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Application of a bivariate
bias-correction approach to yield
long-term attributes of Indian
precipitation and temperature

Chanchal Gupta and Rajarshi Das Bhowmik*

Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, Karnataka, India

The General Circulation Model (GCM) simulation had shown potential in yielding

long-term statistical attributes of Indian precipitation and temperature which

exhibit substantial inter-seasonal variation. However, GCM outputs experience

substantial model structural bias that needs to be reduced prior to forcing them

into hydrological models and using them in deriving insights on the impact

of climate change. Traditionally, univariate bias correction approaches that can

successfully yield the mean and the standard deviation of the observed variable,

while ignoring the interdependence between multiple variables, are considered.

Limited e�orts have been made to develop bivariate bias-correction over a large

region with an additional focus on the cross-correlation between two variables.

Considering these, the current study suggests two objectives: (i) To apply a

bivariate bias correction approach based on bivariate ranking to reduce bias in

GCM historical simulation over India, (ii) To explore the potential of the proposed

approach in yielding inter-seasonal variations in precipitation and temperature

while also yielding the cross-correlation. This study considers three GCMs

with fourteen ensemble members from the Coupled Model Intercomparison

project Assessment Report-5 (CMIP5). The bivariate ranks of meteorological

pairs are applied on marginal ranks till a stationary position is achieved. Results

show that the bivariate approach substantially reduces bias in the mean and

the standard deviation. Further, the bivariate approach performs better during

non-monsoon months as compared to monsoon months in reducing the bias

in the cross-correlation between precipitation and temperature as the typical

negative cross-correlation structure is common during non-monsoon months.

The study finds that the proposed approach successfully reproduces inter-

seasonal variation in metrological variables across India.
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Introduction

Global climate change and its impact on various regimes such as hydrology have

been gaining attention among scientists and stakeholders due to its influence on land use

development and other application sectors (Watson et al., 2000; Hovenga et al., 2016; Chen

et al., 2018; Seo and Kim, 2018; Seo et al., 2019). The hydrological process of basins have

been significantly affected by the influence of changing climate since the average global

temperature has risen over the last few decades (Li et al., 2013; Jarraud and Steiner, 2014). An

increased temperature typically impacts non-stationarity in hydro-meteorological variables,
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consequently affecting the spatio-temporal distribution of water

availability (Ruelland et al., 2012; Tan et al., 2020). Former studies

have reported a strong linear correlation between precipitation and

temperature, two important forcing for streamflow modeling, over

continents during the summer months (Zhao and Khalil, 1993;

Trenberth and Shea, 2005). However, according to the Clausius-

Clapeyron relationship, an increase in surface temperature would

also increase precipitation, indicating a non-linear precipitation

and temperature (P-T) relationship. Although an increase in

extreme precipitation events attributed to climate change has

been thoroughly studied, the expected changes in the linear

dependency between precipitation and temperature have not been

comprehensively investigated yet. Recent studies have indicated

that an inappropriate estimation of the P-T linear correlation

can significantly influence the long-term estimation of hydrologic

fluxes (Chen et al., 2018; Seo et al., 2019). Considering these

observations, General Circulation Model (GCM) outputs are

essential to understand the future changes in the P-T relationship

under different global greenhouse gas emission scenarios.

GCMs are widely utilized to assess the impact of global climate

change on the hydrosphere as they simulate/project the physical

process of climate systems (Singh et al., 2000; Campbell et al.,

2011; Tan et al., 2020). Assessment Report 5 of the Coupled Model

Intercomparison Project (CMIP5), which is an inter-governmental

panel on climate change, provides the future climate projections

under multiple representative concentration pathways (RCPs)

(Taylor et al., 2012). However, GCM outputs cannot be forced

into hydrologic models as they exhibit significant systematic bias,

which can be a major source of uncertainty in long-term hydrologic

simulations/projections (Li et al., 2014; Cannon, 2016; Tan et al.,

2020). The authors note that several other factors could restrict the

direct application of GCM outputs, primarily in hydrologic models,

such as resolution mismatch, initial model drift, etc. Nevertheless,

the bias in GCM outputs arises from an inaccurate representation

of the physical process in climate models. Maraun (2016) reported

that GCM outputs exhibit spatio-temporal bias in yielding the

mean and the standard deviation of the observed precipitation and

temperature. Ullah et al. (2020) found that the GCM efficiently

simulates the observed mean temperature over South Asia, but it

exhibits a large bias in yielding the standard deviation. Wang et al.

(2020) noted that the mean precipitation is better reproduced by

GCMs as compared to variance. Although significant efforts have

been made to estimate the bias in the mean and the standard

deviation in simulated variables, only a few studies have tried

to estimate the bias in higher-order moments. Therefore, bias-

correction approaches, whether univariate or bivariate, primarily

focus on reducing the bias in the mean and the standard deviation

of the simulated variable, while mostly leaving out the bias in

the cross-correlation.

Bias-correction (BC) methods are mainly classified into

two groups; the simple scaling technique comprises linear

scaling and the power transformation method, which is a

sophisticated distribution mapping method with an empirical

cumulative distribution function to adjust the meteorological

variables (Graham et al., 2007; Maraun et al., 2010; Piani

et al., 2010; Teutschbein and Seibert, 2013). Several statistical

BC approaches have been developed and validated in various

parts of the world, at a basin or at the regional scale, to

correct the biases in weather forecasts and long-term climate

simulations. Common bias-correction techniques may vary from

a traditional quantile mapping to state-of-the-art machine learning

algorithms such as Support Vector Machines and Random Forest

(Ghosh and Mujumdar, 2006, 2007, 2008). A deep learning-

based convolution neural network (CNN) was recently applied

for statistical downscaling and bias correction of temperature

and precipitation in Europe (Baño-Medina et al., 2020). Apart

from the advances in bias-correction techniques, researchers

have also considered multivariate bias-correction approaches that

simultaneously reduce bias in multiple variables while also yielding

their interdependence. For example, constructed analogs-based

approaches such as localized constructed analogs (LOCA) and

Multivariate adapted constructed analogs (MACA) are commonly

considered for multivariate bias correction (Abatzoglou and

Brown, 2012; Pierce et al., 2014, 2015). Das Bhowmik et al.

(2018) proposed an asynchronous Canonical Correlation (ACCA)

approach to yield the cross-correlation between precipitation and

temperature. However, the ACCA exhibited a major limitation in

yielding the monthly variation in precipitation; albeit, it improves

the joint probability of multiple variables. He et al. (2012) suggested

a bivariate technique based on bivariate ranking (referred to as

Bivariate Asynchronous Bias Correction or BABC) and applied

the approach at the basin level. BABC has shown significant

promise in yielding the monthly variation in precipitation and

its cross-correlation with temperature. However, BABC requires

comprehensive validation that incorporates a continental scale and

multiple GCM ensembles. A comprehensive validation of the BC

requires performance evaluation in yielding higher order moments

along with the mean and the standard deviation. Additionally,

a comprehensive validation of the BC requires performance

evaluation at a large spatial scale to ensure that its performance

remains stable across regions.

The bias-correction of long-term simulations and historical

forecasts (hindcasts) of precipitation in India is particularly

challenging since precipitation across India has a significant

spatial variability and has a strong monsoonal seasonality (Gadgil,

2003; Sharma et al., 2007; Ghosh et al., 2016). Further, the All

India Summer Monsoonal Rainfall (AISMR) exhibits interannual

variations because atmospheric and oceanic teleconnections have

a strong influence on the monsoonal precipitation (Rajeevan

et al., 2006). Further, extreme rainfall events and meteorological

droughts across India have been increasing due to changing

climate conditions, which need to be appropriately represented

in bias-corrected products (Subrahmanyam and Kumar, 2013;

Mallya et al., 2016; Sharma and Mujumdar, 2017). Therefore,

the stakes are higher in estimating the long-term changes

in hydrologic fluxes over India resulting from either natural

variability or from anthropogenic climate change. The application

of the bias-correction approach in GCM long-term simulations

requires comprehensive validation that must show a satisfactory

performance in yielding the spatio-temporal signatures of the

Indian monsoon. Former studies have applied univariate bias

correction to reduce systematic bias in climate simulations

for India (Ghosh and Mujumdar, 2008; Salvi et al., 2011;

Pierce et al., 2015; Hakala et al., 2018; Prasanna, 2018; Smitha

et al., 2018; Bisht et al., 2020; Ayar et al., 2021). Therefore,

there is a growing need to evaluate the bivariate approach

Frontiers inClimate 02 frontiersin.org

https://doi.org/10.3389/fclim.2023.1067960
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Gupta and Bhowmik 10.3389/fclim.2023.1067960

in order to reduce the systematic biases in the GCM outputs

over India.

Considering the above, the current study has the

following objectives:

• To apply a bivariate bias-correction approach to reduce

the bias in GCM historical simulations of precipitation and

temperature over India.

• To evaluate the performance of the bivariate bias correction

in yielding long-term statistical attributes of the observed

meteorological variables with a special emphasis on the cross-

correlation between precipitation and temperature.

The current study considers a bivariate asynchronous bias

correction (BABC) approach, originally suggested by He et al.

(2012) that has not been considered earlier for a large scale

study. The performance of BABC is compared with another

bivariate approach, the Asynchronous Canonical Correlation

Analysis (ACCA), that has earlier been applied to continental

United States Bhowmik et al. (2017). BABC conducts bivariate bias-

correction for asynchronous measurements relying on bivariate

ranks and positions that preserves the association between two

variables, such as precipitation and temperature. Bivariate ranks are

estimated using the generalized idea of univariate ranks (Marden,

2004). The proposed bias correction techniques are applied on

the GCM historical simulation from three institutes—IPSL, MRI,

and CNRM-CM5—to bias correct the monthly precipitation and

temperature. A comprehensive validation framework is considered

to compare the raw and bias-corrected datasets of the various

statistical attributes of the Indian monsoon. The next section

presents the datasets in detail, which is followed by an explanation

of the methodology of this study. The results are presented in

Section 3. The summary and discussion are noted in Section 4.

2. Data and methodology

2.1. Data

The current study obtained the outputs of three GCMs for

the historical period being studied (January 1951–December 1999).

The time-period matches the former bias-correction studies; this

ensures the application of BABC on future projections of the

monthly precipitation (PRCP) and monthly average temperature

(Tmin, Tmax, Tmean) data. Three GCMs—the CNRM-CM5, the

IPSL-CM5-MR, and the MRI-ENS1—are obtained for carrying

out the bias correction. These three GCMs, the Center National

de Recherches Météorologiques Coupled Global Climate Model

Version Five (CNRM-CM5), the Institut Pierre Simon Laplace

Coupled Global Climate Model Version Five (IPSL-CM5), and the

Meteorological Research Institute Coupled Global Climate Model

Version Three (MRI ENS1), are three of the contributors to the

Coupled Model Intercomparison Project Assessment Report five

(CMIP5) (Taylor et al., 2012; Yukimoto et al., 2012; Dufresne

et al., 2013; Voldoire et al., 2013). The CMIP5 is observed to have

improved from CMIP3 in terms of its model spatial resolution

and model initialization. It introduces hindcast experiments

where GCMs are initialized with Sea Surface Temperature (SST)

TABLE 1 Description related to three GCMs employed by the study.

GCM Research
Centre

Spatial
resolution

No. of
ensemble
members

CNRM-CM5 National Centre of

Meteorological

Research, France

1.40× 1.40 10

IPSL-CM5A-MR Institut Pierre

Simon Laplace,

France

2.50× 1.250 3

MRI-ENS1 Meteorological

Research Institute,

Japan

1.10× 1.10 1

conditions. However, only historical simulations from the CMIP5

experiment are considered for this study. The details related to

the GCMs are provided in Table 1, where a total of 14 members

from three GCM ensembles are considered. Although the CMIP6

runs are currently available, the study prefers to apply the BABC

on CMIP5 runs since multiple bias-corrected CMIP5 products are

already available in the public domain (for example, Multivariate

Adaptive Constructed Analogues by Abatzoglou and Brown, 2012);

hence, a direct comparison can be made between BABC and other

bivariate bias-correction approaches.

Further, the observed gridded monthly precipitation and

temperature variables for the historical period are obtained from

the Indian Meteorological Department (IMD) (Rajeevan et al.,

2006) over (1◦ × 1) spatial resolutions. Since there is a spatial

resolution mismatch between the GCM outputs and the observed

outputs, a bilinear interpolation is performed on the former to

match with the observed grid resolution (1◦ × 1).

2.2. Bivariate asynchronous bias correction

The current study applies the Bivariate Asynchronous Bias

Correction (BABC) approach, originally proposed by He et al.

(2012), for bias correction of all the ensemble members from

the three GCMs considered. The BABC approach is applied

to develop an asynchronous predictand-predictor relationship

between the monthly GCM and the monthly observed datasets

for the historical period. The approach assigns bivariate ranks

that generalize the concept of rankings for an univariate

dataset, as proposed by Marden (2004). The authors understands

that the proposed BABC can manage the non-stationary in

the precipitation and temperature cross-correlation. The study

considers that X represents two sets of GCM simulations (PRCP

and Tavg/Tmax/Tmin), whereas Y represents two sets of the

observed while considering the same pair of variables.

The GCMs and observed datasets are divided into X
train and

Y
train, respectively, for model training. Two-thirds of the data are

considered for training while the remaining GCM simulations,

denoted as Xtest , are considered for testing.

In the first step, all the datasets are univariately sorted in an

ascending order and the univariate ranks are assigned. Following

a univariate sorting, the marginal ranks are assigned next. For

example, RXtrain
1 (t) indicates the univariate rank related to the
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GCM response for the first variable, Xtrain
1 (t), where Xtrain

1 (t) is the

first GCM variable at time step “t”. The marginal rank MXtrain
1 (t)

for Xtrain
1 (t) is estimated using Equation (1).

MXtrain
1 (t) =

RXtrain
1 (t) − 0.5

n
(1)

Where n = the total number of observations in either the

training or the testing dataset.

Bivariate ranks are applied on training datasets at different

stages. For example, at stage K=1, the bivariate rank P
1,MXtrain

1
t for

MXtrain
1 (t) is calculated using Equation (2).

P
1,Xtrain

1
t =

4

πn

n
∑

i=1

MXtrain
1 (t) −MXtrain

1 (i)
√

[

MXtrain
1 (t) −MXtrain

1 (i)
]2

+
[

MXtrain
2 (t) −MXtrain

2 (i)
]2

(2)

Similarly, the bivariate ranks for k=2 can be applied using

Equation (3).

P
2,Xtrain

1
t =

4

πn

n
∑

i=1

P
1,Xtrain

1
t − P

1,Xtrain
1

i
√

[

P
1,Xtrain

1
t − P

1,Xtrain
1

i

]2

+
[

P
1,Xtrain

2
t − P

1,Xtrain
2

i

]2
(3)

The current study repeats the process till k = 5, where Pkt
denotes kth as the consecutive transformation under the position

function Pt for the same set of points. It is considered that as k

increases, the distribution of Pkt (X(t)) approaches a fixed stationary

distribution regardless of the initial distribution of X (t), as long

as X (t) is a continuous variable. Following the training, the

bivariate ranks are applied on the GCM testing data and the same

procedure is repeated for k = 5. The bivariate ranking equations

for the testing period are shown for the first and second stages.

Figure 1 demonstrates how the data points having non-circular

distribution at the first stage shift to a stationary position after three

transformations. The study does not find further changes in the

distribution for the consecutive ranking stages.

P
1,Xtest

1
t′ =

4

πn

n
∑

i=1

MXtest
1

(

t′
)

−MXtrain
1 (i)

√

[

MXtest
1 (t′) −MXtrain

1 (i)
]2 +

[

MXtest
2 (t′) −MXtrain

2 (i)
]2

(4)

P
2,Xtest

1
t′ =

4

πn

n
∑

i=1

P
1,Xtest

1
t′ − P

1,Xtrain
1

i
√

[

P
1,Xtest

1
t′ − P

1,Xtrain
1

i

]2

+
[

P
2,Xtest

1
t′ − P

2,Xtrain
1

i

]2
(5)

In Equations (4) and (5), The marginal and bivariate ranks

from the training datasets are considered as future GCM datasets

which may not contain a complete set of ranks. The proposed

approach assumes that, at a stationary stage of k= 5 during testing,

the bivariate rankings from the GCM datasets matches that of the

bias-corrected one, basically meaning P5,X
test =P

5,Ytest

. Hence, the

objective is to find a suitable YBC = [YBC

1
, YBC

2
] that satisfies the

previous equality. Toward this end, the minimizer of Equation 6

provides a new position of the GCM dataset depending on K.

L (Q) =
n

∑

t=1

[

[

P
k,Y train

1
t − Q1

]2

+
[

P
k,Y train

2
t − Q2

]2

+
π

4

[[

P
k,Y train

1
t − Q1

]]

P
1,Xtest

1

t
′

2

+
π

4

[

P
k,Y train

2
t − Q2

]2

P
1,Xtest

2

t
′

]

(6)

2.3. Asynchronous canonical correlation
analysis

The current study considers another bivariate bias-correction

approach—the Asynchronous Canonical Correlation Analysis

(ACCA)—to compare themodel’s performance with BABC. ACCA,

originally developed by Bhowmik et al. (2017), follows two major

steps—(i) Bivariate sorting of the GCM and observed data based

on the joint probability of the occurrence of precipitation and

temperature, and (ii) Developing a predictor-predictand based

Canonical Correlation Analysis (CCA) model using the sorted

datasets. This approach assumes that bivariate sorting should

ensure an asynchronous matching between the GCM and the

observed variables, since both share the measurements that do

not have a monthly correspondence, though the joint probabilities

between the datasets matches. Further, the Canonical Correlation

Analysis is considered as the apex among the regression techniques,

with an ability to yield multivariable dependence. The ACCA

was applied earlier to bias-correct meteorological variables over

contiguous United States, but the approach is being applied to India

for the first time. Additional details related to ACCA can be found

in Bhowmik et al. (2017). The authors coded BABC and ACCA in

MATLAB 2021a.

2.4. Performance evaluation

2.4.1. BABC vs. Raw GCM
BABC is applied separately on the bivariate pairs of PRCP-

Tavg, PRCP-Tmax, and PRCP-Tmin from fourteen ensemble

members from the three GCMs. However, only the performance

evaluation related to the PRCP-Tavg is presented in while the

results related to PRCP-Tmax and PRCP-Tmin are provided as

Supplementary material. The performance of BABC is evaluated

based on a fraction change metric (∅) which corresponds with the

mean, the standard deviation, and the cross-correlation. Themetric

calculates the relative improvement in the statistical attributes

Frontiers inClimate 04 frontiersin.org

https://doi.org/10.3389/fclim.2023.1067960
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Gupta and Bhowmik 10.3389/fclim.2023.1067960

FIGURE 1

Di�erent stages of bivariate ranking, where (A) marginal ranks, (B) bivariate ranks stage-1, (C) bivariate ranks stage-2, (D) bivariate ranks stage-4, (E)

bivariate ranks stage-6.

achieved by the proposed bias-correction approach over their

observed estimates.

∅mean =
µBC − µObs

µGCM − µObs
(7)

∅std =
σBC − σObs

σGCM − σObs
(8)

∅corr =
|ρ

(

PRCPBC , TavgBC
)

− ρ
(

PRCPObs , TavgObs
)

|
|ρ

(

PRCPGCM , TavgGCM
)

− ρ
(

PRCPObs , TavgObs
)

|
(9)

Where u is the mean, σ is the standard deviation, and ρ is

the cross-correlation. Subscripts BC, obs, GCM indicate the bias-

corrected, observed, and raw GCM data, respectively. ∅mean and

∅std are estimated for the four variables. A fraction change value

related to the mean or the standard deviation between −1and

1 (>1 and <-1) indicates that the bias has reduced (increased)

following the application of BABC. The metric is slightly revised to

estimate the bias in the cross-correlation. A fraction change in the

cross-correlation between 0 and 1 (>1) confirms that the bias in the

correlation has reduced (increased) in the bias-corrected outputs.

2.4.2. BABC vs. ACCA
In the final analysis, the study compares the performance

of the BABC with another bivariate bias-correction approach—

ACCA. Toward this, the fraction change equations suggested in

Subsection 2.4.2 are slightly modified (Equations 10–12). However,

the interpretation of the fraction change metric remains the same.

A value of ∅mean and ∅Std within −1 to 1 indicates that the BABC

lesser bias in the mean and the standard deviation as compared to
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FIGURE 2

Cross-Correlation between observed monthly precipitation (PRCP) and monthly average temperature (Tavg) for historical time-frame 1951–1999.

Marked grids points are indicating the statistical significance at 95% confidence level for the months of January (A), March (B), July (C), and

November (D).

ACCA. On the other hand, a value of ∅corr higher than 1 indicates

that the ACCA performs better than the BABC in reducing bias in

the cross-correlation.

∅mean =
µOBS − µBABC

µOBS − µACCA
(10)

∅std =
σOBS − σBABC

σOBS − σACCA
(11)

∅corr =
|ρ

(

PRCPOBS , TavgOBS
)

− ρ
(

PRCPBABC , TavgBABC
)

|
|ρ

(

PRCPOBS , TavgOBS
)

− ρ
(

PRCPACCA , TavgACCA
)

|
(12)
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3. Results

3.1. Observed cross-correlation

The cross-correlation between the observed precipitation

(PRCP) and the observed temperature (Tavg) is estimated for each

grid point to understand the spatial variation in cross-correlation

over India. Figure 2 presents the observed cross-correlation

for 4 months (January, March, July, and November), each

representing the four seasons. The grid points where the observed

cross-correlation is statistically significant are marked with a

circle. The statistical significance at 95% confidence level in

the cross-correlation is determined based on [±1.96/
√
(n−3)],

where n is the number of observations. For the current study,

if a cross-correlation is higher or lesser than ±0.289, the

corresponding grid point is considered statistically significant.

Results related to PRCP-Tmax and PRCP-Tmin are presented in

the Supplementary Figures 1A, B. Additionally, spatially averaged

cross-correlations between observed monthly precipitation

(PRCP) and monthly temperature (Tavg) across six climate

homogeneous regions are presented in Supplementary Figure 2.

These regions were suggested by the Indian

Meteorological Department.

Figure 2A shows that cross-correlation between the observed

PRCP and the observed Tavg during January is positive but

statistically insignificant. However, during November, the variables

are positively correlated, except for a few regions of Northern

(and Southeast) India (Figure 2D). Further, during March and

July, most of the grids exhibit a negative cross-correlation with

values between −0.25 and −0.5. The negative cross-correlations

during March and July also exhibit statistical significance. From

Supplementary Figures 1, 2, The study found that the PRCP

and the Tmax (PRCP and Tmin) show a strong dependence

during the pre-monsoon season (post-monsoon). Overall, the

study found that a strong negative cross-correlation exists between

the observed precipitation and observed temperature during the

monsoon months, indicating the role of rainfall in providing

relief from the heat accumulated during the summer/ pre-

monsoon months (Das Bhowmik et al., 2020). During winter,

a positive cross-correlation between the PRCP and Tavg is

observed for Central and South-Central India, indicating that a

rainfall during the winter results in an increase in temperature.

Overall, the dependencies between precipitation and temperature

exhibit substantial spatio-temporal variation resulting from the

northeast and southwest monsoonal circulations, which should be

considered a major statistical attribute during the bias-correction

of GCM outputs.

3.2. BABC vs. Raw GCM analysis

Figure 3 presents the performance of BABC in reducing the

bias in mean, standard deviation, and cross-correlation. At each

grid point, the study estimated the fraction change in mean

(∅mean), standard deviation (∅SD), and cross-correlation (∅corr)

as defined in Equations (7)–(9). The fraction change metric is

estimated for fourteen ensembles and the ensemble average of

the metric is plotted. The results related to PRCP and Tavg for

4 months are presented in Figure 3 while the results related to

the Tmax and Tmin are presented as Supplementary Figure 3.

At each grid point, the study measures the metric for fourteen

ensembles and plots the ensemble average estimate of the metric.

In addition, spatially averaged fraction change in cross-correlation

(PRCP-Tavg) estimates across six climate homogeneous regions are

presented in the Supplementary Figure 4. The study found that

BABC performs satisfactorily in reducing the bias in the mean

and the standard deviation over India; however, its performance

varies acrossmonths and regions. The proposed approach performs

better at reducing the bias in the mean and the standard deviation

during the monsoonal month (July) as compared to the other

months. The proposed approach exhibits superior performance

in reducing the bias in the mean of the Tavg as compared to

the bias in the mean of the PRCP. Additionally, the approach

performs better at reducing the bias in the standard deviation in

Tavg as compared to the same in PRCP. The authors note that the

raw GCMs have higher bias in their PRCP than the Tavg. Also,

the raw GCM outputs could efficiently yield the inter-seasonal

variation in the monthly temperature (Salvi et al., 2011). Regarding

the bias in cross-correlation, as shown in Figures 3Q–T, the

results are mixed since the proposed approach typically performs

better in non-monsoonal months as compared to the monsoonal

months. During July, the raw GCM cross-correlation exhibits a

lower bias as compared to the bias-corrected outputs. However,

BABC successfully reduces the bias in cross-correlation during

November, a non-monsoon month. A comprehensive analysis

related to the performance of the BABC in reducing the bias in

cross-correlation is provided in Table 2 and additional information

is presented in the Supplementary Tables 1, 2. Monsoon months

in India typically experiences a strong negative cross-correlation

between precipitation and temperature. Meteorological factors

other than precipitation (for example wind, relative humidity)

have lesser influence on the heat accumulated during summer

compared to the influence of precipitation on the accumulated

heat. Although there is a long-standing debate on the efficiency

of GCMs in simulating the spatio-temporal characteristics of

monsoon (Anand et al., 2018), the strong negative P-T correlation

during monsoon is typically well-captured by raw GCM outputs

(see Supplementary Figure 5). Following a bias-correction, the bias

in the mean and in the standard deviation improve; however,

as a trade-off, the slight bias in the P-T cross-correlation

gets impacted in the bias-corrected outputs. In contrast, the

bias in the cross-correlation for raw GCM outputs is higher

during non-monsoonal months as compared to monsoon months,

therefore, BABC performs better in reducing the bias in the

cross-correlation during non-monsoonal months as compared to

monsoon months.

3.3. Reproduction of bias-corrected
precipitation time-series

The current study applies bivariate bias-correction separately

the for PRCP-Tavg, PRCP-Tmax, and PRCP-Tmin. Therefore,
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FIGURE 3

Maps show fraction change in the mean (∅mean), standard deviation (∅SD), and cross-correlation (∅corr) while compared between the bias-corrected

(using BABC) and the observed datasets for the months January (A, E, I, M, Q); March (B, F, J, N, R), July (C, G, K, O, S); and November (D, H, L, P, T).

Grid points showing statistically significant observed cross-correlation (Q–T) are indicated as a black circle.
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any ensemble member of precipitation over a particular grid

point receives three bias-corrected time-series. Since the

bivariate bias-correction yields the observed cross-correlation

between the precipitation and the temperature variable, the

three bias-corrected precipitation time-series might differ

slightly in their monthly values, but the three-precipitation

series should maintain an overall monthly correspondence.

To ensure the reproduction of the bias-corrected precipitation

series, the study plotted three bias-corrected precipitation

time-series from a randomly selected grid point (Figure 4).

The study found that the high and low precipitation months

show good correspondence between the three bias-corrected

precipitation series. Additionally, the correlation between

any two of the precipitation series is higher than 0.9.

TABLE 2 Table presents the total number of grid points where the bias in

the cross-correlation has been reduced following the application of

BABC.

Months CNRM-CM5 IPSL MRI

Jan 232 (65%) 202 (57%) 233 (66%)

Feb 209 (59%) 174 (49%) 201 (57%)

Mar 148 (42%) 77 (22%) 166 (47%)

Apr 150 (42%) 68 (19%) 147 (41%)

May 151 (43%) 97 (27%) 141 (40%)

Jun 157 (44%) 94 (27%) 191 (54%)

Jul 162 (46%) 134 (38%) 190 (54%)

Aug 184 (52%) 153 (43%) 239 (67%)

Sep 159 (45%) 98 (28%) 190 (54%)

Oct 161 (45%) 145 (41%) 149 (42%)

Nov 270 (76%) 249 (70%) 284 (80%)

Dec 213 (60%) 208 (59%) 228 (64%)

Basically, a number indicates the total number of grid points where ∅corr >1 (from

Figures 3Q–T). The percent of grid points exhibiting a reduced bias in cross-correlation has

been provided within parenthesis.

Therefore, the study concludes that the proposed approach

has reproducibility when applied on different combinations of the

raw GCM variables.

3.4. Simulation of precipitation and
temperature seasonality

In the current subsection, the study investigates the efficiency

of the BABC approach in yielding the seasonality in PRCP

and Tavg over India. Toward this end, the long-term mean

of the observed time series, the raw GCM outputs, and the

bias-corrected GCM outputs are estimated. The raw ensemble

members from the CNRM-CM5 have similar values. Therefore,

only one ensemble member from the CNRM-CM5 is considered.

On the other hand, for the two remaining GCMs, ensemble

averaging is not performed due to which the results show inter-

ensemble variations. Figures 5, 6 presents the long-term mean

in precipitation from the observed and the raw GCM (bias-

corrected GCM) outputs. All the three GCMs fail to yield PRCP

seasonality; however, the CNRM-CM5 performs slightly better than

the MRI and IPSL. Correspondingly, following bias-correction,

precipitation seasonality is accurately represented by all the five

ensemblemembers from the three GCMs. Following the seasonality

analysis in PRCP, tavg seasonality is examined for post-monsoon

and pre-monsoon seasons. as India experiences significant hot and

humid weather during these two seasons. Figures 7, 8 presents

the long-term mean in Tavg from the observed and raw GCM

(bias-corrected GCM) outputs for 6 months. All the three GCMs

fail to yield the high pre-monsoon temperature. On the other

hand, in the post-monsoon season, the MRI and IPSL perform

slightly better than the CNRM-CM5. Overall, none of the GCMs

successfully simulate Tavg seasonality. However, the performance

of the GCMs substantially improves following bias correction

(Figure 8). The low inter-annual variation in Tavg exhibited by the

raw GCMs is corrected by the proposed BABC approach. Similar

performance of the raw GCM outputs and bias-corrected outputs

can be found for Tmax seasonality and Tmin seasonality. The

FIGURE 4

Three time series of bias-corrected precipitation while paired with three temperature variables (Tavg, Tmax, Tmin) at a selected grid point.
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FIGURE 5

Box plots show the long-term average precipitation for four monsoon months from five Raw GCM ensemble members and from the observed. The

spread of a box plot represents the spatial variation in the average PRCP across grid points. One ensemble member is selected for CNRM-CM5 and

MRI; whereas, all three members are selected for the IPSL ensemble.

FIGURE 6

Box plots show the long-term average precipitation for four monsoonal months from five bias-corrected (using BABC) GCM ensemble members and

the observed. Rest is same in Figure 5.

results are presented in Supplementary Figures 6–9. A comparison

between Figures 6, 8 indicates that GCMs are more uncertain in

simulating the mean precipitation than the mean temperature

which potentially resulted from the higher spatial variation in the

observed precipitation as compared to the observed temperature.

Overall, the study concludes that BABC successfully captures

seasonality in PRCP and Tavg by yielding inter-seasonal variations

in the meteorological variables.

3.5. BABC vs. ACCA analysis

The performance comparison between BABC against ACCA

is carried out using the statistical metrics suggested in Equations

(10)–(12). Similar to Subsection 3.2, fraction change metrics are

processed across ensemble members. Figure 9 presents the results

related to PRCP and Tavg for 4 months; additional results related

to Tmax and Tmin are presented as Supplementary Figure 10.
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FIGURE 7

Box plots show the long-term mean Tavg for six pre-monsoon (A) and post-monsoon (B) months from five raw GCM ensemble members and the

observed. Rest is same as Figures 5, 6.

FIGURE 8

Box plots show the long-term mean Tavg for six pre-monsoon (A) and post-monsoon (B) months from five bias-corrected (using BABC) GCM

ensemble members and the observed. Rest is the same as Figures 5–7.

Further, spatially averaged fraction change in cross-correlation

(PRCP-Tavg) estimates across six climate homogeneous regions

are presented in the Supplementary Figure 11. BABC performs

significantly better than ACCA in reducing the bias in standard

deviation of PRCP. During March and July, the performance of

BABC is slightly better than ACCA in reducing the bias in the

standard deviation of Tavg. Further, the study found, the bias

in the cross-correlation during July could be reduced further by

BABC as compared to the ACCA. The performance trade-off of

the ACCA in yielding the mean and standard deviation results

in influencing the joint dependence between PRCP and Tavg. A

comprehensive analysis related to the performance of BABC in

reducing bias in the cross-correlation as compared to the ACCA

is provided in Table 3. An almost similar performance comparison

between the BABC and the ACCA can be observed when Tmax and

Tmin are considered (see Supplementary Figure 10). To note that

the difference between ACCA and univariate bias correction has

already been performed in one of our previous studies (Bhowmik

et al., 2017). Hence, the current study refrains from comparing

BABC with a univariate bias-correction.

Frontiers inClimate 11 frontiersin.org

https://doi.org/10.3389/fclim.2023.1067960
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Gupta and Bhowmik 10.3389/fclim.2023.1067960

FIGURE 9

Maps show fraction change in the mean (∅mean), standard deviation (∅SD), and cross-correlation (∅corr) while compared between the two

bias-corrected (BABC vs ACCA) datasets for the months January (A, E, I, M, Q); March (B, F, J, N, R), July (C, G, K, O, S); and November (D, H, L, P, T).

Grid points showing statistically significant observed cross-correlation (Q, R, S, T) are indicated as a black circle.
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TABLE 3 Table presents the total number of grid points where the bias in

the cross-correlation has been reduced following the application of BABC

vs. ACCA.

Months CNRM-CM5 IPSL MRI

Jan 249 (70%) 184 (52%) 225 (63%)

Feb 287 (81%) 239 (67%) 262 (74%)

Mar 273 (77%) 172 (49%) 285 (80%)

Apr 294 (83%) 184 (52%) 272 (77%)

May 288 (81%) 188 (53%) 280 (79%)

Jun 322 (91%) 253 (71%) 321 (90%)

Jul 320 (90%) 273 (77%) 296 (83%)

Aug 313 (88%) 274 (77%) 308 (87%)

Sep 292 (82%) 205 (58%) 304 (86%)

Oct 246 (69%) 139 (39%) 239 (67%)

Nov 205 (58%) 140 (40%) 174 (49%)

Dec 215 (61%) 183 (52%) 192 (54%)

Basically, a number indicates the total number of grid points where ∅corr >1 (from

Figures 9Q–T). The percent of grid points exhibiting a reduced bias in cross-correlation has

been provided within parenthesis.

4. Summary and discussion

The current study employed a bivariate bias correction

approach to post-process GCM ensembles over India. The bias-

correction approach relies on a bivariate ranking scheme that finds

a stationary distribution of the asynchronous measurements. The

study compares the bias corrected outputs with the raw GCM

dataset as well as with the outputs from another bivariate approach:

ACCA focusing in yielding the observed cross correlation between

rainfall and temperature. Additionally, the study also focuses on

reproducing the seasonal attributes of Indian precipitation and

temperature in the bias-corrected outputs. The major findings of

the current study are as follows:

1. The study found that, typically, a negative cross-correlation

between the observed monthly PRCP and the observed monthly

Tavg exists in India.

2. The BABC approach successfully reduces bias in the mean and

in the standard deviation of the PRCP and Tavg. However,

it performs better in reducing bias in the cross-correlation

during the non-monsoonal months as compared to the

monsoonal months.

3. The study confirmed that precipitation time series can be

reproduced following bias-correction, irrespective of either of

the three temperature variables being considered as the second

variable in the ranking scheme.

4. The BABC successfully reproduces precipitation climatology for

the monsoon months. Also, the approach yields temperature

climatology for the pre- and post- monsoon seasons that

experience high inter-seasonal variations in temperature.

5. Finally, the study reports that the BABC and the ACCA both

perform equally well in reducing bias in the standard deviation

and the mean. However, the BABC performs better than the

ACCA in reducing bias in the cross-correlation.

A major limitation related to the application of bivariate bias-

correction is that it takes a significant amount of computation

time when the bias-correction is applied at a regional scale.

The computation time is further increased when optimization

is performed at the grid points for the monthly models. The

computation time can increase further if finer resolution datasets

are considered. The application requires a high-performance

cluster computing facility, which shall be considered in the near

future to estimate changes in the cross-correlation resulting from

anthropogenic climate change. The current study considered the

algorithm suggested by Campbell et al. (2011) to find theminimizer

of Equation (6). However, He et al. (2012) found that it is better

to consider Newton-Raphson as a degeneracy condition (originally

suggested by Chaudhuri, 1996) is necessary but not a sufficient

condition to check whether the optimized solution is an element

of the observed variable.

Former studies have concluded that bivariate bias-correction

could not yield the observed cross-correlation in bias-corrected

products (Cannon, 2016, 2018; Bhowmik et al., 2017; Vrac, 2018;

Eum et al., 2020). The limitation to yield the observed cross-

correlation can be a potential problem for bias-correction as it may

result in errors in the hydrologic simulations with the univariate

bias-corrected outputs (Salvi and Ghosh, 2013; Bhowmik et al.,

2017; Seo et al., 2019). Therefore, the development of bivariate

approaches is essential as the P-T dependence is expected to

be influenced by the increase in greenhouse gas concentrations

in the near future. The application of bivariate bias-correction

on future GCM projections would help researchers to quantify

the potential change in P-T dependence. The authors note that

the current study considered a linear relationship between P-

T, although it is traditionally considered to follow a non-linear

relationship: Clausius Clapeyron equation. The advantage of the

BABC is that it does not consider any functional form of the P-T

dependence; hence, a non-linear dependence can also be yielded by

the proposed approach.

The current study applied BABC and ACCA approaches

to bias-correct monthly meteorological variables. The same

approaches can also be applied to the daily or sub-daily

meteorological series. However, the authors note that the

application of BABC at a daily temporal resolution would further

increase the computation requirements. Additionally, precipitation

and temperature dependence are best witnessed at a monthly scale

since several local scale features such as wind, relative humidity,

and geomorphic characteristics have a higher influence on the daily

precipitation as compared to the temperature (Dingman, 2015).

The current study has performed bias-correction for 4 months:

January, March, July, and November. Considering the considerable

computation time required to perform the bias-correction, we

decided to run the bias-correction for only 4 months with the

expectation that similar performance can be witnessed for other

months within a season. Further, the daily statistical attributes (for

example, day-to-day variation) of meteorological variables need to

be considered if the BABC is applied at a daily scale. Considering

these issues, the current study suggests that the application of a

bivariate bias-correction is appropriate in the case of a hydrological

long-term simulation being performed at a monthly scale. Overall,

the study found that, historically, precipitation and temperature are

strongly associated at a monthly scale, and the proposed bivariate
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bias-correction successfully yields the observed cross-correlation in

the GCM outputs.
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