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Introduction: With hydropower being the dominant source of renewable energy

in Austria and recent years being disproportionally dry, alternative renewable

energy sources need to be tapped to compensate for the reduction of fossil fuels

and account for dry conditions. This becomes even more important given the

current geopolitical situation. Wind power plays an essential role in decarbonizing

Austria’s electricity system. For local assessments of historic, recent, and future

wind conditions, adequate climate data are essential. Reanalysis data, often used

for such assessments, have a coarse spatial resolution and could be unable to

capture local wind features relevant for wind powermodeling. Thus, raw reanalysis

data need post-processing, and the results need to be interpreted with care. The

purpose of this study is to assess the quality of three reanalysis data sets, such as

MERRA-2, ERA5, and COSMO-REA6, for both surface level and hub height wind

speed and wind power production at meteorological observation sites and wind

farms in flat and mountainous terrain. Furthermore, the study aims at providing a

first knowledge baseline toward generating a novel wind speed and wind power

atlas at di�erent hub heights for Austria with a spatial resolution of 1 × 1 km and

for an experimental region with sub-km resolution. Thus, the study tries to answer

(i) the questions if the reanalysis and analysis data can reproduce surface-level

wind speed and (ii) if wind power calculations based on these data can be trusted,

providing a knowledge base for future wind speed and wind power applications in

complex terrain.

Methods: For that purpose, a generalized additive model (GAM) is applied to

enable a data-driven gridded surface wind speed analysis as well as extrapolation

to hub heights as a first step toward generating a novel wind speed atlas. In

addition, to account for errors due to the coarse grid of the re-analysis, the

New European Wind Atlas (NEWA) and the Global Wind Atlas (GWA) are used

for correction using an hourly correction factor accounting for diurnal variations.

For the analysis of wind power, an empirical turbine power curve approach was

facilitated and applied to five di�erent wind sites in Austria.

Results and discussion: The results showed that for surface-level wind speed, the

GAM outperforms the reanalysis data sets across all altitude levels with a mean

average error (MAE) of 1.65 m/s for the meteorological sites. It even outperforms

the NEWA wind atlas, which has an MAE of 3.78 m/s. For flat regions, the raw

reanalysis matches the production data better than NEWA, also for hub height

wind speeds, following wind power. For the mountainous areas, a correction of

the reanalysis data based on the NEWA climatology, or even the NEWA climatology
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itself, significantly improved wind power evaluations. Comparisons between

modeled wind power time series and real data show mean absolute errors of 8%

of the nominal power in flat terrain and 14 or 17% in mountainous terrain.

KEYWORDS

wind power simulation, reanalysis, data-driven analysis, spatio-temporal-analysis,

representativeness

1. Introduction

The share of wind energy in energy production is increasing

and will continue increasing given the world a wide aim of being

as carbon neutral as possible by 2030 (European Commission,

2020). To fulfill this aim, growth rates of renewable energy must

increase by at least four times compared with recent growth rates

(International Renewable Energy Agency, 2020). With the recent

shortage of natural gas in Europe for all sectors ranging from

industry and mobility to heating and cooling, a rapid transition

to a larger share of renewable energy is needed. However, in

contrast to gas-driven energy production, the stochastic nature of

the main driving forces of renewable energy systems such as wind

and consequently wind energy or cloud cover and solar energy

further complicates energy balancing and places an additional load

on the grid. As the share of wind energy increases, the impact

on the electric system and its infrastructure also increases from

local to large scale, sometimes even on a sub-continental scale.

Furthermore, energy trading and market volatility are influenced.

As a result, an increase in wind energy or other renewable energy

sources has large influences across all sectors (Silva et al., 2018)

and contributes to the overall vulnerability of the electricity system

(Bloomfield et al., 2016). As the atmospheric conditions are the

main drivers of power production estimation for both current and

future conditions, a good representation of these conditions is

needed. An accurate assessment of the potential wind power sites

as well as assessment of existing sites in terms of climate change

adaptation strategies and wind turbine refactoring is essential to

increase production efficiency. Such an assessment is needed for

the estimation of future wind power in-feed rates into the power

grid and planning of possible storage solutions. To perform such an

assessment, historical and recent information on wind speed, wind

power production, and demand is needed.

In the past years, the number of resource assessment research

studies, especially for wind energy, has increased. The studies and

review papers focused on several aspects of improving methods for

site assessment (Kelledy, 1982; Troen and Lundtang Petersen, 1989;

Bailey et al., 1997; Truhetz et al., 2007; Lackner et al., 2008) and/or

prediction of production for both on shore and offshore wind

energy such as land-use mapping, social constraints (Schallenberg-

Rodriguez, 2013; Höltinger et al., 2016; Jäger et al., 2016; Harper

et al., 2019), or improving atmospheric and climate models (Singh

et al., 2006; Zhang et al., 2014; Widén et al., 2015; Gualtieri, 2019;

Yang et al., 2021).

Recently, McKenna et al. (2022) provided an overview on

the different categories of potentials of onshore wind energy

assessment (geographical, technical, economical, and feasible) and

discussed the state of the art for each of the categories. In this

study, we focused on assessing a subcategory of the technical

onshore wind energy potential, namely, the meteorological wind

power assessment. McKenna et al. (2022) defined two types of

requirements in this category, the climatological wind potential

assessment and the time-resolved renewable generation variability.

While the first relies on wind speed distributions provided by wind

atlases, the latter needs time series information from wind masts

or reanalysis fields. Often the advantages of these two data sources

are combined to bias correct reanalysis-based time series using

climatological fields such as the Global Wind Atlas (GWA) (see

e.g., Staffell and Pfenninger, 2016; González-Aparicio et al., 2017;

Olauson, 2018; Camargo et al., 2019; Koivisto et al., 2021; Davidson

and Millstein, 2022; Murcia et al., 2022). This bias correction

approach is a well-known and well-used standard approach in this

field. It however, only uses one correction factor and does not

account for diurnal, monthly, or seasonal variations. We tackle

this in our study by using an hourly correction factor. The data

availability in this study for two of the wind farm sites is very

limited, therefore we did not calculate monthly or seasonal factors.

The goal of this study is to assess the quality of different data

sets and correction methods in terms of wind speed and wind

power applications in different regions of Austria. The overall

aim is to provide a first knowledge baseline toward generating a

novel wind speed and wind power atlas at different hub heights

for Austria with spatial resolution of 1 × 1 km and for an

experimental region with sub-km resolution. Therefore, different

data sets, both observations and reanalysis as well as correction

methods, need a thorough investigation before finalizing the data

to be fed into different (machine learning) algorithms used for

generating this novel atlas. More precisely, wind speed and wind

power time series computed from ERA5, MERRA2, COSMO-

REA6, and NEWA, and a new method to grid observation data

(GAM) is corrected with NEWA microclimate and GWA3 and

validated against measurements. Various research studies used

different reanalysis data sets, numerical weather prediction model

data, and wind field atlases and investigated the quality of the

data sets themselves as well as correction methods in regions

across the world. As relevant studies until 2019 are summarized by

Gruber et al. (2019), we provide an update of this summary adding

an overview of studies in 2019. Table 1 provides an overview of the

most recent studies. The particularity of this study consists of the

detailed validation of the wind speed parameter at very local scales

in Austria, as well as in complex terrain, and the variety of methods

and data sets considered.

Jourdier (2020) concluded that ERA5 outperforms MERRA-2

but underestimates wind speed, especially in regions with complex

terrain. The higher resolved models could decrease the bias in

complex terrain but showed other issues such as a wrong diurnal
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TABLE 1 Summary of recent studies (younger than 2019) assessing quality of data sets for wind speed and wind power assessment, their scopes, the

datasets, bias correction, and validation.

References Topic Dataset Bias
correction

Validation area

Camargo et al. (2019) Modeling small scale renewable energy COSMO-REA2,

COSMO-REA6

Czech/Bavaria

Gruber et al. (2019) Interpolation and correction methods MERRA-2 GWA Brazil

Jourdier (2020) Diurnal circle of wind speed and wind

power

ERA5, MERRA-2,

COSMO-REA6, NEWA,

AROME

France

(Minola et al., 2020) Surface wind speeds and gusts ERA5, ERA Iterim Sweden

Koivisto et al. (2021) Detailed modeling of microscale wind WRF GWA Europe

Molina et al. (2021) ERA5 wind speeds compared with

HadISD station data

ERA5 Europe

Davidson and Millstein (2022) Wind energy resource estimation ERA5, MERRA2, HRRR Texas

Gruber et al. (2022) Interpolation and correction methods ERA5, MERRA2 GWA, GWA3 Brazil, New Zealand, South

Africa, US

Murcia et al. (2022) Comparison and validation ERA5, NEWA, EIWR GWA-2 Europe

variation in COSMO-REA6. However, the author also found that

the NEWA analysis had disappointing results compared with the

other models. In contrast to other studies, no bias correction was

applied using available local data, or a wind atlas as the GWA,

as the general idea was to be able to use the data in regions

with no direct observations. A comparable study, which uses bias

correction, was carried out by Murcia et al. (2022) who analyzed

the performance of ERA5, NEWA, and EIWR across Europe

including a bias correction to match the microscale mean wind

speed reported in the GlobalWind Atlas version 2 (GWA2). Gruber

et al. (2022) conducted a similar analysis comparing MERRA-2 and

ERA5 combined to bias correction based on GWA2 and GWA3 in

Brazil, New Zealand, South Africa, and the United States. All found

that (bias corrected) ERA5 yielded the best results.

In addition to studies investigating the usefulness of reanalysis

data for wind energy applications, studies also investigated the skills

of surface layer wind representation. Minola et al. (2020) compared

ERA5 and ERA Interim wind speeds and wind gusts with wind

measurements in (i) coastal, (ii) flat, and (iii) mountainous terrain

and found low positive bias in (i) and (ii) and an essential negative

bias in (iii) for both variables.

In the context of current and future wind power generation and

potential, Cai and Bréon (2021) investigated the impact of climate

change for French onshore and offshore wind farms including bias

corrections. Others such as Ma et al. (2022) investigated future

wind power resource using convection permitting simulations for

Canada, whereas Akhtar et al. (2021) considered wake loss effects

in offshore wind power modeling.

Recently, Davidson and Millstein (2022) investigated the

limitations of reanalysis data which are often used as hindcast

data for climate modeling, ERA5 and MERRA-2, as well as a high

resolution forecasting model HRRR in the context of wind power

applications. They conclude that higher spatial resolutions improve

the correlation and RMSE. However, although their representation

of daily power averages is quite sufficient, the hourly representation

is dominated by systematic errors in the diurnal patterns, even after

conversion to solar time with worse metrics before sunrise. This

has been affecting the generation of synthetic data for hourly wind

energy modeling even in the high resolution model as well as when

using interpolation of/between model levels to desired hub height.

They conclude that research toward improving the nocturnal

boundary layer representation in numerical models is needed to

account for these issues. A similar study was carried out by Petrik

et al. (2021) who investigated the representation of the boundary

layer and related sub-daily parameter focusing on application

in renewable energy using spatially higher resolved reanalysis

(COSMO-REA6, UERRA) and hindcast runs with the COSMO

model with different NWP model settings concluding that the

model errors are dependent on the topographical representation

and suitable error correction of reanalysis data, and dynamical

downscaling with NWP or large-eddy simulation should be applied

to improve the results of the model.

Validation of reanalysis, analysis, and also forecast wind fields,

especially at heights above the standard measurement height (10 m

a.g.l.) is limited by the data availability with a drawback that

boundary layer parameterization errors, which are less pronounced

in the surface wind field, are hard to detect. Errors found in

the diurnal cycle (Jourdier, 2020) could also be attributed to

a lack of a sufficient number of ground flux observations and

thus may not be able to take different phenoma affecting the

atmospheric conditions, taking hub height into account (Millstein

et al., 2022). To estimate such effects, especially in wind energy

applications, reanalysis data should be validated at both surface

level and hub heights. Again, one of the weaknesses, here, is the

lack of regular, long-term standard meteorological measurements

at different vertical layers above the ground. Recently, a data set

consisting of more than 200 measurement sites at tall towers was

compiled (Ramon et al., 2020). Unfortunately, such measurement

sites are still sparsely distributed and none are found in Austria.

In Austria, most wind farms are located in flat regions with only

a few in higher alpine regions. There are many reasons for a lack

of wind energy in the remaining parts of Austria; however, in the
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FIGURE 1

Overview of the approach: wind speed time series obtained from (corrected) reanalysis data sets ERA5, MERRA2, and COSMO-REA6 and processed

surface observations from the GAM method are compared with measured data from weather stations (TAWES), avalanche services, and wind farms.

In addition, wind power time series computed from wind speeds of the mentioned datasets are compared with wind power production data from

five wind farms in Austria.

past years, wind farms are planned (and sometimes built) in more

complex topographical regions. This is an essential step to reach

the Austrian climate goals of a carbon neutral energy system in

2040. For operational forecasting and the development of climate

adoption strategies, historical and prospective data at either wind

farm level or even turbine level are needed, also in complex terrain,

ideally with a high temporal resolution. Most of the previously

mentioned studies validated the suitability of reanalysis data sets for

wind power assessments based on conglomeration of wind farms or

wind speed measurements, thus not prioritizing the applicability of

reanalysis data sets to specific locations in complex terrain.

This study aims at evaluating the applicability of different

reanalysis and analysis data sets for wind speed and wind energy

production at turbine level for two different regions in Austria

at five wind farms (confidential data). Furthermore, a data-driven

surface wind analysis based on observations at meteorological

sites is generated and validated for surface and hub heights.

Different correction methods for the reanalysis data and the data-

driven data analysis are evaluated against turbine measurements

of wind speed and power as well as wind speed measurements

at Austrian measurement sites located close to wind farms. The

aims are:

1. assessing the accuracy of reanalysis data and analysis data

for wind speed at the surface and hub heights at single sites

and turbines;

2. evaluate the skills of a data-driven GAM model-based surface

wind speed analysis and its extrapolation to hub height;

3. assess the generated wind power based on raw and corrected

reanalysis and the data-driven GAM model analysis for flat and

complex topographic located wind farms.

The relevant research questions are as follows:

1. Can an extrapolated and corrected wind analysis be used for hub

height wind power estimation?

2. How well do the reanalysis data perform for flat and

complex regions?

3. Does the standard approach of data correction suffice in

hindsight of possible usage for climate change applications?

This study is structured as follows: in Section 2, the used data,

correction methods, and models are described, and the conversion

to wind energy production is explained. In addition, the use cases

of our study are introduced. In Section 3 the results are discussed,

and in Section 4 we draw our conclusions.

2. Materials and methods

The goal of this study is to assess the quality of different data sets

and correction methods in terms of wind speeds and wind power.

An overview of the used data sets and methods to reach this goal is

shown in Figure 1.

2.1. Data

As shown in Figure 1, (corrected) reanalysis and analysis data,

as well as processed observations from the GAM, are compared

with observation data obtained from weather stations (TAWES),

avalanche services, and wind farms. An overview of all relevant data

sets used in this study is shown in Table 2, and more background

information is provided in the following subsections.
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TABLE 2 Overview of the data sets used in this study.

Data sets Coverage Resolution Parameter

Reanalysis Spatial Temporal Spatial Temporal Vertical Direct and derived

ERA5 Global 1979 – 30 km Hourly
Surface

100 m

U,V 10 m, 100 m

T 2 m, 100 m

WS 10 m, 100 m, HH

ρ

MERRA-2 Global 1980 – 50 km Hourly
Surface

50 m

U,V 10 m, 100 m

T 2 m, 100 m

WS 10 m, 100 m, HH

ρ

COSMO-6 Europe 1995–2018 6 km Hourly

Surface

80 m

100 m

125 m

U,V 10 m, 100 m

T 2 m, 100 m

WS 10 m, 100 m, HH

ρ

NEWA

Europe

Turkey

North Africa

2009–2018 3 km 30 min
Surface

100 m

U,V 10 m, 100 m

T 2 m, 100 m

WS 10 m, 100 m, HH

ρ

INCA Austria 2003 – 1 km Hourly Surface

U,V 10 m

T 2 m

WS 10 m

ρ

GAM Austria 2018 3 km Hourly Surface WS 10 m

GWA Global Multiyear average 250 m Climate

10 m

50 m

100 m

150 m

200 m

Wind speed

Power density

ρ

Capacity factor IEC 1, 2, 3

Combined Weibull A/K

Elevation with bathymetry

Observations

Wind power mountain (CPLX-1, CPXL-2) Styria 2018–2019 Turbines 10 min Hub height Wind power

Wind power flat (BGL) Burgenland 2016 – Turbines
15 min

10 min
Hub height

Wind power

U,V HH

T HH

Met. observation (TAWES) Austria 1992 – Site 10 min 10 m

U,V 10 m

T 2 m

...

Avalanche services (LWD) Austria 2012 – Site 10 min 2̃.5m

U, V 10 m

T 2 m

...

Top rows are the gridded data sets, bottom rows the observations.

Where no end date is given the data sets are updated regularly.

T, temperature; U,V, wind components; WS, wind speed; ρ, air density; HH, hub height.

2.1.1. Reanalysis and analysis data
Three different reanalysis data sets, ERA5, MERRA-2, and

COSMO-6 data, one analysis data set, the Incomprehensible

Nowcasting and Analysis model (INCA), and the New European

Wind Atlas were used in this study.

The ERA5 atmospheric reanalysis (Hersbach et al., 2020)

from the European Center for Medium-range Weather Forecasts

(ECMWF) is a long-term gridded data set spanning at least four

decades (1979 onwards). The reanalysis is produced using a 4D-

Var data assimilation with a fixedmodel version of the ECMWF IFS

forecast model CY41R2. The reanalysis has recently been extended

back to the 1950s. The temporal resolution of ERA5 reanalysis data

is hourly with the surface parameters being available on a 30 km

× 30 km grid. In addition to surface wind components, ERA5

provides wind speed information in 100m and 200m above ground

level. ERA5 has been widely used for energy applications, with and

without corrections (Olauson, 2018; Ramon et al., 2019; van der

Wiel et al., 2019; Jourdier, 2020; Bloomfield et al., 2022). Despite

its general good skills in representing the atmospheric conditions

for wind energy applications, Jourdier (2020) found an issue in

the diurnal cycle of ERA5 wind speed at different heights above

the ground and in the lower model levels. Gaps at 10:00 UTC

and following hours were found with a wind deficit of sometimes

even larger than 0.5 ms−1. The problem was acknowledged and

linked to the data assimilation process (see Jourdier, 2020, for more

information). In this study, only ERA5 single level products were

used.

Another data set widely used in the wind industry is the

MERRA-2 reanalysis (Gelaro et al., 2017), which integrates satellite

data assimilation. MERRA-2 has an hourly temporal resolution but

a coarser spatial resolution of 0.5◦ × 0.625◦ (50 km) compared

with ERA5. MERRA-2 is available since 1980. It provides 10 m and

50 m a.g.l. wind components. Thus, extrapolation of wind speed

to hub height may contain a higher level of uncertainty than in

ERA5. Here, the time-averaged, single-level, and diagnostics data

collection, labeled with tavg1_2d_slv_Nx, was used.

Compared with the typical size of a wind farm, both ERA5 and

MERRA-2 reanalysis data sets have a low spatial resolution and are
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not able to capture local and small-scale features such as slope and

valley wind systems or turbulence. In spite of other, global higher

resolved reanalysis data sets still provide a good baseline, although

corrections need to be applied.

In addition to the global reanalysis data sets, regional reanalysis

covering parts of Europe with different horizontal resolutions

are available. One of those reanalysis is the COSMO reanalysis

data set with horizontal resolutions of 12 (as ensemble), 6,

and 2 km, respectively. These are part of the Uncertainties in

Ensembles of Regional ReAnalysis (UERRA) project. The COSMO-

REA models (Bollmeyer et al., 2015; Wahl et al., 2017) use the

DWD (German Weather Provider) operational NWP (Numerical

Weather Prediction) model COSMO and are forced by the ERA-

Interim analysis. In this study, it is decided to use the COSMO-

REA6 model, as its domain covers most of Europe including the

parts of Austria investigated in this study, which is not the case

with COSMO-REA2.

Another analysis data set, based on downscaled ERA5,

is recently finished, the New European Wind Atlas (NEWA;

Hahmann et al., 2020). It is built using an ensemble of several

sub-domains modeled with the Weather Research and Forecasting

(WRF) model and has a spatial resolution of 3 km and temporal

frequency of 30 min. As NEWA does not assimilate observations,

it cannot be considered as a typical reanalysis data set. In contrast

to the COSMO-REA6 data, it was driven by ERA5 using spectral

nudging. In addition to the 3 km macro-scale NEWA atlas, also a

micro-scale data set with 50 m resolution was calculated. However,

this data set is currently not available.

For comparison of the newly generated analysis fields (see

Section 2.1.2), the Integrated Nowcasting through Comprehensive

Analysis (INCA) system (Haiden et al., 2011) was used for

the selected avalanche service sites (see Section 2.1.4). Similar

to NEWA, INCA is not only a reanalysis data set but also

a statistical-dynamical nowcasting and analysis model operating

at the Austrian national weather service ZAMG since 2003. It

covers a domain consisting of Austria and some neighboring

grid points with a horizontal resolution of 1 km and a

temporal frequency of 1 h. However, INCA only provides

surface data and no vertical levels. Here, it is only used for

comparison between the new analysis fields as INCA assimilates

observations. Thus, INCA at a grid point representing a site

in Vienna would be identical to the observations at that

respective site.

2.1.2. Data-driven GAM wind speed analysis
For comparison, data-driven analysis fields using

measurements from selected observation sites were produced.

Therefore, 10 meter station wind is used and interpolated with

a generalized additive model (GAM) to the NEWA grid. GAM

allows a combination of non-linear effects to calculate a spatial

analysis. The idea is similar to fitting a spatial climatology with

more details mentioned in the study by Dabernig et al. (2017)

but without any seasonality because the analysis is recalculated

at every time step individually. As a result, the reanalysis is

a combination of a non-linear spatial effect between latitude

and longitude and a linear effect to capture an altitude effect.

To ensure a good performance on unseen stations, the degree

of freedom for the spatial effect was kept at 20% of number

of available stations. For a fair comparison, all the stations in

the verification are left out in the reanalysis with GAM. The

calculations of the GAM have been performed in R with the

package bamlss.

To address the question of a surface-based analysis extrapolated

to hub height could be used to assess wind power at different

locations or even outperform reanalysis data, the GAM data are

extrapolated to hubheight and corrected using GWA and NEWA

for comparability (see Section 2.2.1).

2.1.3. Wind farm data
Data of five wind farms located in two Austrian regions were

used in this study. Wind farms one, two, and three are located

in Eastern Austria, southeast of Vienna, and in a topographical

rather flat surrounding north of Lake Neusiedl (BGL hereafter).

As they are located very close to each other, one can consider

them as a single wind farm. Wind farm four is located in the

south of Austria and in the Alpine range on a ridge and can

be considered as complex topographical site (CPLX-1 hereafter).

The altitude is ∼1,900 m. Another wind farm, number five

(CPLX-2), is located close to the southern border of Austria

with Slovenia, on the border of two Austrian federal states.

Here, the altitude is similar to farm four.Due to constraints of

the data providers, a detailed description of the locations and

turbine types cannot be given, however as much information

as possible is shared. Both complex terrain wind farms are

located in the vicinity of skiing resorts. Hub heights of the

turbines vary from 80 m at the complex sites to 135 m at the

BGL sites.

At the BGL sites, measurements of wind speed and temperature

were carried out apart from 2016 with a sampling frequency of 10

minutes. For the CPLX-1 site, the data are available for 2018 and

2019, but in contrast to the BGL sites, only the generated power

is available, whereas for CPLX-2, also minimum, maximum, and

average wind speed are available. For all selected wind farms, in this

study, data of every single wind turbine were used. Thus, in this

study, we evaluated the skills and accuracy of the reanalysis data

sets on turbine level and not on wind farm level.

2.1.4. Data from avalanche services and weather
stations

To assess the skills of the reanalysis and analysis data sets not

only on turbine level but also on surface level, wind speed data

of the Austrian semi-automatic weather station network (TAWES)

were used. A selection of sites across Austria in proximity of

existing and planned wind farms was used (see Figure 2, right).

In Austria, most of the complex terrain wind farms are

located in a mountainous environment along (gentle) ridges or

on plateaus. Often, obtaining such wind farm data is either

not possible or underlies very strict non-disclosure agreements.

Thus, to verify the accuracy of reanalysis data sets and validate

the correction methods in a more mountainous environment,

meteorological data of the WMO-conform national meteorological

service and/or the Austrian avalanche warning centers (in total
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FIGURE 2

Location of the wind farm sites and selected alternative data of the

Austrian avalanche services (red dots). Due to constraints, it is not

possible to directly show the wind farm sites. In magenta, the sites

of the Austrian Met Service, TAWES, are shown. As background, the

EUDEM topography with 25 m resolution is used.

seven centers in Austria) are a suitable alternative. However,

the distribution of complex terrain WMO-conform measurement

sites in complex terrain surroundings similar to wind turbine

sites is very sparse. Here, data of the avalanche centers can

be an alternative to get an idea of the atmospheric and

climatic conditions of such locations. These meteorological

observation sites monitor the same parameters as standard World

Meteorological Organization (WMO)-conform observation sites

and include additional observations such as snow height. They are,

similarly as wind turbines located in higher altitudes, more prone to

the prevailing atmospheric conditions such as icing, rime, or high

wind speeds. Their wind speed and direction measurements are,

unlike to standard meteorological sites, not measured at 10 m a.g.l.

but at 2.5 m a.g.l, similar to other privately owned measurements

such as FieldSense. They provide, however, the most dense high

alpine observation network and give an estimate of the prevailing

surface conditions. To be able to quantify the reanalysis skills in

reproducing atmospheric conditions in more complex terrain at

both hub height and surface level, sites in close proximity to the

CPLX sites were chosen. One of such avalanche service sites is

located within 2 kms of the CPLX-1 site, hereafter named AV-

CPLX, to comply with data sharing restrictions. In addition to

this site, another site in somewhat closer distance was selected

in the northwest of the CPLX-1 wind farm, hereafter AVNW-

CPLX. In addition to these two sites, another avalanche service site

was chosen, hereafter AVV, which is located close to another high

altitude wind farm not used in this study. However, wind speeds

and other meteorological parameters recorded at AVV represent

the conditions at the mentioned high altitude wind farm to a high

accuracy. In Figure 2, AVV is located in the center. A summary of

the wind farm and avalanche site specifications is shown in Table 2.

2.2. Methods

For this study, the following steps were taken to derive

the results as follows: (i) extraction of relevant meteorological

parameters from reanalysis and analysis data at the selected

locations; (ii) generation of observation-based data-driven hourly

analysis wind speed fields at the NEWA resolution; (iii)

extrapolation to the respective hub heights of every turbine; (iv)

correction of hub height wind speeds using a correction factor;

(v) conversion of wind speeds to power. Steps (i), (iii), and (iv)

were carried out using Python using pandas, numpy, metview,

matplotlib, and the windpowerlib libraries. Step (ii) was carried out

using R and the bamlss package. Both Linux and Windows OS and

classical CPU architecture were used. The following subsections

describe the methodology in more detail.

2.2.1. Interpolation, extrapolation, and correction
To horizontally match gridded reanalysis data to the exact

locations of the observed wind turbines, wind speed, and air density

were bilinearly interpolated for ERA5, COSMO6, and MERRA2.

Because of the high geographical resolution of the INCA, the

new data-driven GAM analysis, and NEWA data sets, the nearest

neighbor approach, was sufficient to extract wind speed parameters

within those data sets.

Depending on the available vertical heights of the models, wind

speed data were extrapolated to the respective hub heights using

Hellmann’s Law (see Sharp, 2015). As information on the surface

roughness is lacking, the Hellmann exponent was set to 1
7 . This was

done to extrapolate the reanalysis data sets as well as the NEWA

data. Furthermore, to answer research question 2, we extrapolated

the new data-driven GAM analysis fields to the respective hub

heights. As this might result in comparatively low wind speed

values, a correction was applied (see Section 2.2.2 for more details).

2.2.2. Correction with correction factors
Typically, to correct reanalysis data sets for wind energy

applications, correction factors based on the Global Wind Atlas

(GWA) are applied (Davis et al., 2023, see e.g., Gruber et al.,

2022). Here, we used the latest available version of the GWA,

version 3, at the corresponding vertical level of 10 and 100 m,

respectively. As stated by Gruber et al. (2019), GWA2 would be

superior for our application. However, these data are currently

not available for download and usage. However, according to

personal communication, these data might again be available in

future. The daytime dependent correction factor, cfHH , is calculated

using (Equation 1):

cfHH =

vGWA

vMODEL
, (1)

where vGWA and vMODEL are the climate mean wind speeds

of the respective data sets in m/s. In contrast to other studies, we

opted for calculating a correction factor based on the diurnal cycle.

Thus, a correction factor cfHH was calculated for every hour of

the day to account for systematic diurnal biases of the reanalysis

models. Similar to the GWA correction, a correction with the

climate fields of the NEWAwas carried out. Here, the climate mean
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wind speed derived from the NEWA macroscale data set was used

to calculate the correction coefficient. As follow-up, one could use

the microscale data for such a correction for hub height levels.

Based on the results of the meteorological evaluation, the corrected

reanalysis data based on the hourly correction factors are used for

the wind power model.

The data-driven and to hub height extrapolated GAM wind

analysis fields were corrected, too. As previous experiments already

showed that the hourly correction performs better than the

correction based on one mean value, only hourly correction was

carried out for the mentioned data set.

2.2.3. Wind to power
An empirical turbine power curve approach was used to

evaluate the estimated power output of the wind parks based on

wind velocities. In this study, exact location and height, as well

as the characteristic turbine curve of each windmill, enter the

calculation of the wind farm power output. Turbine power curves

are based on constant air density, and density correction (see Ulazia

et al., 2019) has been tested but did not improve the power model.

To exclude data from periods of icing or shut-downs caused

by overload or maintenance, which distort wind power results,

because wind turbines stand still and wind power output is zero

despite of high wind speeds, data at time steps where power output

was clearly lower than expected from measured wind speed was

masked and excluded from the analysis. Unfortunately, this was

only possible for two of the three wind farm sites, where both wind

power and wind speed measurements were available, namely, BGL

and CPLX-2.

The overall modeling approach allowed a good estimation

of the power output, but it does not consider wake losses,

other environmental losses, or losses introduced by electrical

components of the turbines, yielding an overall positive bias of the

evaluated power outputs (see Figure 5 in the following chapter).

2.3. Experiments

Here, the use cases of our study are introduced. For the

overall evaluation of data sets and methods 2018 was considered

as reference year for all sites, except CPLX-1, where data was only

available from 10-2018 to 09-2019.

2.3.1. Wind speed
The evaluation of surface wind speed was carried out at

15 measurement stations chosen in close proximity to existing

wind farms, namely, the 13 TAWES sites and three LWD sites

(see Figure 2 for locations). These sites were not included in the

generation of the GAM. In total, 15 experiments were carried out

using raw reanalysis, corrected with GWA and NEWA correction

factors, corrected hourly GWA and NEWA correction factors, plus

NEWA, and the data-driven wind analysis GAM.

The results for the hub height wind speed performance of the

three reanalysis models, the NEWA, and the upscaled GAM were

carried out for in total 67 wind measurement sites installed at

turbines distributed between four windfarms. Wind speed of wind

farm CPLX-1 could not be evaluated, and here, only wind power

evaluation was carried out.

2.3.2. Wind power
The study onwind power evaluation was conducted at five wind

farm sites, namely, BGL (conglomeration of three wind farms),

CPLX-1, and CPLX-2. Each of the wind farms consists of at least 10

wind turbines. Wind power was evaluated for each wind turbine—

based on interpolated wind speed data—and then summed up to

the wind power output of the entire wind farm. On the basis of

the experiments carried out with respect to wind speeds, also the

wind power evaluation was repeated 13 times with wind speed

time series from ERA5, COSMO6, MERRA2, and GAM, as well as

hourly corrected versions based on NEWA and GWA3 and the raw

NEWA dataset.

3. Results

Here, the results of the use cases wind speed performance in two

flat and one complex terrain setting and wind power performance

at different hub heights and terrain complexities are presented. For

validation, the standard industry metric bias, MAE, and RMSE,

is used. Furthermore, we looked at correlation and other metrics

(not shown in this study) to validate our results with respect to

observations. The experiments, namely, the locations and time

period, were selected based on: (i) data length provided by the

complex terrain wind farm operators, (ii) overlap with the NEWA

macroscale data, and (iii) for the complex terrain site the limitation

that so far not many wind farms operate at altitudes above 1,500 m.

The selection of the non-complex wind farms is based on previous

experiences with those data sets. As for the observation and

avalanche sites, the criteria were similar, and temporal availability

of avalanche sites and a random selection of sites were left out

for validation purposes for the GAM method. A more detailed

introduction is given in Section 2.3.

3.1. Wind speed

3.1.1. Wind speed comparison for wind sites
For hub heights, the model performances can be clearly

separated into flat terrain and complex terrain. For the BGL sites

(see Figure 3, top row), which are located in a rather flat terrain with

only small hills in the direct vicinity, already the raw reanalysis data

perform well, similar to the TAWES sites. Here, ERA5 performs

best with an MAE of 1.34 m/s and an RMSE of 1.73 m/s. What

can be seen here, too, is that for BGL the correction with either

of the four factors does not improve the results indicating that for

flat regions uncorrected models are preferred. Again, for the flat

sites, NEWA performs worst, even worse than the extrapolated

GAM or extrapolated and corrected GAM. Similar to the surface

wind speed analysis, the NEWA shows a distinct diurnal cycle for

the flat terrain sites (see Figure 3, top row purple line), similar to

the findings by Jourdier (2020) and others. In addition, the other

reanalysis data perform better than NEWA, with COSMO-REA6

showing a shallow diurnal cycle. Concluding, for the reanalysis

data, a correction for the flat terrain turbines in BGL did not

improve them. On the other hand, the extra data-driven GAM

analysis, which exhibits a similar diurnal cycle as NEWA, could

be improved using either of the correction methods with the

NEWA-hourly correction, resulting in an overall better wind speed
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FIGURE 3

Mean absolute error [m/s] of the wind speed intercomparison for two of the three wind farm locations, BGL, which contains three wind farms very

closely located to each other, and CPLX-2 (top two rows), for the standard meteorological observations sites TAWES (third row), and for the

avalanche service sites (LWD). For the LWD sites also the mean absolute error of the INCA data set is shown for comparison (cyan line). Please note

the di�erent y-axis for LWD and the other three evaluations.

product. The behavior of MERRA-2 is similar to findings in

other studies.

The results for turbines in CPLX-2 results show that in contrast

to the flat terrain turbines the corrections using NEWA-hourly

did improve the scores except for the COSMO-REA6 model.

Here, MERRA-2 corrected with NEWA-hourly performs best with

a mean absolute error of 3.07 m/s and a bias of −0.52 m/s.

All reanalysis and analysis models show a rather distinct diurnal

cylce. However, NEWA only exhibits small diurnal cycle. The

uncorrected reanalysis data are outperformed by NEWA with a

mean absolute error of 3.27m/s, and not surprisingly, the rawGAM

has the largest error for all uncorrected models with 4.36 m/s and a

high bias of −4.08 m/s, indicating an underestimation of the wind

speed. Correcting the GAM with NEWA-hourly resulted in a bias
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FIGURE 4

Overall bias [m/s] of surface and hub height wind speed for all locations and the corrections using the hourly correction factors (left column: raw,

middle: GWA hourly corrected, right: NEWA hourly corrected). The four wind farm locations are each denoted by a single dot. Top row for ERA5,

second row for MERRA-2, middle row for COSMO-REA6, and the two bottom rows for GAM and NEWA. Notably, GAM was only corrected for hub

height wind speeds, thus di�erences might be hard to see.
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TABLE 3 Mean absolute error and RMSE of the raw, GWA corrected, and NEWA corrected reanalysis fields plus NEWA and GAM analysis metrics.

Data set MAE RMSE

RAW GWA GWA-
hourly

NEWA NEWA-
hourly

RAW GWA GWA-
hourly

NEWA NEWA-
hourly

BGL

ERA5 1.34 2.07 2.07 1.7 1.69 1.73 2.59 2.58 2.15 2.15

MERRA2 1.58 2.02 2.02 1.7 1.7 2.04 2.55 2.56 2.18 2.19

COSMO6 1.48 2.14 2.06 1.8 1.7 1.94 2.71 2.59 2.29 2.17

GAM 1.85 1.9 1.55 2.35 2.44 2.02

NEWA 2.17 2.77

CPLX-2

ERA5 4.23 4.53 4.44 3.3 3.2 5.62 5.77 5.63 4.39 4.3

MERRA2 3.5 4.37 4.36 3.08 3.07 4.89 5.42 5.41 4.23 4.21

COSMO6 4.05 5.68 5.63 4.11 4.06 5.48 8.06 8.02 5.58 5.54

GAM 4.36 4.05 3.13 5.74 5.18 4.18

NEWA 3.27 4.57

TAWES

ERA5 1.79 2.6 2.58 2.38 2.36 2.62 3.62 3.57 3.07 3.03

MERRA2 1.91 2.54 2.53 2.28 2.27 2.66 3.54 3.51 2.93 2.9

COSMO6 1.94 2.67 2.67 2.45 2.45 2.73 3.93 3.91 3.24 3.23

GAM 1.65 2.39

NEWA 3.78 4.92

LWD

ERA5 4.03 3.74 3.59 3.01 2.95 5.37 4.83 4.57 4.14 4.06

MERRA2 3.89 7.65 7.59 3.12 3.1 5.15 10.5 10.32 4.27 4.24

COSMO6 3.43 7.43 7.35 3.1 3.08 4.55 10.59 10.48 4.24 4.21

GAM 3.35 4.59

NEWA 4.3 5.59

INCA 4.28 5.82

The two top blocks are the results for the four wind farms, the three flat topography ones in BGL, and the CPLX-2 site. The two bottom blocks contain the metrics for the standardmeteorological

observation sites TAWES and the three avalanche service sites. The method with the best score is indicated in bold for each location.

of −0.62 m/s and a mean absolute error of 3.13 m/s exhibiting

better metrics than in the corrected ERA5 model. However, given

that the extrapolation to hub height was rather simplistic, the

results are still comparable to the reanalysis data. Most likely,

adapting the extrapolation methodology and adding additional

features to the interpolation method would result in an even

better performance.

While this wind-speed analysis is limited by a comparatively

small number of higher altitude surface and wind farm sites, the

results are valuable as they present different aspects of surface

and hub height wind speed, corrections, and reanalysis data

skills. Overall, the differences between raw and the corrected data

(Figure 4) show that at some sites, the corrections did improve the

metrics while at other sites the correction had the opposite effects.

NEWA overestimates wind speed, especially at the TAWES surface

sites and the BGL wind farm located in flat terrain, whereas the

reanalysis and GAM analysis underestimate wind speed. For the

complex sites, the results of NEWA are good, and the correction

also improves other reanalysis data. Thus, the overestimation in

flat terrain produces comes along with a better representation of

wind speed along ridges in more complex terrain. Although the

NEWA results themselves do not show a good performance at

some of the locations compared with other reanalysis data, using

their climatic fields for a simple correction did improve the other

reanalysis data. This might be due to two main reasons, one could

be a balancing effect of under/overestimation and the other reason

could be related to the fact that the selection of the target year,

though predefined by the wind farm data, might not have been a

good choice in terms of NEWA performance. The corrections with

GWA-hourly did not improve the bias and turned a negative bias

into, partially, strong bias. Corrections using NEWA resulted in a

stronger overestimation of wind speed at sites that already exhibited
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FIGURE 5

Mean absolute error of the wind power model (when compared with measured data) at each hour of the day from April to September (top), from

October to March (middle), and at each month of the year (bottom)—evaluated at two wind farm sites: BGL (red) and CPLEX-2 (green) based on

original 10 min resolution data (dotted line) as well as hourly averaged data (solid line).

overestimated wind speed without correction and resulted in a

reduction of negative bias at the other sites.

3.1.2. Wind speed comparison for meteorological
stations

The results of the diurnal cycle in Figure 3 (only raw, GWA-

hourly corrected, and NEWA-hourly corrected shown), the two

bottom rows, show that, unsurprisingly, the GAM (orange)

performs best for the standard meteorological sites, TAWES, with

an overall MAE of 1.65 m/s. However, also the raw reanalysis data

(ERA5 blue, MERRA-2 red, and COSMO-REA6 green) perform

well-given that the sites were chosen across several altitude ranges.

Surprisingly, the NEWA (purple) performs worst with a mean

absolute error of 3.78 m/s and an RMSE of 4.92 m/s for the

surface wind speed and exhibits a strong diurnal cycle with the

nocturnal mean absolute errors being worse than daytime mean

absolute errors which are also found by Jourdier (2020). This

might be related to the fact that the NEWA simulations had

issues with the nocturnal boundary layer representation. Given the

results of NEWA, an improvement in the raw reanalysis using

NEWA climate for correction was not expected. However, the

corrections using GWA did not improve performances but the

opposite occurred. This might be related to the fact that although

some sites were chosen in complex topographical areas (results not

shown) where such a correction is able to improve due to the poor

representation of topography in the reanalysis data set, the overall

results are dominated bymore flat region sites. In general, the ERA5

performed best for the TAWES sites and even outperforms the

COSMO-REA6 (see Table 3 for more details). Using NEWA for,

e.g., small, urban, or privately owned wind turbine site exploration,

which are below 50 m above the ground, extrapolation of surface

wind speed is not recommended. Here, distinct errors would

be introduced.

The evaluation results of the three non-standardmeteorological

sites of the avalanche service, which operate under similar harsh

climatic conditions as the complex topographic wind farms, are

mixed. Here, the corrections with an hourly cf using the NEWA

climatological fields, the NEWA-hourly corrected data, perform

better than the raw reanalysis data and even NEWA, as a bias of

3.03 m/s and a mean absolute error of 4.3 m/s. Without using a

correction, the COSMO-REA6 exhibits a mean absolute error of

3.43 m/s and GAM of 3.35 m/s outperforms the other experiments.

With the hourly NEWA correction, however, the bias of ERA5

could be reduced from −3.64 to 1.4 m/s (MAE from 4.03 m/s

uncorrected to 2.95 m/s with hourly NEWA corrected). The results

of the INCA analysis show that also INCA has a strong positive bias

of 1.83 m/s and overestimates wind speed at those locations. Thus,

even though the reanalysis has a rather coarse spatial resolution

in contrast to the analysis data, using a climatological and hourly

correction factor of NEWAwas able to improve the results in terms

of mean absolute error and RMSE. Here, it is beneficial for using

the hourly correction factor of NEWA, in contrast to the standard

meteorological sites, as it is able to decrease the strong negative bias.
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FIGURE 6

Diurnal presentation of hourly average wind power using di�erent datasets (colors) and di�erent correction methods (columns) at the three

investigated locations (rows). The wind power is normalized by the nominal power of the respective wind farm. In other words, the diurnal variation

of the capacity factor is shown.

In general, for both surface station types, the uncorrected

reanalysis data have a negative bias which is turned into a strong

positive bias when applying the corrections using the GWA.

3.2. Wind power

3.2.1. Validation of the power model
The quality of the wind power model itself could be estimated

at two windfarms, where both wind speed measurements at

hub height and wind power data were available. However, the

wind power resulting from simulations based on measured wind

speed (approach see Section 2.2.3) could be compared with

real wind power data. As these data are available in a time

resolution of 10 min, also the effects of using hourly averaged

windspeeds could be investigated. Maintenance, grid availability,

and environmental effects such as icing lead to shut downs

of wind farms, when wind speeds would be suitable for wind

power production. Therefore, wind power is only compared

with time steps where measured wind power is above zero and

measured wind speed is >3 m/s. The results of bias of the power

calculation are shown in Figure 5. It is shown that the model

accuracy decreases in the winter months in the alpine wind farm

CPLEX- 2.

The hourly simulations lead to a mean average error (MAE)

of 1.5% (BGL) and 2% (CPLX-2), a bias of 0.1% (BGL) and 1%

(CPLX-2), and a root mean square error of 5% (BGL) and 4%

(CPLX-2) of the nominal power, respectively. The main take away

from this comparison is that the wind powermodel itself introduces

inaccuracy, especially in winter in the alpine regions and leads

to an MAE in the range of ∼1–2 % of the nominal power, and

an RMSE of roughly 4–5% of the nominal power. These errors

are related to the windpower model described in Section 2.2.3

and add up to uncertainties introduced by the use of wind speed

input from analysis and reanalysis data sets (details in the previous

Section 3.1), errors introduced by the vertical interpolation of these
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FIGURE 7

Diurnal presentation of the mean absolute error of the wind power using di�erent datasets (colors) and di�erent correction methods (columns) at

the three investigated locations (rows). The mean absolute error is normalized by the nominal power of the respective wind farm.

wind speed data, and a bias resulting from not considering wake

loss effects.

3.2.2. Wind power comparison
Diurnal representations of wind power outputs are shown in

Figure 6, according to the three wind farm sites and 13 experiments.

Moreover, MAE is indicated in diurnal representation (Figure 8)

and monthly representation (Figure 7). Scores of all experiments

are summarized for all locations in Table 4. Evaluation of wind

power is based on themodel described in Section 2.2.3. The focus of

this study is to investigate the credibility of different reanalysis and

analysis data sets for wind power potential assessment. However,

in addition to inaccuracy of those data sets, the power model itself

introduces uncertainties as described in Section 3.2.1. Moreover,

wake losses which are not captured at all by the wind power

model lead to an overestimation of power production in all

cases, justifying positive bias of compared results. Wake losses are

strongly related to local conditions, and their assessment shows a

large variability between different studies, but theymake up roughly

5–15% of the total power production (Lee and Fields, 2021), which

corresponds to a decrease of 0.01–0.06 in the capacity factor. In

Figure 6, one can see, that the overestimation introduced by NEWA

and hourly based corrections of GWA-3 is in the order of 0.1–0.25

of the capacity factor, and can therfore not be explained by the wake

loss effect alone.

In comparison to diurnal circles of normalized wind power

production (Figure 6), one can see that power evaluations based

on hourly GWA3 corrections overestimate real data at all sites.

The raw NEWA data set also overestimates the actual data in

case of CPLX-1, but matches the actual data surprisingly well

in case of CPLX-2. Raw reanalysis datasets, in contrast, tend to

underestimate production, especially in complex terrain. This backs

up the findings by Minola et al. (2020).

For the wind power sites in mountainous area, namely, CPLX-

1 and CPLX-2 (see Figures 6, 7, second row and third row), the

hourly corrected data based on NEWA clearly outperforms the raw
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TABLE 4 Bias, mean absolute error, and RMSE of the raw, GWA corrected, and NEWA corrected reanalysis fields plus NEWA and GAM analysis metrics.

Data set BIAS MAE RMSE

RAW GWA-
hourly

NEWA-
hourly

RAW GWA-
hourly

NEWA-
hourly

RAW GWA-
hourly

NEWA-
hourly

BGL

ERA5 −0.036 0.110 0.060 0.082 0.162 0.121 0.140 0.239 0.188

MERRA2 0.047 0.120 0.066 0.168 0.145 0.108 0.206 0.214 0.166

COSMO6 −0.051 0.128 0.077 0.084 0.154 0.115 0.136 0.233 0.182

GAM −0.107 0.121 0.071 0.110 0.143 0.106 0.172 0.221 0.171

NEWA 0.094 0.150 0.223

CPLX-1

ERA5 −0.288 0.283 −0.036 0.290 0.331 0.166 0.415 0.436 0.238

MERRA2 −0.257 0.268 −0.045 0.291 0.330 0.173 0.413 0.425 0.255

COSMO6 −0.236 0.169 −0.059 0.249 0.288 0.167 0.363 0.394 0.250

GAM −0.288 0.334 −0.167 0.312 0.435 0.217 0.444 0.534 0.315

NEWA 0.245 0.293 0.395

CPLX-2

ERA5 −0.205 0.255 −0.087 0.205 0.314 0.153 0.337 0.411 0.243

MERRA2 −0.185 0.175 −0.060 0.191 0.257 0.153 0.315 0.346 0.243

COSMO6 −0.158 0.085 −0.021 0.172 0.281 0.208 0.297 0.405 0.328

GAM −0.213 0.166 −0.071 0.213 0.222 0.141 0.347 0.299 0.222

NEWA 0.003 0.135 0.213

The three blocks are the results for the normalized power output of the five wind farms: the three flat topography ones in BGL and the CPLX-1 and CPLX-2 sites in mountainous terrain. The

method with the best score is indicated in bold for each dataset.

reanalysis data. Despite of an obvious bias in the case of CPLX-

1, the course of NEWA matches the course of the original data

quite well, making it interesting for hourly based correction. In

addition, the positive bias of NEWA is able to counteract to the

negative bias of the raw reanalysis data sets. For CPLX-1, hourly

correction of ERA5 based on NEWA shows the best performance

with a bias of −0.04-, a mean absolute error of −0.17-, and an

RMSE of 0.24 times the nominal power. For CPLX-2, already the

raw NEWA data outperforms other datasets with a bias of 0.003-,

an MAE of 0.14-, and an RMSE of 0.21 times the nominal power.

In addition, hourly based correction based on NEWA improved

RMSE and mean absolute error of GAM, MERRA2, and ERA5, as

well as the bias of all considered data. Hourly correction based on

GWA3 rarely improved the performance of raw data, in most cases

it lead to poor results.

The ranking of reanalysis and analysis data sets is different

when comparing the results from the wind speed analysis (Section

3.1) with the results from wind power analysis at the CPLX-2

site: raw NEWA and hourly NEWA-based correction of GAM

perform slightly better than hourly NEWA-based corrections of

MERRA2 and ERA5 when it comes to wind power. However, when

comparing the analysis (Figure 3: 3rd graph in the second row, and

Figure 7: 3rd graph in the third row) only small differences between

the data sets occur, and a similar overall performance is reached for

wind speeds and wind power, respectively.

In complex terrain, all datasets perform better in summer

than in winter. This can be clearly seen in Figure 8, where the

mean absolute error is higher in the winter months in the second

(CPLX-1) row and third (CPLX-2) row, for nearly all datasets. This

can only be partially explained by an increased bias of the wind

power model in winter in complex terrain (see Figure 5).

For the BGL sites (see Figures 6, 7, top row), which are located

in a rather flat terrain with only small hills in the direct vicinity,

the raw reanalysis data already performed well. This matches with

the results obtained in the analysis of wind speeds in the previous

chapter. Here, ERA5 performs best with an MAE of 0.08, a bias of

−0.04, and an RMSE of 0.14 times the nominal power. However, a

dip at 10:00 a.m. can be found in the diurnal variation (Figure 6,

top row, first columns), which is reflected as top in the mean

absolute error (Figure 7, top row, first columns). This is in line

with the findings by Jourdier (2020) and can be explained with data

gathering issues of ERA5. It can be observed that ERA5 performs

slightly better in summer than in winter. This becomes clear when

observing the upper left picture in Figure 8, where the MAE of raw

ERA5-based power calculations (blue) is slightly lower in summer

months. As before (Section 3.1), NEWA performs worst at the flat

sites (BGL), even worse than the extrapolated GAM or extrapolated

and corrected GAM. Hourly correction based on NEWA slightly

improves the MAE and RMSE of MERRA2 and GAM at the BGL

site. Moreover, as no wake effects are taken into account in the wind
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FIGURE 8

Monthly presentation of the mean absolute error of the wind power using di�erent datasets (colors) and di�erent correction methods (columns) at

the three investigated locations (rows). The mean absolute error is normalized by the nominal power of the respective wind farm. Data availability

restricted the analysis of CPLX-1 to the reference year 10-2018 to 09-2019, CPLX-2, and BGL were observed in 2018. There are data gaps of ERA5 in

October 2018, of NEWA in 2019 and GAM apart from February 2019.

power simulation model, an overestimation, as introduced by the

hourly correction based on NEWA, seems appropriate. However,

in general, the results indicate that for flat regions, raw models

perform roughly as well as the NEWA-corrected ones.

4. Conclusion

So far, Austrian wind power potentials in mountainous areas

remain unused for various reasons. However, in the context of the

european goal to decarbonize the electricity sector, wind power

expansion in mountainous terrain in Austria will gain relevance.

This makes prestudies indispensable, and the underlying data need

to be used and interpreted with care.

In this study, three reanalysis data sets (ERA5, MERRA-2, and

COSMO-REA6), one analysis data set (NEWA), and one data-

driven surface wind speed analysis data set (GAM) were evaluated

to answer the questions how good reanalysis and analysis data

represent the surface and hub height wind speed and generated

wind power in Austria in flat and complex topography, if the

standard correction approaches are applicable to all sites. Overall,

the best scores for wind power applications have been obtained with

hourly based NEWA correction of ERA5 data, with bias ranging

from −0.09 to 0.06, MAE ranging from 0.12 to 0.17, and RMSE

ranging from 0.19 to 0.24. Although, the results showed that for

flat regions, the raw reanalysis data outperform the NEWA. The

extrapolated raw data-driven GAM is able to outperform NEWA

with an MAE between 1.65 and 4.36/2.17 and 4.28 and an RMSE

ranging from 2.35 and 5.74/2.77 to 5.82, respectively, for wind

speed. This might be related to the chosen parameterizations in

the underlying WRF model (Witha et al., 2019) and the nocturnal

boundary layer representation in the numerical models. However,

the results at the topographical complex sites show that NEWA is

better than the raw models and the GWA-hourly corrected models,

indicating that not always the classical and adapted-classical

correction factor with GWA is beneficial. However, correction
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using the NEWA-hourly factor showed the added value of such a

correction, except for the COSMO-REA6 data. Overall, the results

of the reanalysis show an overestimation of wind speed in flat

terrain and an underestimation of wind speed in more complex

terrain. The results of this study are in accordance with other

findings (see Jourdier, 2020, and references herein).

In general, one can conclude that the corrections of wind

speed using the NEWA-hourly correction factor improved the

overall metrics of the reanalysis and analysis data and are preferred

over the GWA and GWA-hourly corrections. Furthermore, the

results show that there is not one true model and data for all

but a careful selection and processing of meteorological data is

needed based on individual requirements and characteristics of

the considered location. Especially, when generating synthetic data

for extending an existing data set or generating data for site

exploitation, caution and careful selection are needed. However,

when aiming to use NEWA for statistical-machine learning-based

downscaling of climate scenarios, the overestimation of wind speed

in surface and hub height of NEWA should be accounted for.

Shortcomings of the proposed strategy are that, in general, for

wind energy estimations in regions with complex terrain higher

spatial resolutions are beneficial to account for slope and valley

wind systems or turbulence, even a resolution of 1 kmmight be too

coarse. In addition, observations at hub height or in mountainous

regions are sparse; thus, verification is based solely on data provided

by the wind farm operators andmight be prone to systematic errors.

Extrapolation of surface or reanalysis of 100 m wind speeds to hub

height need to be done with care, and often, surface roughness can

only be taken from land-use data sets and might not reproduce the

conditions at the respective sites properly.

The goal of this study was to provide a first knowledge

baseline toward generating a novel wind speed and wind power

atlas at different hub heights for Austria with spatial resolution

of 1 × 1 km and for an experimental region with sub-km

resolution. Future studies could include the integration of wind

direction sectors and surface roughness based on the CORINE

land-use data to account for varying surface roughness in the

extrapolation procedure or use machine learning methods for the

extrapolation. In addition, monthly or seasonal hourly correction

factors for correcting the coarse resolution reanalysis data could

be considered. Another topic for future studies would include

combining different reanalysis sources and adding the most recent

ECMWF reanalysis data set CERRA (Schimanke et al., 2021) and

using the CERRA forecast for the intermediate time steps between

the 3-hourly analysis. In addition to these steps, one could either

dynamically downscale ERA5 or CERRA to very high 1 km or

sub-km scale resolutions and use these high resolution information

for future applications. Moreover, the wind2power model can be

improved by considering wake loss effects in the evaluation.
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