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The rapid day-to-day temperature swings associated with extratropical storm

tracks can cause cascading infrastructure failure and impact human outdoor

activities, thus research on seasonal prediction and predictability of extreme

temperature swings is of huge societal importance. To measure the extreme

surface air temperature (SAT) variations associatedwith thewinter extratropical

storm tracks, a Temperature Swing Index (TSI) is formulated as the standard

deviation of 24-h-di�erence-filtered data of the 6-hourly SAT. The dominant

term governing the TSI variability is shown to be proportional to the product

of eddy heat flux and mean temperature gradient. The seasonal prediction

skill of the winter TSI over North America was assessed using Geophysical

Fluid Dynamics Laboratory’s new seasonal prediction system. The locations

with skillful TSI prediction show a geographic pattern that is distinct from the

pattern of skillful seasonal mean SAT prediction. The prediction of TSI provides

additional predictable climate information beyond the traditional seasonal

mean temperature prediction. The source of the seasonal TSI prediction can

be attributed to year-to-year variations of the El Niño-Southern Oscillation

(ENSO), North Pacific Oscillation (NPO), and Pacific/North American (PNA)

teleconnection. Over the central United States, the correlation skill of TSI

prediction reaches 0.75 with strong links to observed ENSO, NPO, and PNA,

while the skill of seasonal SAT prediction is relatively low with a correlation

of 0.36. As a first attempt of diagnosing the combined predictability of the

first-order (the seasonal mean) and second-order (TSI) statistics for SAT,

this study highlights the importance of the eddy-mean flow interaction

perspective for understanding the seasonal climate predictability in the extra

tropics. These results point toward providing skillful prediction of higher-

order statistical information related to winter temperature extremes, thus

enriching the seasonal forecast products for the research community and

decision makers.
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Introduction

Extratropical storm tracks are regions of frequent

synoptic baroclinic waves and associated surface cyclones

and anticyclones (Chang et al., 2002). One type of adverse

weather extremes associated with extratropical storm tracks

is the rapid day-to-day temperature swings often connected

with cold snaps. In this study, the temperature swing refers to

synoptic surface air temperature (SAT) variations associated

with extratropical storm tracks. North America experienced a

historical extreme 2013/14 winter with frequent cold outbreaks,

snowstorms, and icy weather (van Oldenborgh et al., 2014;

Trenary et al., 2015; Yang et al., 2015a; Yu and Zhang, 2015),

associated with an extreme storm track activity extending from

central Canada down to the Midwestern and Eastern USA

(Yang et al., 2015a). Such a climate extreme event with rapid

temperature swings can cause cascading infrastructure failure.

The frequency and intensity of temperature swings can change

the length of mild weather days which are pleasant for human

outdoor activities (van der Wiel et al., 2017). The rapid day-to-

day temperature swings have been shown to pose a public threat

to human health by increasing the risk of mortality especially

for the population with certain medical conditions (Guo et al.,

2011; Shi et al., 2015), and increasing influenza epidemic risk

(Liu et al., 2020). Additionally, the synoptic temperature swing

and the mean temperature are both important for characterizing

the whole distribution of temperature changes in the context of

assessing extreme climate impact (Jahn, 2015). Thus, research

on prediction and predictability of extreme temperature swings

is of huge societal importance and scientific interest.

On multi-decadal to centennial time scale, the CMIP5

models predicted a robust decrease of the cold-season near-

surface daily temperature variance (one type of metric for

measuring temperature swings) in the Northern Hemisphere

mid- to high-latitudes associated with Arctic amplification

under global warming in the twenty-first century (Screen,

2014), and a reduced risk of North American cold extremes

(Screen et al., 2015). Schneider et al. (2015) provided some

theoretical scaling on the physics of changes in synoptic mid-

latitude temperature variance, and it is related to mean potential

temperature gradients and mixing lengths near the surface.

This scaling shows that the reduction of meridional potential

temperature gradients that accompanies polar amplification

under global warming leads to a reduction of the synoptic

temperature variance near the surface. However, the prediction

and predictability of surface temperature swings on the seasonal

time scale has not yet been explored.

The skillful predictions of extratropical storm tracks over

North America have been achieved on subseasonal (Zheng

et al., 2019, 2021) and seasonal time scales (Yang et al., 2015b;

Feng et al., 2019). The cold-season temperature swings (or

synoptic temperature variance) appear to collocate with storm

tracks in the extratropical Northern Hemisphere and show

a continental enhancement over North America (Schneider

et al., 2015; Lutsko et al., 2019). Thus, skillful prediction of

temperature swings associated with extratropical storm tracks

is expected over North America. Seasonal prediction of mean

SAT has been routinely provided in the real-time North America

Multi-Model Ensemble (Kirtman et al., 2014), but the prediction

and predictability of the surface temperature swings, related

to extreme statistics of SAT, have not been explored. Skillful

prediction of temperature swings would potentially enrich the

seasonal forecast information from the mean to extreme and

therefore improve awareness and preparedness for the extreme-

related disasters.

In this study, we use the seasonal retrospective forecasts

(SRF) from GFDL’s Seamless system for Prediction and EArth

system Research (SPEAR, Delworth et al., 2020) to assess

prediction skill of surface temperature swings and explore

possible sources for the skill. In section Materials and Methods,

we describe the prediction model, retrospective forecasts,

observations, and methods. In section Extratropical Storm

Track Index and Temperature Swing Index, we describe

the formulation of Temperature Swing Index (TSI) and the

physical process controlling TSI. We present in section Results

the complementary effect of the TSI and SAT skill with

their distinctive geographical patterns and provide physical

understanding of the TSI skill associated with observed major

climate modes. A summary is presented in section Conclusions.

Materials and methods

The SPEAR models incorporated many components used

in the GFDL CM4 model (Held et al., 2019), including the

newly developed atmosphere and land components from AM4

to LM4 (Zhao et al., 2018a,b) and ocean and ice components

from OM4 (Adcroft et al., 2019). Seamless system for Prediction

and EArth system Research has been used for subseasonal

(Xiang et al., 2022), seasonal (Lu et al., 2020) to decadal (Yang

et al., 2021) climate predictions, and future climate projections

(Delworth et al., 2020). Seamless system for Prediction and

EArth system Research offers various atmospheric resolutions

allowing users to optimize the model configuration toward

research interests and/or prediction focus given available

computational resources. For seasonal climate prediction,

we use the medium resolution model (SPEAR_MED). In

SPEAR_MED, the horizontal resolution in the ocean and sea

ice components is about 1◦ with meridional refinements to 1/3◦

in the Tropics. The hybrid vertical coordinate in the ocean

model has 75 layers with layer thickness as fine as 2m near

the surface, including 30 layers in the top 100m. SPEAR_MED

has an atmospheric resolution of approximately 50 km, and

it has 33 vertical levels with model top at 1 hPa. The land

model in SPEAR_MED has the same horizontal resolution as

the atmosphere model. SPEAR_MED has been used for GFDL’s
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FIGURE 1

Illustration of daily SAT time series and corresponding TSI at a

mid-latitude location (90◦W, 45◦N) in the United States for two

contrasting seasons with weak (red) and strong (blue)

temperature swings from (A) ERA5 data and (B) SRF. The

corresponding TSI values are prescribed in each line caption.

Units of SAT and TSI are K.

real-time seasonal forecasts, contributing to the North American

Multimodel Ensemble (NMME) project (Kirtman et al., 2014;

Becker et al., 2020) since 2021 (https://www.cpc.ncep.noaa.gov/

products/NMME/).

Seamless system for Prediction and EArth system

Research’s seasonal retrospective forecasts (SPEAR’s SRF)

were initialized with a 30-member ocean reanalysis using

SPEAR’s ocean data assimilation (ODA) in combination

with a separate set of SPEAR_MED’s ensemble coupled

nudged (SPEAR_MED_Nudged) simulations. In the

SPEAR_MED_nudged simulations with five ensemble

members, the atmospheric temperature, horizontal winds,

and moisture were nudged toward the 6-hourly data from

the Climate Forecast System Reanalysis (CFSR, Saha et al.,

2014); and the Sea Surface Temperature (SST) restored toward

the daily observations from the Optimum Interpolation Sea

Surface Temperature (OISSTv2, Reynolds et al., 2007). The

ocean observations for ODA include daily SST from OISSTv2,

Argo temperature and salinity data (Wong et al., 2020), daily

Global Tropical Moored Buoy Array temperature data from

NOAA/Pacific Marine Environmental Laboratory (PMEL)

(https://www.pmel.noaa.gov/gtmba/), and XBT (eXpendable

BathyThermograph) data from the Global Temperature and

Salinity Profile Programme (GTSPP) (Sun et al., 2010). The

SRF initial conditions for the atmospheric, land, and sea ice

components are from SPEAR_MED_nudged, and the initial

conditions of the ocean component are from SPEAR’s ODA.

The 15-member initial conditions of the ocean component for

SRF are directly taken from the first 15 members of the ODA,

while members 1–5, 6–10, and 11–15 share the same initial

conditions of the atmospheric, land and sea ice components

from the five-member SPEAR_MED_Nudged simulations. The

SRF with 15 ensemble members were initialized on the first

day of each month each year and integrated forward for 12

months from 1991 to 2022. An ocean tendency adjustment

derived from ODA’s increments is applied to SRF for reducing

the model drift. The details of SPEAR’s ODA, ocean tendency

adjustment and initialization configuration for SRF can be

found in Lu et al. (2020). The focus of this study is on the

December–January–February (DJF) season from SRF initialized

on 1st December. SPEAR’s SRF has shown significant seasonal

forecast skill in predicting a wide range of essential indicators

of climate variability, including but not limited to the SST, SAT

over land, mid-latitude baroclinic waves, Antarctic/Arctic sea

ice, Kuroshio extension, North American summertime heat

extremes, and atmospheric rivers over Western North America

(Lu et al., 2020; Bushuk et al., 2021, 2022; Tseng et al., 2021;

Zhang et al., 2021; Jia et al., 2022; Joh et al., 2022).

We also analyze another 15-member SPEAR_MED

ensemble simulations with historical radiative forcing (hereafter

called HIST) to isolate the predictability source from the

radiative forcings. Ensemble members of HIST were initialized

from conditions in a long 1850 control simulation with

atmospheric composition fixed at levels representative of

calendar year 1850. In HIST, the time-varying historical natural

and anthropogenic forcings were applied before 2014, while

projections for the Shared Socioeconomic Pathway 5-8.5

(SSP5-8.5) (Kriegler et al., 2017; Riahi et al., 2017) were applied

for years after 2014. Note that the radiative forcing in SRF is

identical to those in the HIST simulations.

For the skill assessment and diagnosis for SPEAR’s SRF,

the forecast anomalies for each variable were obtained by

subtracting out the lead-time-dependent climatology from

forecasts, which effectively removes the climate drift assuming

that the climate drift is systematic as a function of forecast

lead time. The anomaly correlation coefficient (ACC) between

ensemble mean forecast anomalies and observational anomalies

is used for skill assessment. The skill verification data includes

6-hourly horizontal winds and temperature at 850 hPa, 6-

hourly and monthly sea level pressure (SLP) and SAT from

the European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis—ERA5 (Hersbach et al., 2020). The

observed SST is the monthly SST data from NOAA’s OISST V2

(Reynolds et al., 2002).

In this study, the Niño 3.4 index (NINO3.4) is calculated

as the area averaged SST anomalies over 5◦S−5◦N and 170◦-

120◦W. Following Furtado et al. (2012), the North Pacific

Oscillation (NPO) index is calculated as the difference of the

area-averaged SLP anomalies between a high-latitude North

Pacific box (55◦-72.5◦N; 180◦-140◦W) and a subtropical

North Pacific box (15◦-27.5◦N; 175◦E−147.5◦W). The

NAO index is the station-based index calculated as the

difference of normalized SLP between Lisbon, Portugal, and
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FIGURE 2

The climatological seasonal mean (December–February, DJF) sea level pressure (SLP) (contour, units in hPa) and extratropical storm tracks

(shading, units in hPa) over the period 1992–2022 from (A) ERA5 data and (B) SRF. The climatological seasonal mean SAT (contour, units in K)

and TSI (shading, units in K) for the DJF during 1992–2022 from (C) ERA5 data and (D) SRF.

Stykkisholmur/Reykjavik, Iceland (Hurrell and Deser, 2009).

Following Leathers et al. (1991), the Pacific/North American

(PNA) teleconnection index is constructed from a linear

combination of standardized 700-hPa height anomalies (Z∗) at

three grid points nearest the anomaly field centers as

PNA =
1
3

[

−Z∗ (47.9◦N, 170.0W) + Z∗ (49.0◦N, 110.0◦W) −
]

[

Z∗ (29.7◦N, 86.3◦W)
]

. (1)

Extratropical storm track index and
temperature swing index

The Extratropical Storm Track Index (ESTI) is defined as

the seasonal standard deviation of the 24-h-difference filtered

6-hourly SLP at each grid point. The ESTI can be calculated

as follows:

ESTI =

√

√

√

√

1

N − 1

N
∑

n = 1

[

SLP
(

n+ 24h
)

− SLP(n)
]2

(2)

where N is the sample size of SLP during the DJF season

for each year and n represents the data time step. This filter

has half power points of 1.2 and 6 days (Wallace et al., 1988),

and the resulting statistical properties of storm tracks are very

similar to those obtained from other bandpass filters (Chang

and Fu, 2002). Our focus here is on the surface extratropical

storm tracks, so SLP is used to calculate ESTI. This method of

measuring extratropical storm tracks has been widely used in the

future projections (Chang, 2013), the subseasonal (Zheng et al.,

2021) and seasonal (Yang et al., 2015b, 2018) climate prediction

of extratropical storm tracks, and for attribution analysis of the

2013/14-winter extreme event of extratropical storm tracks over

North America (Yang et al., 2015a).

We propose to formulate a TSI with the same 24-h-

difference filter as ESTI but with the 6-hourly SAT data

as follows:

TSI =

√

√

√

√

1

N − 1

N
∑

n=1

[

SAT
(

n+ 24h
)

− SAT(n)
]2

(3)

Temperature Swing Index is physically similar to the

standard deviation of synoptic eddy temperature perturbations

estimated from 2-to-8-days bandpass filtered data at pressure

levels (Trenberth, 1991). The effectiveness of TSI for measuring

temperature swings is illustrated in Figure 1 for onemid-latitude

location (90◦W, 45◦N) in the United States. For the season with

a high (low) TSI from ERA5, the time series of SAT shows

more (less) frequent synoptic fluctuations of SATwith low values
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FIGURE 3

The standard deviation of seasonal SLP anomalies (contour, units in hPa) and Extratropical Storm Track Index (shading, units in hPa) for DJF

during 1992–2022 from (A) ERA5 data and (B) SRF. The standard deviation of seasonal SAT anomalies (contour, units in K) and TSI (shading, units

in K) for DJF during 1992–2022 from (C) ERA5 data and (D) SRF.

below 250K and high values above 270K (Figure 1A), and thus

TSI measures the synoptic weather extremes. SPEAR’s SRF can

simulate the observed contrasts of the strong/weak SAT swings

associated with corresponding high/low TSI (Figure 1B).

As shown in Equation (7) of Trenberth (1991), the synoptic

eddy temperature perturbations in the lower troposphere can be

approximated as:

∂T
′

∂t
∼ −v

′ ∂T

∂y
− u

′ ∂T

∂x
(4)

where the overbar denotes a time average (DJF season here),

and the prime denotes the synoptic eddy perturbations (the

24-h-difference filtered data here). In principle, the synoptic

temperature swings are primarily generated by eddy wind

advections over the mean temperature gradient, e.g., northerly

(southerly) winds advect colder (warmer) air south (north).

Without loss of generality, we add the second term on the

right-hand side of Equations (4)–(7) of Trenberth (1991) for

considering zonal eddy winds interacting with the mean zonal

temperature gradient. Multiplying T
′

to Equation (4) and then

taking a time average give

∂( 12T
′2)

∂t
∼ − v

′
T
′ ∂T

∂y
− u

′
T
′ ∂T

∂x
= −u

′
T
′
• ∇T. (5)

Therefore, the synoptic temperature variance (or TSI in

the form of standard deviation) in the lower troposphere is

proportional to the product of eddy heat flux and the mean

temperature gradient. The term in the right side of Equation

(5) was shown to be the dominant advective term of driving

synoptic temperature variations in a moist GCM simulation

by Lutsko et al. (2019) using a temperature variance budget

analysis (Wilson and Williams, 2006). To further support this

theory of synoptic temperature variance regulation, we show in

Supplementary Figure 1 that the 850-hPa synoptic temperature

variance is highly correlated with the advection term with

correlations exceeding 0.8 along the storm tracks in North

Pacific, North America, and North Atlantic. Note that the near-

surface synoptic eddy heat flux can be estimated from a diffusive

closure with the mean temperature gradients (Kushner and

Held, 1998), thus the synoptic temperature variance can be

related to themean temperature gradient andmixing length near

the surface (Schneider et al., 2015).

The above theory of synoptic temperature variance controls

indicates that the variability of TSI is related to the variability

of SAT gradient but not SAT itself, so the predictable patterns

of TSI are distinctive from those of SAT for a given large-

scale climate predictability driver [e.g., the El Niño-Southern

Oscillation (ENSO) teleconnection]. In next section, we will

use this theory to understand why the skillful predictions of
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FIGURE 4

The anomaly correlation coe�cient (ACC) between SPEAR’s Seasonal Retrospective Forecasts (SRF) and ERA5 for the DJF mean (A) SLP, (B)

Extratropical Storm Track Index (ESTI), (C) SAT, and (D) TSI, respectively. ACC values with the statistical p-value larger than 0.05 are not shown.

SRF are initialized on 1st December during 1992–2021.

TSI and SAT emerge in different geographical locations over

North America.

Results

Climatology and variability of surface
temperature swings

From the climatological seasonal mean perspective, the

dominant cold air mass with high SLP is observed over

much of North America while the upstream North Pacific

and downstream North Atlantic are occupied with relatively

warm air masses with low SLP (Figures 2A,C). For the high-

order statistics using the seasonal standard deviation of 24-

h-difference filtered SLP, the observed North America surface

storm tracks show comparable intensity with the two oceanic

storm tracks in the upstream and downstream regions. The

observed strong surface temperature swings with TSI exceeding

4K are firmly localized in the North American continent

presumably due to the stronger horizontal temperature

gradients in the continent than the ocean basins. SPEAR’s SRF

shows remarkable agreement with ERA5 in the simulation of

climatological ESTI and TSI with very high spatial correlations

of 0.98 and 0.95, respectively (Figures 2B,D), although themodel

tends to overestimate observed ESTI and TSI in Northwestern

North America and underestimate TSI in central North America

(Supplementary Figure 2). The enhancement of TSI over North

America is consistent with the enhanced variance of synoptic

850-hPa temperature in observations and CMIP5 simulations

(Schneider et al., 2015). The presence of the Rockies might also

contribute to the enhancement of TSI over North America by

increasing temperature gradients over North America (Lutsko

et al., 2019).

In addition to the model’s performance of mean climate

simulations, its ability to simulate spatial and temporal climate

variability is also essential for the seasonal climate prediction.

A year-to-year standard deviation is calculated to measure the

temporal climate variability for a given seasonal mean variable.

We show in Figure 3 the standard deviation of DJF seasonal

anomalies for observed and simulated SLP, ESTI, SAT, and

TSI, respectively. SPEAR’s SRF broadly captures the spatial

structure of SLP and SAT variabilities in North America and

its surrounding oceans with high spatial correlations of 0.90

and 0.91, respectively, although the model tends to overestimate

the SLP variability in the North Pacific and the SAT variability

in Northwestern North America (Supplementary Figure 3). The

observed spatial structures of ESTI and TSI variability are also

well-simulated by the model with high spatial correlations of

0.92 and 0.87, respectively. The standard deviation bias of ESTI

is characterized by a general tripole pattern with positive signs

in Northwestern North America and the East Coast of the USA,
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FIGURE 5

The regression pattern onto the observed normalized NINO34 index for the DJF surface air temperature (SAT) (units in K) from (A) ERA5

reanalysis and (B) the ensemble mean estimates from SPEAR’s SRF during 1992–2022. The same regression pattern for the DJF Temperature

Swing Index (TSI) (units in K) from (C) ERA5 reanalysis and (D) the ensemble mean estimates from SPEAR’s SRF. The stippling indicates regression

coe�cients significant at 10% level.

and the opposite sign in central North America. The standard

deviation bias pattern of TSI shows a dipole with a relatively

strong positive center in most of Canada and a relatively weak

negative center in the central USA.

Prediction skill analysis

We first assess the skill of predicting seasonal mean

SLP/ESTI and SAT/TSI using the ACC as shown in Figure 4. The

prediction of seasonal mean SLP shows high skill (ACC > 0.6)

over the West Coast of North America and the East Coast of

USA and low skill (ACC< 0.4) over the central USA andmost of

Canada (Figure 4A). In stark contrast to the geographic pattern

of seasonal mean SLP skill, the significant prediction skill of

ESTI (a second-order statistics of 24-h-difference-filtered SLP)

appears to be located in central North America, including the

central USA, Eastern and Western Canada (Figure 4B), where

the seasonal mean SLP skill tends to be low or non-existent.

The spatial distribution of significant ACC for SLP (ESTI)

bears a resemblance to the observed and modeled regression

patterns of SLP (ESTI) onto the observed NINO3.4 index

(Supplementary Figure 4), suggesting that the very high skill of

predicting NINO3.4 (ACC = 0.96) is the primary source for the

skilful prediction of SLP (ESTI) via the ENSO teleconnection.

The spatial pattern and correlation skill level of ESTI over North

America are very similar to those estimated from a previous

generation GFDL prediction model (Yang et al., 2015b).

With a similar geographic skill pattern of SLP, the predictive

skill of SAT is generally limited over North America especially in

the central USA, while it is high over the oceans with ACC larger

than 0.6 (Figure 4C). Interestingly, the model exhibits moderate

to high skill of predicting TSI in most of the USA and the

Western and Southern parts of Canada (Figure 4D). Thus, the

predictive skill patterns of both ESTI and TSI, as second-order

climate statistics, are geographically distinct from those of their

corresponding first-order statistics, i.e., the seasonal mean SLP

and SAT. Note that TSI has its spatially distinctive climatology

and variability from ESTI (Figures 2, 3), and a direct skill

assessment of predicting TSI provides additional value beyond

ESTI for considering the climate impacts of extratropical storm

tracks. Therefore, the combination of seasonal mean skill and

second-order statistics skill has an additive effect for providing

useful climate predictions for a variety of end users.

The complementary skill of the seasonal mean and second-

order statistics might arise from the extratropical eddy-

mean flow interaction aspects that storm-track variations are

symbiotically linked to the planetary-scale flow changes (Lau,

1988; Cai and Mak, 1990; Branstator, 1995). The ENSO

teleconnection, a primary driver of the seasonal climate
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FIGURE 6

The zonally averaged regression coe�cients over 110◦W−70◦W for the DJF SAT (blue), TSI (green), 850-hPa temperature gradient (red), and the

advection term at 850 hPa (cyan) during 1992–2022. The regression onto the observed[[Inline Image]] NINO3.4 from (A) ERA5 reanalysis and (B)

SPEAR’s SRF, and the observed NPO index from (C) ERA5 reanalysis and (D) SPEAR’s SRF. For plotting purpose, all the zonally averaged

regression coe�cients normalized by the corresponding spatial standard deviations over 20◦N−70◦N.

predictability, is also characterized by strong transient eddy-

mean flow interactions associated with anomalous tropical

heating (Held et al., 1989). The eddy-mean flow interaction

perspective for diagnosing seasonal extratropical storm track

predictability associated with ENSO has been investigated

by Yang et al. (2015b). Here, we focus on diagnosing the

complementary skill of the seasonal mean SAT and the

seasonal TSI associated with the observed major large-scale

climate modes.

Predictability source analysis

The leading predictable component of the boreal winter

extratropical storm tracks appears to be ENSO-related in GFDL’s

previous generation prediction model (Yang et al., 2015b), so

we first investigate the predictability pattern of DJF SAT and

TSI associated with ENSO. The observed regression pattern onto

the observed NINO3.4 for DJF SAT derived from ERA5, shown

in Figure 5A, is characterized by a south–north dipole over

North America with cold anomalies in the Northern Mexico

and Southern United States and warm anomalies covering most

of Canada. In marked contrast to the SAT regression pattern,

the observed TSI regression pattern is generally V-shaped, with

a base at the Southern United States and two flanks extending

toward the West Coast of Canada and the East Coast of

United States, respectively (Figure 5C). The observed V-shaped

TSI regression pattern clearly shows its distinction from the

south–north dipole pattern of SAT, and the maximum signal

of the TSI pattern appears to locate in the middle of the SAT

dipole pattern. Remarkably, both the observed dipole pattern of

SAT and V-shaped pattern of TSI over North America are well-

predicted by the model, with high spatial correlations of 0.81

and 0.84, respectively (Figures 5B,D). The regression analysis

indicates that a significant reduction of the synoptic temperature

swings is expected in central North America for El Niño and vice

versa for La Niña.

To further understand the contrast between the two

patterns, we perform the same regression analysis for the

850-hPa meridional temperature gradient and the advection

term at 850 hPa in Equation (5), which controls the TSI

variability. The regression coefficients of TSI are generally

in phase with those of the temperature gradient as well as

the advection term (a product of temperature gradient and
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FIGURE 7

(A) Time series of the DJF NINO34 anomalies from OISST V2 (black square) and SPEAR’s SRF (magenta diamond for ensemble mean, plus signs

for each ensemble member) during 1992–2022. Panels (B) and (C) are the same plot as (A) but for the NPO and PNA index, respectively.

eddy heat flux) (Figure 6A). Physically, the reduced meridional

temperature gradient weakens TSI between 30◦N and 50◦N

during the positive phase of ENSO and vice versa. The model

largely predicts the in-phase relationship between TSI and

the mean temperature gradient/advection term (Figure 6B,

Supplementary Figure 5). The model also predicts the observed

ENSO teleconnection pattern of the 850-hPa advection term

over the North Pacific/North America sector with a high spatial

correlation of 0.83 (Supplementary Figure 5), indicating that

the physical process controlling the TSI variability is well

represented in the model. In the temporal dimension, the model

almost perfectly predicts all observed ENSO events with a

very high ACC of 0.96 (Figure 7A). The high spatial similarity

between the skill pattern of TSI and the V-shaped TSI regression

pattern onto NINO3.4 (Figures 4, 5) and the high skill of

predicting NINO3.4 indicate that ENSO is a primary driver of

the prediction skill of TSI over North America.

Beyond ENSO, the NPO variability has substantial impact

on winter SATs and storm tracks over North America

(Linkin and Nigam, 2008), so we explore the linkage between

NPO and predictability of TSI over North America. The

observed regression pattern onto the observed NPO index

for DJF SAT is predominantly a broad area of cold anomaly

encompassing Canada and extending toward the Central and

Eastern United States, and a small area of anomalous warmth

concentrated around New Mexico (Figure 8A). In contrast, the

observed TSI pattern associated with NPO displays with a long

vertical arm of positive anomalies extending southward from

Alaska across Rocky Mountains and toward the Gulf Coastal

Plain and then deflecting toward the Northeast (Figure 8C).

The observed TSI regression pattern exhibits an apparent

phase shift from the SAT pattern. Akin to the dynamical

processes of TSI variability associated with ENSO, the regression

coefficients of TSI onto NPO are generally in phase with

those of the temperature gradient as well as the advection

term (Figures 6C,D). SPEAR’s SRF largely predicts the observed

regression patterns of SAT and TSI onto the observed NPO

index over North America with high spatial correlations of

0.81 and 0.84 with corresponding observations (Figures 8B,D).

However, the predicted amplitudes of the regression coefficients

of SAT and TSI are substantially weaker than the observations

especially over the central North America. The underestimation

of the regression amplitudes from the ensemble mean estimates

is likely due to relatively lower signal-to-noise ratio (SNR)

(larger ensemble spread) and relatively lower skill (ACC =

0.68) in predicting the NPO index in comparison with the

high SNR ratio and high skill in predicting the NINO3.4

index (Figures 7A,B). Nevertheless, the large-scale co-location

between the skill pattern of TSI and the significant regression

coefficients of predicted TSI onto the observed NPO index
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FIGURE 8

The regression pattern onto the observed normalized NPO index for the DJF surface air temperature (SAT) (units in K) during 1992–2022 from

(A) ERA5 reanalysis and (B) the ensemble mean estimates of SPEAR’s SRF. The same regression pattern for the DJF Temperature Swing Index

(TSI) (units in K) from (C) ERA5 reanalysis and (D) the ensemble estimates of SPEAR’s SRF. The stippling indicates regression coe�cients

significant at 5% level.

(Figures 4, 8) indicates that NPO significantly contributes to the

prediction skill of TSI over central North America.

The monthly PNA index is highly correlated with regional

temperature over the Southeastern and Northwestern parts of

the United States during winter (Leathers et al., 1991), and the

PNA index also exhibits strong interannual to decadal variability

(Leathers and Palecki, 1992). Thus, the PNA teleconnection may

drive the seasonal predictability of SAT and TSI over North

America. The observed and simulated regression patterns onto

the observed PNA index for DJF SAT agree well on a general

dipole with significant warm anomalies over the Northwestern

United States, Western Canada, and Alaska and significant

cold anomalies across Northern Mexico, the Southcentral, and

Southeastern United States (Figures 9A,B). Similar to the ENSO

teleconnection patterns of TSI (Figures 5C,D), the observed

and simulated PNA teleconnections of TSI display a similar V-

shaped pattern over North America, and the maximum signal

of the TSI pattern appears to locate in the middle of the SAT

dipole pattern (Figure 9). The distinctive spatial layout of the

SAT and TSI regression patterns associated with PNA is in

good agreement with the synoptic temperature variance theory.

The PNA index prediction skill (ACC = 0.7) is at a similar

skill level as the NPO index (Figure 7). Note that the observed

PNA index is strongly correlated with the NINO3.4 index (r

= 0.63), therefore the PNA prediction skill may partly arise

from the Eastern Tropical Pacific. Nevertheless, the high spatial

similarity between the TSI skill pattern and the TSI regression

pattern onto the observed PNA index (Figures 4, 9) indicates

that PNA significantly contributes to the skillful TSI prediction

over central North America, although it is strongly influenced

by ENSO.

The extratropical storm track variability over the far

Northeastern United States and Canada is strongly linked

to the interannual variability of NAO during the boreal

winter (Grise et al., 2013; Chartrand and Pausata, 2020),

and therefore the seasonal predictability of TSI associated

with NAO over North America may exist. The observed

regression pattern of SAT onto the observed NAO index is

characterized by a Southwest-Northeast dipole over North

America, while the pattern of TSI appears to locate in the

middle of the SAT dipole with a broad positive band extending

from the central Canada toward the North Atlantic coast

(Supplementary Figures 6A,C). The distinctive spatial layout of

observed SAT and TSI patterns associated with NAO, similar to

those of ENSO, NPO and PNA, is consistent with the synoptic

temperature variance theory. The model fails at predicting the

observed regression patterns of SAT and TSI associated with

NAO over North America (Supplementary Figures 6B,D). This

failure is very likely due to the low skill (ACC = 0.51) and

large ensemble spread of predicting the observed NAO index

(Supplementary Figure 7). However, the regression patterns of

SAT and TSI onto the modeled NAO index bears a resemblance
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FIGURE 9

The regression pattern onto the observed normalized PNA index for the DJF surface air temperature (SAT) (units in K) during 1992–2022 from

(A) ERA5 reanalysis and (B) the ensemble mean estimates of SPEAR’s SRF. The same regression pattern for the DJF Temperature Swing Index

(TSI) (units in K) from (C) ERA5 reanalysis and (D) the ensemble estimates of SPEAR’s SRF. The stippling indicates regression coe�cients

significant at 5% level.

to observations (Supplementary Figure 8), suggesting that the

NAO-related predictability of TSI could be potentially achieved

if the NAO skill is improved. Possible approaches include

increasing computational capability to increase the number of

ensembles used in prediction and/or improving model physics

for enhancing the SNR ratio of NAO (Scaife and Smith, 2018).

We next examine the impact of the historical radiative

forcing on the seasonal prediction of TSI over the central

United States, where the prediction skill of TSI is high with a

maximumACC over 0.7 (Figure 4). Time series of TSI anomalies

averaged over the central United States from ERA5, SPEAR’s

HIST, and SRF, respectively, shown in Figure 10A, indicates that

the historical radiative forcing has no significant contribution

(ACC = −0.18) to the high skilful prediction of TSI (ACC

= 0.75) from SRF. The SNR ratio, calculated as the ratio

between the ensemble mean variance and the ensemble noise

variance in SRF, is about 1.21 for TSI, indicating that the

predictable signal is larger than the noise. The substantial skill

improvement in SRF in comparison with HIST indicates that

observation-based initialization for the coupled model is critical

for achieving the skilful seasonal prediction of TSI over the

central United States. Consistent with high loadings of the

ENSO and NPO regression patterns of TSI over the central

United States (Figures 5, 8), the observed TSI time series over

the central United States shows strong links to ENSO, NPO, and

PNA with significant correlation coefficients of −0.57, 0.70, and

−0.65, respectively. In contrast, the predictive skill of SAT over

the central United States is very low with a weak correlation

of 0.36, because the time series of SAT is weakly correlated

with NPO (ACC = −0.41) and no significant correlation with

NINO3.4 and PNA (Figure 10B), and signals of the ENSO,

NPO, and PNA regression patterns of SAT are remarkably weak

over the central United States (Figures 5, 8, 9). Unlike the high

SNR of TSI, the SAT over the central United States tends to

be dominated by noise with a low SNR of 0.63 in the model.

Therefore, the high skill of TSI with significant contribution

from ENSO, NPO, and PNA provides additional predictable

information over the central United States beyond the low skill

of SAT.

Conclusions

To characterize the surface temperature swings associated

with extratropical storm tracks, we have formulated a seasonal

TSI, which is defined as the standard deviation of 24-h-

difference-filtered data of the 6-hourly SAT. The formulation

of TSI is similar in character to the extratropical surface storm

track index but calculated for SAT instead of SLP. The physics

governing the TSI variability is shown to be proportional to the

product of eddy heat flux and the mean temperature gradient,

which is the dominant advective term of driving synoptic
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FIGURE 10

Time series of observations (black squares), ensemble mean estimates from SPEAR’s historical simulations (HIST, blue) and SRF (red triangles)

averaged over the central United States (marked as a black box in Figure 4) for December–February during 1992–2022 for (A) the Temperature

Swing Index (TSI, units in K) and (B) mean surface air temperature (SAT, units in K).

temperature variations using a temperature variance budget

analysis (Lutsko et al., 2019). The fundamental physics of TSI

is consistent with the synoptic temperature variance theory

in that synoptic temperature variance can be related to the

mean temperature gradient and mixing length near the surface

(Schneider et al., 2015). The theory of synoptic temperature

variance controls indicates that the variability of TSI is related

to the variability of SAT gradient but not SAT itself, so the

predictable pattern of TSI is distinctive from that of SAT for a

given large-scale climate predictability driver.

We have compared the spatial distributions of climatological

and interannual variability of TSI in GFDL’s SPEAR

retrospective seasonal prediction and the ERA5 data and

assessed the predictive skill of TSI and SAT over North

America. The model shows substantial agreement with ERA5 of

simulating climatological TSI with very high spatial correlations

and captures the observed regional enhancement of TSI over

North America. Over North America, the predictive skill of SAT

is generally limited especially in the central USA. In contrast,

the model exbibits moderate to high skill of predicting TSI in

most of USA and the Western and Southern parts of Canada.

Thus, the predictive skill pattern of TSI, as a second-order

climate statistic, shows geographically distinct from those of the

first-order statistic—the seasonal mean SAT. The combination

of seasonal SAT and TSI skill has an additive effect for providing

useful climate predictions for a variety of end users, since TSI is

relevant to the winter weather extremes.

To further understand the geographical distinctions of

the TSI and SAT skill, we have diagnosed the observed

and predicted regression patterns of TSI and SAT onto the

observed NINO3.4, NPO, PNA, and NAO indices, respectively.

Remarkably, along with a very high correlation skill of predicting

NINO3.4, both the observed dipole pattern of SAT and V-

shaped pattern of TSI over North America regressed onto

the observed NINO3.4 index are well-predicted by the model

with high spatial correlations. SPEAR’s SRF largely predicts

the observed regression patterns of SAT and TSI onto the

observed NPO index over North America with high spatial

correlation. However, the predicted amplitudes of the regression

coefficients of SAT and TSI are substantially weaker than the

observations especially over the central North America, likely

due to the relatively lower SNR ratio (larger ensemble spread)

and relatively lower skill of predicting the NPO index in

comparison with the high SNR ratio and high skill of predicting

the NINO3.4 index. SPEAR’s SRF also largely predicts the

observed PNA teleconnection patterns of SAT and TSI over

North America with high spatial correlation, although the PNA

index is strongly influenced by ENSO on seasonal time scale.

Consistent with the physics controlling the TSI variability, the

regression coefficients of TSI onto NINO3.4, NPO, and PNA

are generally in phase with those of the temperature gradient

as well as the advection term but not with SAT, and thus the

resultant skill patterns of TSI and SAT display their distinct

geographical distributions.
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We have examined the impact of the historical radiative

forcing on the seasonal prediction of TSI over the central

United States, where the prediction skill of TSI is locally high.

The radiative forcing does not show significant contribution to

the skilful prediction of seasonal TSI and SAT over the central

United States. In sharp contrast with the low correlation skill

(0.36) of SAT prediction, the correlation skill of TSI prediction

reaches 0.75 with strong links to observed ENSO, NPO, and

PNA variations. This regional skill analysis over the central

United States further demonstrates the complementary effect

of predictable information for considering both skills of TSI

and SAT.

In particular, this study suggests that for La Niña or the

positive phase of the NPO or the negative phase of the PNA,

much of North America, especially in the central United States,

generally experiences larger-than-normal temperature swings.

That means we may expect more sudden extreme temperature

swings during these winters. This study suggests that we can

anticipate this elevated temperature volatility at least by the start

of the winter season.

The co-existence of the skilful predictions for the seasonal

SAT and TSI from the same predictability drivers (e.g., ENSO,

NPO, and PNA) but with their own distinct geographical

patterns, might arise from the extratropical eddy-mean flow

interaction aspects that storm-track variations are symbiotically

linked to the planetary-scale flow changes (Lau, 1988; Cai and

Mak, 1990; Branstator, 1995). As a first attempt of diagnosing

the combined predictability of the first order and second-order

statistics for the SAT, this study highlights the importance of the

eddy-mean flow interaction perspective for understanding the

seasonal climate predictability in the extra tropics.

The focus of this study is to demonstrate the distinction

of TSI skill from SAT and the process level understanding

of the achieved skill, so we only examined the predictions of

boreal winter season initialized on 1st December. The skill of

the primary seasonal predictability drivers (e.g., ENSO) tends

to decline with forecast lead times (Yang et al., 2015b; Lu et al.,

2020; Jia et al., 2022), so the skill of predicting TSI drops with

lead times consequently (Supplementary Figure 9). A detailed

analysis of the skill evolution with lead time will be left for future

research. We will also assess the forecast skill of TSI for the

boreal autumn and spring seasons in the future.
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