 0.5

CCAM _GFDL-CM3 CSIRO Australia 0.5× 0.5

CCAM _NorESM1-M CSIRO Australia 0.5× 0.5

CCAM_MPI-ESM-LR CSIRO Australia 0.5× 0.5

CCLM4 _MPI-ESM-LR IAES Germany 0.04× 0.41

RCA4_EC-EARTH SHMI Sweden 0.04× 0.41

RegCM4 _GFDL-ESM2M ICTP Italy and IITM India 0.34× 0.47

RegCM4 _IPSL-LMDZ4 ICTP Italy and IITM India 0.44× 0.44

for all the four seasons (DJF, MAM, JJAS, and ON). CMIP5

and CMIP6 MMM do not exhibit much difference and have

comparable RMSE and PCC values during all the four seasons.

These figures show that the NEX-GDPP (hereafter NEX) model

shows little spread, whereas the CORDEX, CMIP5, and CMIP6

models exhibit a considerable spread in their RMSE and PCC

values. CMIP5 MMM exhibits higher PCC values for all the

seasons except for JJAS, during which NEX shows a higher

PCC. Higher PCC values of CMIP5 MMM in DJF (0.9), MAM

(0.94), and ON (0.91) are comparable to that of NEX (0.88 for

DJF, 0.92 for MAM, and 0.87 for ON). NEX is found to be

the best performer for the simulation of temperature for all the

TABLE 2 List of CMIP6 models used in this study.

Model name Country Resolution
(lat × lon)

ACCESS-CM2 Australia 1.3◦ × 1.9◦

ACCESS-ESM1-5 Australia 1.2◦ × 1.9◦

AWI-ESM1-1-LR Germany 1.9◦ × 1.9◦

BCC-CSM2-MR China 1.1◦ × 1.1◦

CAMS-CSM1-0 China 1.1◦ × 1.1◦

CanESM5 Canada 2.8◦ × 2.8◦

CESM2 USA 0.9◦ × 1.3◦

CESM2-WACCM USA 0.9◦ × 1.3◦

CIESM China 0.9◦ × 1.3◦

CMCC-CM2-SR5 Italy 0.9◦ × 1.3◦

CNRM-CM6-1 France 1.4◦ × 1.4◦

CNRM-CM6-1-HR France 0.5◦ × 0.5◦

CNRM-ESM2-1 France 1.4◦ × 1.4◦

EC-EARTH3 Europe 0.7◦ × 0.7◦

EC-EARTH3-Veg Europe 0.7◦ × 0.7◦

FGOALS-f3-L China 1.0◦ × 1.3◦

FGOALS-g3 China 2.3◦ × 2.0◦

FIO-ESM2-0 China 0.7◦ × 1.9◦

GFDL-ESM4 USA 1.0◦ × 1.3◦

GFDL-CM4 USA 1.0◦ × 1.0◦

GISS-E2-1-G USA 2.0◦ × 2.5◦

HadGEM3-GC31-LL UK 1.3◦ × 1.9◦

IITM-ESM India 1.9◦ × 1.9◦

INM-CM4-8 Russia 1.5◦ × 2.0◦

INM-CM5-0 Russia 1.5◦ × 2.0◦

IPSL-CM6A-LR France 1.3◦ × 2.5◦

KACE-10_G Korea 1.3◦ × 1.9◦

MCM-UA-1-0 USA 2.3◦ × 3.75◦

MIROC6 Japan 1.4◦ × 1.4◦

MIROC-ES2L Japan 2.8◦ × 2.8◦

MPI-ESM1-2-HR Germany 0.9◦ × 0.9◦

MPI-ESM1-2-LR Germany 1.9◦ × 1.9◦

MRI-ESM2-0 Japan 1.1◦ × 1.1◦

NESM3 China 1.9◦ × 1.9◦

NorESM2-MM Norway 0.9◦ × 1.3◦

NorESM2-LM Norway 1.9◦ × 2.5◦

TaiESM1 Taiwan 0.9◦ × 1.3◦

UKESM1-0-LL UK 1.3◦ × 1.9◦

four seasons. Therefore, reasonably large PCC and lower RMSE

values together make NEX a better option among others in

simulating temperature and thus can be used to generate credible

future projections.
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For precipitation (Figures 1E–H), CMIP5 and CMIP6 exhibit

higher and comparable PCC and RMSE values during DJF and

MAM seasons; however, given the sizeable amount of improvement

incorporated in CMIP6 (Volodin and Gritsun, 2018; Tatebe et al.,

2019; Wu et al., 2019; Bi et al., 2020; Boucher et al., 2020) and

several studies reporting the improved skill of CMIP6 over India

(Gusain et al., 2020; Choudhury et al., 2022), we thereby found that

CMIP6 is a better option for both seasons. During JJAS and ON, it is

clear that NEX outperforms the other MMMs in terms of PCC and

RMSE values, providing it with a better choice for generating future

projections during these two seasons.

After selecting suitable MMMs for each of the seasons in

simulating the historical mean temperature and precipitation, we

go ahead to present the future projections over India. Figure 2

presents the spatial pattern of trends in temperature and precipitation

during all the four seasons for the period 2015–2099 under

the RCP8.5 emission scenario for CMIP5 products and SSP5-

8.5 for CMIP6 products. Stippling denotes trends significant at

99% level.

The temperature trends for 2015–2099 (RCP8.5 scenario) using

the NEX data are shown in Figures 2A–D. A pervasive warming

trend is shown during all the four seasons, increasing progressively

in the higher latitudes. The maximum warming is noted over the

north and northwestern part of India during all the seasons. It can be

seen that the maximumwarming trends over the northern Himalayas

(>0.7◦C decade−1) and minimum warming trends (0.4–0.55◦C

decade−1) over the peninsular India during all seasons. During DJF

and MAM, relatively maximum warming trends (>0.6◦C decade−1)

are observed over the northwest and parts of central northeast

regions, with a moderate warming rate (0.55–0.65◦C decade−1).

During JJAS, relatively minimum warming trends are observed

compared to other seasons, with a higher magnitude of trends over

the northern Himalayas (>0.7◦C decade−1), moderate over north-

western, central northeast, and parts of Indian peninsular regions

(0.4–0.6◦C decade−1). During ON, the maximum rate of warming

is seen over the northern Himalayas and parts of north-western

regions (>0.6◦C decade−1), moderate warming over remaining

parts of the north-western region, central northeast regions (0.5–

0.6◦C decade−1), and a minimum rate over the peninsular region

(<0.5◦C decade−1).

The future trends in precipitation under SSP5-8.5 and RCP8.5

scenarios are shown in Figures 2E–H; for DJF and MAM, we have

selected CMIP6 as a better candidate (justified aforementioned),

whereas for JJAS and ON, NEX MMM is selected for credible

future projections. Themonsoon precipitation is expected to increase

significantly almost over the entire Indian landmass except for parts

of north-western regions and parts of the northern Himalayas,

whereas, for other seasons, a significant increase in precipitation

is expected over the limited parts of India. A uniformly increasing

precipitation trend (0.1mm day−1 decade−1) over most parts of the

country during DJF is also noted, accompanied by a significantly

increasing trend over the northeast (0.1–0.3mm day−1 decade−1)

during MAM. During JJAS, the north-eastern region exhibits a

higher rate of increase (>0.5mm day−1 decade−1), central northeast

regions and Western Ghats a moderate rate of increase (0.3–0.5mm

day−1 decade−1), and peninsular regions a lower rate of increase

(0.1–0.2mm day−1 decade−1). During ON, significantly increasing

trends are observed over the peninsular region (0.3–0.5mm day−1

decade−1) and parts of west central and central northeast regions

(0.2–0.3mm day−1 decade−1). The remaining regions show weak

insignificantly increasing trends.

Figure 3 presents the time series of weighted area averaged

temperature and precipitation projections during the four seasons

from their corresponding suitable MMMs for the period 2015–2099.

The solid lines indicate the time series fromMMMs, and the shading

represents the intermodel standard deviation.

Temperature (Figures 3A–D) will steadily increase in the future

during all seasons. The rate of warming is by and large the same

during all the seasons except for JJAS which exhibits a relatively lower

rate. The warming level at end of the twenty-first century is ∼5◦C

during all the seasons except for monsoon season, which shows a

relatively lower warming (4◦C).

Unlike temperature, precipitation exhibits a higher intermodal

standard deviation (Figures 3E–H), hence a higher uncertainty in

the projected values. Precipitation increases during all seasons,

projecting a higher precipitation by the end of the twenty-first

century. During DJF and MAM, CMIP6 projects an increase in

precipitation (0.2–0.3mm day−1); however, during DJF, the rate of

increase in precipitation is relatively low. Among all the seasons,

JJAS exhibits a higher increase by ∼2mm day−1. During ON, a large

interannual variability can be seen, indicating that the region would

encounter more erratic rainfall during that season. The projected

increase for that season would be ∼0.5mm day−1 by the end of

the century.

Discussion and conclusions

The performance of major modeling consortiums (CMIP5,

CMIP6, NEX-GDDP, and CORDEX) to represent surface air

temperature and precipitation across the Indian landmass over

four seasons (DJF, MAM, JJAS, and ON) has been examined.

Following that, the products that best represent temperature and

precipitation for each season were selected, and future projections

were created using the models selected. We find that for temperature,

the NEX-GDDP showed a better agreement with the observations

in simulating the historical (1975–2005) temperatures during all the

four seasons. For precipitation, CMIP6 had the best performance

during DJF andMAM, but during JJAS andON, NEX-GDDP showed

far better agreement with the observations.

We find that the Indian subcontinent will experience widespread

warming with stronger warming over the higher latitudes. Maximum

warming will be over the northwestern parts of the country, whilst the

peninsular region will experience relatively lesser warming. Among

all seasons, the monsoon season will witness the least warming.

Similarly, future precipitation projections reveal that monsoon

precipitation is expected to increase significantly over most parts of

the Indian landmass.

We find that the temperature will increase steadily in future

during all the seasons, with maximum warming of ∼4–5◦C by the

end of the current century. Similarly, future precipitation projections

show an increasing trend during all four seasons, with the monsoon

season experiencing the maximum increase in precipitation by

∼2mm day−1. Rising mean temperatures may lead to an increase

in high-temperature extremes in future and an increase in both

mean and variability of precipitation might have a strong influence

on changes in high-precipitation extremes. These findings would be

useful for future planning.
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FIGURE 1

Root mean square error (RMSE) and pattern correlation coe�cient (PCC) values of area-averaged mean surface air temperature (A–D) and precipitation

(E–G) with respect to IMD observations for the period 1975–2005 over India for DJF (A, E), MAM (B, F), JJAS (C, G), and ON (D, H). The green, red, brown,

and blue colors represent the CORDEX, CMIP5, CMIP6, and NEX-GDDP models, respectively. Smaller dots represent individual models and the larger dots

represent MMM.
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FIGURE 2

Spatial pattern of future trends in surface air temperature (A–D) and precipitation (E–H) for the period 2015–2099 for DJF (A, E), MAM (B, F), JJAS (C, G),

and ON (D, H). The text inside the box indicates the MMM used to generate the trends. Stippling shows trends significant at the 99% confidence level. The

emission scenarios used for NEX-GDDP and CMIP6 are RCP8.5 and SSP5-8.5, respectively.
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FIGURE 3

Time series of surface air temperature (A–D) and precipitation (E–H) for the period 2015-−2099 for DJF (A, E), MAM (B, F), JJAS (C, G), and ON (D, H). The

text inside the box indicates the MMM used to generate the time series. The solid lines show the MMM and the shadings show the intermodel standard

deviation. The emission scenarios used for NEX-GDDP and CMIP6 are RCP8.5 and SSP5-8.5, respectively.
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